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Czechoslovak Mathematical Journal, 33 (108) 1983, Praha 

ON THE SEMIGROUP OF FULLY INDECOMPOSABLE RELATIONS 

CHONG-YUN CHAD, Pittsburgh 

MOU-CHENG ZHANG*), Guangzhou 

(Received April 25, 1982) 

The purpose of this note is to give a sufficient condition for the conjecture in [4] 
concerning the semigroup of fully indecomposable relations to hold. 

A binary relation on a finite set 0„ = {a^, «2, . . . , a„] of n elements, n > l,is 
a subset of 0„ x Q„ = {(a,-, aj); a ,̂ aj e Q„}, Let В = B(Q^) be the set of all (binary) 
relations on Q„. Then Б is a semigroup with the multiplication defined as follows: 
for Q and T in B, (a^, aj) e ^т if there is я aj, G Q„ such that (â -, a^) e Q and (a^, Uj) e т. 
Let (o be the universal relation on Q„, i.e., со = Q„ x Q„. Let M„ denote the set of 
all w X и matiices over the Boolean algebra of {0, l} . Then M„ is a semigroup under 
the ordinary matrix multiplication, and the map 

Q -^ M{Q) = (M,,.) 
where 

M. . = Я ^̂  {^n^j)^Q, and 
'̂•̂  [0 otherwise, 

is an isomorphism of В onto M„. Also, let X„ be the set of all directed graphs on n 
vertices with allowable loops and simple directed edges. Each matrix in M„ can be 
considered as the adjacency matrix of a directed graph Yin X„, and it determines Y 
uniquely up to isomorphism. Also, each graph in X„ with labelled vertices determines 
a unique matrix in M„ as its adjacency matrix. Hence, there is a one-to-one cor­
respondence among B, M„ and Z„: 

Q ^ M{Q) -^ Y{Q) . 

Let BQ = BQ{Q„) consist of all binary relations on Q„ with pri(^) = рг2(^) = ß„ 
where 

ûiQ = {xe Q„; {Ui, х)ед} , ga^ = {y e Q„; {y, a^ e Q} , 
n n 

V^I{Q) = и Q^j and рт2{д) = 1) ÜJQ . 

*) This work was done, while the author was a visiting scholar at the University of Pittsburgh. 
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Clearly, BQ is a subsemigroup of B, This means that, if ^ e BQ, then none of the 
columns and none of the rows in M(Q) consist of all zeros, and every vertex in the 
graph Y(Q) E X„ is incident with at least one incoming edge and at least one outgoing 
edge (a loop is considered both as an incoming edge and as an outgoing edge). 
A relation ^ G Бо is said to be decomposable, if there is a тг belonging to the group Я 
of all permutation relations on Q„ such that М(7г̂ 7г""̂ ) is of the form 

« [c I] 
where В and D are square matrices of sizes 5 x 5 and (n — s) x (n •- s) respectively, 
and 1 ^ s S n — 1, Otherwise, it is called indecomposable. A relation Q E BQ is 
said to be partly decomposable, if there exist n^ and П2 in Я such that М(п^дп2) 
is of the form (1). Otherwise, it is called fully indecomposable. A relation Q E BQ 
is said to be primitive, if there is a positive integer к = к(д) such that ^^ = со. If к 
is the least integer such that Q^ = со, then к is said to be the index of ^. Let P = P{Q„) 
and F = F{Q„) be, respectively, the set of all primitive relations in ^o and the set of 
all fully indecomposable relations in BQ. Since a fully indecomposable relation is 
primitive, we have F a P. A graph Fin X„ is said to be strongly connected if, for any 
two vertices in Y, there is a directed path in Y from one vertex to the other. If Q is 
decomposable, then the corresponding graph Y{Q) is not strongly connected. If Q is 
primitive, then the corresponding graph Y(Q) is strongly connected. However, if the 
graph Y(Q) is strongly connected, Q may not be primitive. 

To any Q E P, there is a least integer /2 = 12{Q) such that Q^^ E F. The conjecture 
on pp. 162-163 in [4] states: 

For any Q E P,WQ have /2 = /2(^) = ^ where n is the cardinality of Q„, i.e., \Q„\ = 
— n. It was shown in [1] that the conjecture does not hold in general. To find 
a necessary and sufficient condition(s) for the conjecture to hold seems to be very 
difficult. Here we shall prove the following 

Theorem. Let QEP = P{Q„) y^^ith (a,-, a,) e Q for at least one ai E Q„. Then Q^^ E F 
with /2 = ^2(^) = ^• 

We note that (a^ a )̂ E Q for at least one ai E Q„ imphes the corresponding graph 
Y(Q) having at least one loop. Thus, for convenience, a relation Q is said to be a loop-
relation if (flf, ai) E Q for at least one atE Q„. Consequently, the theorem above can 
be stated as: If ^ is a primitive loop-relation, then the conjecture holds, i.e., Q^^ E F 
with 12 = liio) = ^• 

In order to prove our theorem, we need the following lemmas: 

Lemma 1. Let M = M(Q) be the adjacency matrix of the graph Y = Y(Q) with n 
vertices. Then, in M'' = (M^j), Mgj^ is 1 (is 0) if and only if there is at least one 
directed path (no directed path) of length r in Y from the vertex g to the vertex h. 

Proof. It follows from the definition of adjacency matrix and the definition of 
matrix multiplication over the Boolean algebra of {0, 1}. 
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Lemma 2. Let Y be a strongly connected graph with n vertices. Then for any two 
different vertices и and v in Y, there exists a directed path of length at most n — 1 
in Y from и to V. 

Proof. Since the graph У is strongly connected, there exists a path from и to v, 
and the path goes through each of the vertices in Fa t most once. Consequently, the 
path is of length at most n — I. 

The following corollary is well known. (For instance see [3] and [2]). 

Corollary 2.1. / / Q is a primitive loop-relation, then the index of Q ^ 2n — 2. 

Proof. Since Q is primitive, the corresponding graph 7 = Y{Q) is strongly con­
nected. Бу using Lemma 2 and by using the loop there is a directed path of length 
2[n — 1) in У from any vertex in У to all n vertices in У, i.e., M^"~^ consists of all I's 
where M = M{Q) is the adjacency matrix of У, and the index oï Q ^2n — 1 follows. 

Let (7 be a subset of the vertex set V{Z) of a graph Z in X„. We define N^{U) = 
= [v E F(Z); there exists a directed path of length t in Z from a vertex Vi in U to v}, 
and | A ^ ( ^ ) | is the cardinality of Nf(U). For example, let Z be the following graph 

Then iVi({t^i}) = {v2, V5}, iVid^i}) = {̂ 2. ^3. ^4} and iV2({^i. ^4. ̂ 5̂}) = {^2^ ^3. M -
Also, |iVi({i)i})| = 2 and |iV2({î^i})| = |Л 2̂({̂ 1̂, ^4, ̂ зЦ = 3. (Note that Z is not 
strongly connected.) 

Lemma 3. Let Q e P = P(ß„), У — У(^) be the corresponding graph and 
M = M(g) be the adjacency matrix of У Then Q'' is partly decomposable if and only 
if there exists a set Uj^ of к vertices in Y, where 1 S k ^ n — 1, such that |iV^([/;,)| ^ 
g к. In other words, Q^ is fully indecomposable if and only if for every set Uj^ of к 
different vertices in Y and for every к = 1, 2, ..., n — 1, \N^[UJ^)\ > k. 

Proof. If Q'' is partly decomposable, then there exist л^ and 712 in П such that 
M(niQ''n2) is of the form 

(2) [rj 
where В and D are square matrices of size к x к and (n — /c) x (n — k) respectively. 
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Since В is 8i к X к matrix with 1 ^ к ^ n — i, by Lemma 1, we have jiV,.((7̂ .)j S к 
where Uj^ consists of the к vertices in Y. 

If there exists a set U,^ of/c vertices in У, where 1 ^ к ^ n — 1, such that ]N^((7;t)| = 
^ k, then there exist permutation matrices Q^ and Q2 such that QiM''Q2 is of the 
form (2), i.e., Q'' is partly decomposable. 

Let ^ be a loop-relation in P = Р(Д,) and Y = Y(Q) be its corresponding graph 
in X„ with a loop at a fixed vertex w. Let d^^ = d(u, w) be the shortest length, of the 
directed path from the vertex i/ in У to w. Let ŵ  and и2 be two different vertices in Y. 
We define 1/2 S w ,̂ if c/„̂  ^ d,,^. (We note that since u^ and 1/2 are different vertices, 
и2 = Wi means Ĵ ^ = J„^.) 

Lemma 4. Le^ Q be a loop-relation in P = P(ß„) öfn<i Y = У(^) be /f5 corresponding 
graph with a loop at a fixed vertex w. If {v^, V2, •.., V},} is a set of к different vertices 
in Y where 1 ^ к ^ n ~ 1 such that Vj^ ̂  i;^_i ^ ,.. ^ v^, then d^. ^ n — i for 
i = 1, 2, ..., /c. 

Proof. By induction on k. For /c = 1, by Lemma 2, d^^ ^ n — 1. Assume that the 
lemma holds for any set of /c — 1 vertices in У Consider any set Uf^ of к different 
vertices in У We may assume Uj^ = {v^, V2, ..-, i^^-i, Vj^} with Vf^ ^ Vj^_-^ ^ Ü;,_2 й •• 
... ^ v^. By our inductive hypothesis, d^,. ̂  n — i for i = 1, 2, ..., к — 1. There 
are two cases to be considered: 

Case 1. If d^^ < 4^_^, i.e., Vi, < v^-^ ^ %-2 ^ ••• ^ г̂ ь then d^^_^ S n -~ 
— (/c — 1) implies d^^ ^ n — k. 

Case 2. If Jy^ = ^^к-р i-^-' /̂c = ^)t-i = ^/c-2 S. ••• ^ ^i? then the path of shortest 
length from Vj, to w does not pass through the vertex Vj^^^, nor does it pass through 
any of the vertices %_2, ^к-з^ • ••' ^i- Consequently, Ĵ^̂^ is at most n — 1 — (/c — l) = 
= n — k, i.e., d^^ ^ n — k. 

Now the proof of our theorem goes as follows: Since ^ is a loop-relation in P = 
= P(ß„), the corresponding strongly connected graph Y{Q) in Z,, has at least one 
loop, say, the loop is at the vertex w. Let M = M{Q) be the adjacency matrix of У 

Let Uj^ = [v^, V2, ..., Vj,} be a set of any к different vertices in У where 1 ^ /c ^ 
^ n — 1. We may assume that Vj, g v^,-^ S Щ-2 й -•• й ^i- Then, by Lemma 4, 
dj,. ^ n — i for Ï = 1, 2, ..., k. Since У is strongly connected, the directed paths of 
length i from w, 1 ^ i ^ n — 1, pass through at least i + 1 vertices in У Say, these 
vertices are w, w^, W2,..., w^ in У Again, since У is strongly connected and since 
Vj. ^ Vj^-i ^ Vf^_2 S -•' S ^i where 1 ^ /c ^ n — 1, by using the loop at w, (if 
necessary, use the loop many times) there is at least one directed path of length n 
from Vi to w, at least one directed path of length n from v^ to w^, ..., at least one 
directed path of length n from Vi to w .̂ Hence |iV„({t;J)| ^ i + 1 for i = 1, 2, ..., /c, 
i.e., for any v^ e (7/,, |A^„({t̂ i})| ^ 2. For any two different Vi^, v^^ e U^, we suppose 
г;;, й v,„ then |iV„({ü,,})| ^ 2 and |Ar„({£;,J)| ^ 3. Since \N„{{V,„ Ü , J ) | ^ 
amax{|iV„({ü.,})|, \N„(K})\}, \N„{{V,^,VJ)\ ^ 3. Similarly, for any t different 
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Vi,, Vi^, ..., Vi^e Uj, where 3 ^ t ^ к, \N„{{vi^, t;^^,..., i;,J)| ^ ^ + 1. By Lemma 3, 
Q'^ is fully indecomposable, i.e., ^" e F, and it follows that Q^^ e F where /2 = 
== Ш й п. 

The following example shows that the loop relation in our Theorem is not a neces 
sary condition for the conjecture to hold: Let ^4 = {1,2,3,4} and Q = {(1,2), 
(2, 3), (2, 4), (3, 1), (4, 3)}. Then Y= Y{Q) and M = M{Q) are, respectively. 

2 and 

Го 1 
0 0 

0 0] 
1 1 

1 0 0 0 | 
[0 0 1 Oj 

Then 

M^ = 

Fl 1 
0 1 
1 0 

[0 0 

0 0] 
1 1 
1 0 
1 ij 

eF, i.e., Q"^ e F . 

The following example demonstrates our theorem: Let ^5 — {l, 2, 3, 4, 5} and Q = 
= {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1), (5, 5)}. Then Y= У(^) and M = M{Q) are, 
respectively, 

and 

" 0 1 0 0 0 " 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 
1 0 0 0 1 

Then M^, M^, M^ and M^ are, respectively. 

" 0 0 1 0 0 " 
0 0 0 1 0 
0 0 0 0 1 
1 0 0 0 1 
1 1 0 0 1_ 

> 0 0 0 1 0 " 
0 0 0 0 1 
1 0 0 0 1 
1 1 0 0 1 
1 1 1 0 IJ 

? 0 0 0 0 г 
1 0 0 0 1 
1 1 0 0 1 
1 1 1 0 1 
1 1 1 1 IJ 

and 

"10 0 0 1" 
1 1 0 0 1 
1 1 1 0 1 
1 1 1 1 1 
1 1 1 1 1 . 

318 



We note that M^ ф F, because |iV2({l})| = 1. M^ ф F, because |Л^з({2})| 
M^ Ф F, because \N^1, 2} ) | = 2. But M' e F, i.e., Q^ e F. 

The authors wish to thank Professor S. Schwarz for his helpful suggestions. 
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