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Czechoslovak Mathematical Journal, 33 (108) 1983, Praha 

ON K-RADICAL CLASSES OF LATTICE ORDERED GROUPS 

JÀN JAKUBIK, Kosice 

(Received April 5, 1982) 

The notion of radical class of lattice ordered groups was introduced in the author's 
paper [4]; cf. also [5]. A radical class X which can be defined by means of the pro­
perties of the lattice of closed convex /-subgroups of /-groups belonging to X is said 
to be a K-radical class (P. Conrad [ l]) . 

Examples of i^-radical classes are: the class X^ of all archimedean /-groups; the 
class Xß of all /-groups with a basis; the class Xc of all completely distributive /-groups; 
the class St of all /-groups G such that the lattice of all closed convex /-subgroups of G 
is a Stone lattice. These and some other examples of X-radical classes were thoroughly 
studied by Conrad [1]. 

Let ^ and ^ ^ be the collections of all radical classes and X-radical classes, respec­
tively. Both M and ^2^ are partially ordered by inclusion. Then .^ and ^ ^ ^^^ complete 
lattices. The lattice ^ was investigated in [4]. Jn the present paper the lattice ^^^ 
will be dealt with. 

For X e ^1^ we denote by a(X) the class of all elements of M^ covering X; further, 
let ai(Z) be the class of all Ye ^^ such that X < У and no element of the interval 
[X, 7 ] covers X. Let RQ and ^ be the least element and the greatest element of ,^j^, 
respectively. If X e ^j^ is generated by a one-element class, then X is said to be 
principal. 

Sample results: It will be shown that ^^ f̂ î s to be a closed sublattice of ^ . It will 
be proved that ^j^ is a Brouwer lattice and for each subclass X of ^ the jK^-radical 
class generated by X is equal to Join Lat Sub X (for denotations, cf. Sec. 1 below). 
There exist i^-radical classes X^, X2 distinct from *̂  such that a(Xi) = 0 and 
^^(Хз) = 0. If X Ф i?o is a principal ^-radical class, then both a{X) and a^ÇX) are 
nonempty (in fact, they are proper classes). For each X e {X^, A^̂ , X^, S J the class 
a(X) is nonempty. iC-radical classes generated by linearly ordered groups will be 
examined. 

1. PRELIMINARIES 

Let ^ be the class of all lattice oidered groups. When considering a subclass Y 
of ^ we always assume that Tis closed with respect to isomorphisms and that the 
zero group {0} belongs to 7. 
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A subclass Jf of ^ is said to be a radical class if it is closed with respect to 
a) convex /-subgroups, and 
b) joins of convex /-subgroups. 
Let G e^. We denote by c(G) the system of all convex /-subgroups of G; the set 

C{G) is partially ordered by inclusion. Then c{G) is a complete lattice. The operation л 
in c{G) coincides with the set-theoretical intersection. The join in c{G) will be denoted 
by y%i G, 

For G G ^ we denote by K(G) the system of all closed convex /-subgroups of G. 
The system K(G) is partially ordered by inclusion; then K(^G) is a complete lattice. 
The lattice operations in K(G) will be denoted by л and v . For M ç G we denote 
by M " the closed convex /-subgroup of G that is generated by M. The meet in K(G) 
coincides with the set-theoretical intersection and for {Gi}i^j я K(G) we have 

V,w G, = (VL/ G,y . 
A subclass Z of ^ is said to be a K-class if there exists a class T of lattices such 

that the equivalence 
GeXoK{G)eT 

is valid for each lattice ordeied group G. 
A iC-class X which is at the same time a radical class is called a K-radical class 

(cf. [1]). 
Let ^ and ^ ^ be the collections of all radical classes and all i^-radical classes, 

respectively. Both ^ and 0tj^ are partially ordeied by inclusion. The one-element 
class i?o = {{0}} is the least element in both M and ^/^, and ^ is the largest element 
in both ^ and ^к-

For X ^ ^ we denote by 
Sub X — the class of all convex /-subgroups of /-groups belonging to X\ 
Jo inZ ~ the class of all /-groups G having a system {Gi]i^i of closed convex 

/-subgroups with Gl e X for each / e / such that Vie/ ^i — ^ ' 
Join^Z — the class of all /-groups G having a system {Gi}i^i of convex /-subgroups 

with Gj e X for each / e I such that VL/ ^i = ^^ 
Lat X — the class of all lattice ordered groups G such that K{G) is isomorphic 

to K{G^) for some G^ e X ; 
(Z)" — the class of all lattice ordered groups G having the property that there 

exists Gj, G c(G) n X such that G = G^. 
^ is a complete lattice in which the meet coincides with the intersection of classes. 

(In fact, ^ is a proper class.) The join in ^ will be denoted by V"̂ - For X ç ^ we de­
note by T(X) the intersection of all Ye m with Z ^ 7. Then T{X) belongs to M and 
is said to be the radical class generated by X. The following two propositions were 
proved in [4]. 

1.1. Proposition. Let X Я^. Then T{X) = Join^ SubZ. 
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1.2. Proposition. Let I be a nonempty class and for each i e I let Xi e M. Then 

2. THE LATTICE ^к 

2.1. Proposition, ^j^ is a complete lattice. The operation of meet in ^f^ coincides 
with the intersection of classes. 

Proof. Let / be a nonempty class and for each / el let Xi be a iC-radical class-
Hence for each i el there exists a class T̂  of lattices such that 

GeXiO K{G) e T^ 
is valid for zach G e^. 

Put X = OieJ^P T = Пш/ Tf Then Z is a radical class and for each Я G ^ we 
hawe 

HeXoK{H)eT; 

hence X e Mj^. Thus X is the meet of the class {Xj/e/ in ^j^. Because Mj^ is bounded, 
it is a complete lattice. 

2.2. Lemma. Let G e ^ , H e c{G). For each Н^еЦН) and each H[eK{H~) 
put cp{Hi) = Щ, Ф{Н[) = H n H[. Then cp is an isomorphism of the lattice 
K{H) ontoK{H-) andij/ = (p-K 

Proof. Let Hi, Н2еК(Н) and assume that (p{Hi) = (p{H2\ Let Q < ge Я2. 
Thus g e H2 = Щ and hence there are elements (xjie/ ^^ ^1 such that 0 < Xj 
and sup {x j = g holds in G. This implies that sup {x j = g holds in Я as well and 
thus, because of H^ еК{Н), we have g e H^. Therefore the mapping ф is a mono-
mosphism. 

Let Я* G K{H-y Then clearly H^ n H e К{Н) and (р(Я* n Я) ^ Я. Let 0 < Ö' e 
G Я*. There is a subset (xj^^j ç Я with О < x̂  such that V^/ = 9 holds in G. Then 
{Xi}i^i ^ H^ n H and hence g e cp{H'' n Я). Therefore (^(Я* n H) = Я*. Hence с/) 
is onto K[H~). At the same time we have verified that ф = (p~^. 

If Я1, Я2 е-К(Я) and Ht, Я | еЦН'), then 

Н,^Н2=> ср{Н,) £ ф(я , ) 
and 

яг - я,* =- ,A(flî) ^ ^(й|) ; 
hence ф is an isomorphism. 

2.3. Lemma. LetX'^^,Y= Lat Sub X. T/zen Sub Y = Y. 

Proof. Let G sY. There exists G' G Sub X such that the lattice K{(j) is isomorphic 
to i^(G'); let (p be the corresponding isomorphism. Let Я e c(G). Put Я* = (p(H~). 
The lattice K(H^) coincides with the interval [{0}, Я*] of the lattice K{G')\ similarly, 
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the lattice K[H~) coincides with the interval [{0}, Я ~ ] of the lattice K{G), Hence 
K{H~) is isomorphic to ^(Я*) . Because of Я* G Sub X we infer that Я " e Lat Sub X 
and in view of 2.2, H e Y. Therefore Sub Y = Y. 

2.4. Lemma. Let X ç f̂ , Y= Join Sub J^. Then Sub 7 = 7 . 

Proof. Let He Sub 7 There is G e 7 with Я e c(G). Further, there are G,- G 
G Sub X n i ^ ( G ) with G = V.e/<^/- Hence G,-n Я G Sub X n ^(G). It suffices to 
verify that Я = Vie/ (^/ ^ ^ ) is vaHd. 

Let 0 < /i G Я. Since heG = (VL/ <^0~ there are elements hj (j e J) such that 
h = VjeJ ^j and 0 < /îy G V?e/ ^i for cach 7 G J. 

Let j e J Ы fixed. There exist elements ö'ji' •••' 9п(л ^ U/€//^/ such that 0 < о'д 
is valid for A: = 1, 2, ..., n(j) and 

^ = б'л + ••• + дмп-
Then о'д ^ /zy holds for к = 1,2,..., n(j) and hence gj^ e U ,е/ {^i ^ ^ ) - Therefore 
all h J belong to VL/ (<̂ t ^ ^ ) and so /7 G (V?e/ (<̂ f ^' ^ ) ) ~ = Уш i^i ^ ^ ) - Thus 
H = y,,,{G,nH). 

2.5. Lemma. Le/ Z ^ ^ , Z - Join Lat SubZ. Then Sub Z = Z. 

Proof. In view of 2.3 we have 

Z = Join Sub Lat Sub X ; 

hence according to 2.4 the relation Sub Z = Z is valid. 

2.6. Lemma. Let G and G' be the lattice ordered groups and let cp be an iso­
morphism of K[G) onto K{G'), Let HEK{G), Then К{Н) is isomorphic to К{ср{Н)). 

Proof. The image of the interval [{O}, Я ] of i^(G) under the isomorphism cp is 
the interval [{0}, (p{H)\ of the lattice KiG'). Since К{Н) - [{0}, Я ] and К{(р(Н)) = 
= [О, ф(Я)], the lattice К{Н) is isomorphic to К((р{Н)). 

2.7. Lemma. Let X ^ ^J0, Y = Join Lat X. Then Lat Y = Y. 

Proof. Let G G Lat 7 There is G' G 7 such that there exists an isomorphism ç 
0Î K{G) onto K{G'). Further, there are G- (iel) in K{G') n L a t Z such that G' = 
= Vier^i- Put G, = (p~\G'i). Then in view of 2.6 we hawe GieK{G) n La tX; 
clearly G = V/e/ <̂ n hence G G 7 

2.8. Lemma. Let X £ ^ , Z = Join Lat Sub X. Then Z is closed with respect to 
joins of convex l-subgroups. 

Proof. Let Ge'ä and Giec{G)nZ {iel). Put Я = y^G^. Then we have 
a~ = Vtej ^Г- According to 2.2 and 2.7, all GJ belong to Z and hence H~ e 
e Join Z =^ Z. Since Я G Sub {Я~}, from 2.5 we infer that H e Z is vahd-
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2.9. Theorem. Let X ^ ^. Then 
(i) JoinLat SubX E^J^; 

(ii) for each Z e Ш^ with X ^ Z we have Join Lat SubX Ç Z. 

Proof. Put Join Lat Sub JSf = Z. In view of 2.5, Z is closed with respect to convex 
/-subgroups; according to 2.8, Z is also closed with respect to joins of convex /-sub­
groups. Therefore Z is a radical class. Since Z is a Ä^-class (cf. 2.7), we have Z e ^f^. 
Hence (i) is valid. 

Let Z' e ^K, X ^ Z'. Since Z' is a radical class, we have Sub Z' = Z'; because Z 
is a iC-class, Lat Z' = Z' is vahd. Hence we have to verify that Join Z' = Z' holds. 
Let Ge'ê, {G,},,, ^X гл K(G), V/e/ Gi = G. Put V'e/ G^ = H. In view of 2.8, 
H e Z'. Since H~ = G, from 2.2 we infer that G e Z'. Thus (ii) holds true. 

For each Z ^ ^ we denote Г^ (̂Z) = Join Lat Sub X. In view of 2.9, TjJ^X) is the 
iC-radical class generated by X. If G e ^ , then the iC-radical class generated by {G} 
will be denoted by Tjfi). 

The join in the lattice Mj^ will be denoted by V-

2.10. Theorem. Let I be a nonempty class and for each i e I let Xi he a K-radical 
class. Then \/i^jXi = Join IJ/e/hi­

proof From 2.9 we infer that 

V,-ei Xi = Join Lat Sub [jtei^i 

is vahd. Further, we hawe 

Lat Sub Uiei^i = U/e/ Lat SubZ , = Uisi^i. 

completing the proof. 
Let us remark that for {Xj^^/ ç ^j^ the relation 

need not be valid. This will be shown by Example 3.8 below. 

2.11. Theorem. The lattice ^i^ fulfils the infinite distributive law 

X A{y,^,Y) = y,,,{X A Y,). 

Proof. We have Уш{Х A Y) ^ X A (V/e/ У)- Let GeX A (V/e/ ^г)- Hence 
GeX and GeVt^j Y^. In view of 2.10 there are Gj {j e J) belonging to K{G) n 
r^{[Jiei Yi) such that 

G = VjsjGj, 

Then we have Gj e []ш (X л У.) for each j e J, hence G e V/ei ( ^ A У^). 
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3. i^-RADICAL CLASSES GENERATED BY LINEARLY ORDERED GROUPS 

3.1. Proposition. Let X <=z^. Assume that Sub A' = X and Lat X = X. Then 
т^{х) = {т{х))-. 

Proof, a) Let Ge{T{X))~, Hence there is G^ e c{G) n T(X) such that G - Gf. 
In view of LI there are GIGX n c{Gi) such that Ĝ  = VL/ ^/- Hence G = Gi~ = 
= V<^r and according to 2.2, G; eX. Therefore Ge Ti^{X) and thus {Т{Х)У с 

b) Assume that G e Г;^'(^). Hence G e Join Lat Sub ^ = Join A'. Thus there aie 
G^eX n K{G) with G = V/ei G^. Put Я = V L ^.; we hawe Я e T{X) and Я " G 
e(T(Z))~. From 

we infer that G G ( Г ( Х ) ) - and therefore Т^,{Х) Я {Т{Х))-. 

3.2. Lemma. Let Ge^. Then the following conditions are equivalent: 
(i) G /s linearly ordered. 

(ii) C(G) /S a chain. 
(iii) i^(G) /5 a chain. 
The p r o o f is simple, it will be omitted. 
Let us recall the notion of the completely subdirect product of lattice ordered 

groups which was introduced by F. Sik [7]. 
Let G e"^ and let S = {G^ji^j be a system of convex /-subgroups of G. The lattice 

ordered group G is said to be a completely subdirect product of the system S if 
Y^iei Gi^ G ^ Yliei Gi^ (Cf. also Conrad [2].) (Recall that the symbol ^/e / ^i 
above denotes the restricted direct product of the system S.) 

It is easy to verify that for G e^ and S = {Gi}i^j ^ c(G) the following conditions 
are equivalent: 

(i) G is a completely subdirect product of the system S; 
(ii) Gj n Gj = {0} whenever i and j are distinct elements of / , and for each 

0 < 0̂  G G there are giE Gi (i e I) with g = V/e/ df 
(iii) Gl n Gj = {0} whenver i and j are distinct elements of/, each G^ is a direct 

factor of G and V/e/ ^ . = G. 

3.3. Lemma. Let G e^ and H G C(G). Assume that H is a completely subdirect 
product of a system S = {Hi}i^j, where each Я,- is linearly ordered. Then H~ is 
a completely subdirect product of the system S as well. 

Proof. Without loss of generality we may suppose that H^ Ф {0} for each ieL 
Let 0 < g e H~. Then g is a join of some positive elements of Я ; since each positive 
element of Я is a join of positive elements belonging to (Jie/ ^i there are elements 
0 < hjG и/6/ Hi such that g == \/hj. 

Let il be a fixed element of/. Assume that x ^ g for each x e H^^. Choose 0 < y e 
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G i/,-j. If i e I and / ф / j , 0 < z e Я,-, then z + y = z v y; hence 

g <g + y = {Vhj) + y = \/{hj + y) й g , 

which is a contradiction. Therefore for each iel there is 0 < h\eHi such that 
/i- $ д. Then /?• л Ö' ̂ ^ the greatest dement of the set [0, ^] n Н^. Hence we infer 
that g — У i^i h\. Consequently, Я " is a completely subdirect product of the system S. 

3.4. Proposition. (Cf. [5], Thm. 3.4.) Let X Ç ^. Assume that each lattice ordered 
group belonging to X is linearly ordered. Let G e^. Then the following conditions 
are equivalent: 

(\)GeT{X). 
(ii) There are systems {Ai}i^j ^ c(G) and {^fjjjejc/) — c{G) n X for each iel, 

such that Ai = [JjeJH) "^ij ^^ valid for each i el, and G = Y,iei -^r 
For Z ^ ^ we denote by X^ the class of all G G ^ having the property that there 

exists a linearly ordered system {Gj},^; ^ X n c(G) such that G = U/e/ ^z ^̂  valid. 
(The system under consideration is ordered by inclusion.) 

3.5. Theorem. Let X ^ ^, X^ = Lat SubX. Assume that all elements of X are 
linearly ordered groups. Then 

(i) all elements of X^ are linearly ordered groups; 
(ii) Ti^[X) is the class of all lattice ordered groups which can be expressed as 

completely subdirect products of linearly ordered groups belonging to X^^. 

Proof, (i) is a consequence of 3.2. In view of 2.2 we have SubX^ = X^, and 
clearly L a t X | = X^. Thus 3.1, 3.3 and 3.4 imply that (ii) is valid. 

3.6. Corollary. Let Y be a K-radical class. Then the following conditions are 
equivalent: 

(i) Each G e Y is a completely subdirect product of linearly ordered groups. 
(ii) There exists a class X of linearly ordered groups such that Y = Ti^[X). 

3.7. Proposition. Let G, G' e ^. Assume that (i)G is a completely subdirect product 
of linearly ordered groups Gi [i e J), and (ii) K[G) is isomorphic to K[G'). Then G' 
can be expressed as a completely subdirect product of linearly ordered groups G-
(/ el) such that, for each i G / , K{G^ is isomorphic to K{G'^. 

Proof. Let (p be an isomorphism of the lattice K{G) onto K(G'). Put G- = (p{G^ 
for each ieL According to 2.6, the lattices X(G,) and K{G'i) are isomorphic. Thus 
in view of 3.2, all GJ are linearly ordered. 

Gj is a direct factor of G and hence G,- has a complement in the lattice K(G). Thus G\ 
has a complement H\ in the lattice K(G'). Without loss of generality we may suppose 
that all the lattice ordeied groups Ĝ  are non-zero; hence the same is valid for G-. 
Assume that there exists g' e G' such that g' is an upper bound for some GĴ  (/\ el). 
We have 

с = (G;, V я;,)-, 

155 



hence g' is a, join of some positive elements of GĴ  v Я-^. Each positive element 
of G'i^ V H'i^ is a join of some positive elements of the set G[^ u H\/, hence there are 
elements 0 < QJE G;, U H[^ with g' = \/gj. Choose 0 < /c 6 G;^. Then 

g' <g' + k = Vj {gj + k). 

If g J G G;^, then gj + ke GJ-̂  and hence gj + к ^ g'; if ^̂ . e HJ^, then g. + к = 
= gj V к S 9'- Thus V/ö^j + ^) ^ ^', which is a contradiction. Therefore GĴ  
fails to be bounded in G' and hence, in view of the result of [6], GĴ  is a direct factor 
in G'. 

We have V/ei ^i = ^? hence V/ei ^i = ^'- Therefore G' is a completely subdirect 
product of the system {G-} (/ el). 

Remark . Proposition 3.7 can be applied to obtain an alternative proof of Theo­
rem 3.5. 

3.8. Example . Let R be the additive group of all reals with the natural linear 
order. We denote by о the operation of lexicographic product. Put R„ = R о R о ... 
о R (/î-times), Z„ = T^̂ (R„) {n = 1, 2, . . . ) , 

G = YiRn {n = h2,...), 

X = VX„, Y=yX„ {n = 1 ,2 , . . . ) . 

Then 3.4 and 1.2 imply that G does not belong to X; on the other hand, according 
to 3.5 we have G e Y. Hence if S is an infinite chain in the lattice ^^^ the join of S 
with respect to ^^ ^^^^ î ot coincide with the join of S with respect to ^ . In parti­
cular, ^1^ fails to be a closed sublattice of ^ . 

4. ON ATOMS OF THE LATTICE ^к 

For X G ^j^ we denote by a(X) the class of all Ye ^j^ such that (i) X < Y, and (ii) 
there exists no Z G ̂ /^ with X < Z < Y. The elements ofaÇX) are called atoms overX. 
If X = {{O}} = RQ, then a(X) is the class of all atoms of ^/^; this class will be denoted 
by AQ. Also, for each X e ^ ^ , we denote by «^(X) the class of all Ye Mj^ such that (i) 
X <Y, and (ii) the interval [Z, У] of î̂ ^ has no atoms. The following proposition 
shows that A^ is nonempty. 

4.1. Proposition. Let X eMj^. Then the following conditions are equivalent: 
(i) X e AQ and X contains an archimedean non-zero linearly ordered group. 
(ii) X is the class of all lattice ordered groups which can be expressed as com­

pletely subdirect products of archimedean linearly ordered groups. 

Proof. Let us denote by У the class of all lattice ordered groups G such that G is 
a completely subdirect product of archimedean linearly ordered groups. In view of 
3.5, У is a Ä^-radical class. Let Z e m^, RQ < Z S Y- There is G^ G Z with G^ Ф {0}; 
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further, there is an archimedean linearly ordered group G2 Ф {0} such that G2 is 
a direct factor of G^. If G3 is any non-zero archimedean linearly ordered group, then 
K{G^) is isomorphic to K[G2), hence G^e Z and therefore (because Z = Join Z) we 
infer that Y ^ Z. Thus (i) is a consequence of (ii). The implication (i) => (ii) is obvious. 

The word "archimedean" cannot be omitted in the condition (i) of 4.1. This will 
be shown by the following construction and by 4.2. 

Let a be an infinite cardinal. We denote by ш(а) the first ordinal having the property 
that the set of all ordinals less then co(a) has the cardinality a. Let /„ be a linearly 
ordered set dual to œ(a). Let G be a linearly ordered group, G ф {O}. We put 

where Г is the symbol denoting the lexicographic product and Ĝ  is isomorphic to G 
for each i e I. 

From the definition of G^ we immediately obtain: 

4.2. Lemma. Let H be a convex l-subgroup of G ,̂ H Ф {0}. Then there exists 
a convex l-subgroup H^ of H such that H^ is isonwrphic to G^. 

4.3. Lemma. Let {0} Ф G e ^ . Assume that for each H e c(G) there exists 
H^ E C[H) such that H^ is isomorphic to G. Then Tj^{G) is an atom in ^j^. 

Proof. We have RQ < TK{G). Let X e ^к, R^ < X ^ TK{G). There exists {0} Ф 
Ф G' eX. According to 2.9 we have G' e Join Lat Sub {G}. Hence there are {Gj^^j я 
^ X(G'), {Hiji^j ^ Sub {G} such that G' = Уi^i G^ and for each iel there exists 
an isomorphism (pi of K[Gi) onto K(Hi). Without loss of generality we can suppose 
that Gi Ф {0} for each iel; hence Я,- Ф {0} for each isL In view of 2.2, K{Hi) is 
isomorphic to K{HJ), hence there is an isomorphism (/?• of K{G^ onto K{Hl). 
According to the assumption there exists H^^ e c{HJ) such that H^^ is isomorphic 
to G. Hence K(Hi^) is isomorphic to K[G) and in view of 2.2, K{Hi^) is isomorphic 
to K{G) as well. Thus (ф')~^ i^n) ^ Ы^1 - ^ ^^^ Щ^РТ' i^n)) î  isomorphic 
to K{G), implying G e TK{G'). Therefore X = TK{G). 

4.4. Proposition. Let G e"^, G ф {0} and let a be an infinite cardinal. Then 
Tjfi^ is an atom of the lattice ^ x . 

Proof. This is a consequence of 4.2 and 4.3. 

4.5. Corollary. The class of all atoms of ^j^ is a proper class. 
Let us remark that Tj^{G^ does not contain any nonzero archimedean /-group. 

4.6. Proposition. There exists a nonzero linearly ordered group G such that the 
interval [JR( , T)^(G)] of the lattice ^j^ contains no atom. 

Proof. Let ß be an infinite cardinal and let l[ß) be a linearly ordered set dual 
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to (Jü(ß), For each / e l(ß) let a,- be a cardinal such that 

/i > /2 =^ a,-, < a,-̂  ; 

further, let Ji be a linearly ordered set isomorphic to 0){ai). We denote by M the set 
of all pairs m = (y, /) with / e /(^^) and j e Ji\ we put (ji, /j) < (72, /'2) i^ either 
/i < /2» o^ Ч = 2̂ ^i^d Ji ^ J2' Let Go Ф {0} be an archimedean linearly ordered 
group and for each m e M let G,„ be a linearly ordered group isomorphic to GQ. 
Put 

Let Rg < X S T^{G). There exists Н^еХ with Я^ Ф {0}. In view of 3.5, there 
exists a convex /-subgroup Я2 Ф {0} of G such that Я2 is isomorphic to a convex 
subgroup of H^; thus Tj^{H2) S X. The construction of G yields that there exists 
a convex /-subgroup Я3 ф {0} of Я2 such that for each nonzero convex /-subgroup 
Я4 of H2 the lattice К{Н^) fails to be isomorphic to K(H2). By using 3.5 again we 
infer that Я2 does not belong to Tjß^); therefore RQ < Tj^H^) < T^{H2\ Thus X 
fails to be an atom of ^j^. 

We have proved that the class a^^Ro) is nonempty. This result can be sharpened 
as follows. Let us apply the same notation as in the proof of 4.6. 

Now if we choose a cardinal ß^ such that ßi > ß and if we construct a linearly 
ordered group G^ in the same way as we did for G (with the distinction that ß is 
replaced by ß^), then in view of 3.5, G^ does not belong to Tj^{G)\ therefore T^{Gi) ф 
Ф TJ^{G). From this consideration we infer 

4.7. Proposition. Ü^^RQ) is a proper class. 

Denote A = sup a(/^o)' ^1 = sup ÖI(-RO) (the symbol sup being taken with respect 
to the complete lattice ^x). 

The following proposition is a consequence of 4.5, 4.7 and of the fact that ^f^ is 
a Brouwer lattice (cf. 2.11). 

4.8. Proposition. a^A^) and a^^A) are proper classes. The class ai[Ai) is empty. 
The lattice [RQ, A~\ is complemented. A^ belongs to ЙД^О)-

5. THE CLASS a{A) 

Let G e ^ , Я e c{G). If for each g e G\H with ^̂  > 0 we have g > h whenever 
h G H, then G is said to be a lexico extension of the lattice ordered group Я and we 
denote this fact by writing G = <Я>. The lattice ordered group G is called a proper 
lexico extension if there exists H^ e c(H) with G ф Я^ Ф {0} such that G = <Я,>. 

Let G ф {0} be an archimedean linearly ordered group. Let a be an infinite car­
dinal. Put 

where each Ĝ  is isomorphic to G. Then Ĝ «] is a proper lexico extension. 
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5.1. Lemma. Tf^{G) is covered by T,^(G^^^). 

Proof. There exists a convex /-subgroup of C/[y] isomorphic to C; thus G e Ti^{G^^j) 
and hence Ti^{G) ^ Tî (Gf̂ j). Now 3.4 implies that G[a] does not belong to Tf^{G) 
(in fact, each element of Ti^{G) is archimedean and Gf̂ ] fails to be archimedean). 
Therefore T^{G) < T^{G,„,). 

Let X G ^1^, Tj^{G) < X S Tj^{Gia})- Hence there is HEX\Tf^{G). In view of 2.9 
there are Hi e K(H) (/ e / ) such that H = V,e/ Hi and each Я,- belongs to 
Lat Sub {Gf^]}. Hence for each / e / there is Я- e Sub {G^̂ j} such that K[Hi) is iso­
morphic to K[H'i). 

For each Я̂ - we have either (i) Я^ ^ J~},GJ G,-, or (ii) H[ = G^^y If (i) is valid for 
each / e /, then H[ e Ti^[G) holds foi each / el, hence Я e Tj^{G), which is a contra­
diction. Therefore there is iel fulfilling (ii) and so X = Tf^(G^^^), completing the 
proof. 

5.2. Lemma. Let X e AQ, X 4^ T^ (̂G). Then Tj^{G^^^) A X = RQ-

Proof. By way of contradiction, assume that there is Я G T̂ (̂Gf̂ ]) л X with Я Ф 
Ф {0}. The construction of G^^^ and 2.9 yields that each nonzero lattice ordered 
group belonging to Ti^{G^oci) ^^^^ ^ nonzero archimedean subgroup. Thus Ti^{G) ̂  X, 
which is a contradiction. 

5.3. Lemma. Tj^^G^^-^) v A covers A. 

Proof. Let AQ be the class of all elements of AQ distinct from Tic{G) and let A' = 
= sup AQ. In view of 5.2 and 2.11 we have 

TK{GI,^) Л A' = Ro , 

hence according to 5.1 we obtain 

TK{G,,,) AA = T^{G,.^,) A (T^{G) V A') = T^{G). 

Since the interval [A, Tj^{G^^^) v A] is transposed to the interval [TK{G), Tj^{G^ai}]^ 
it follows from 5.1 that Tî (G|-̂ ]) v A covers A. 

5.4. Lemma. Let ß be a cardinal, ß > a. Then TjJ^G^^^ Ф Tjfiiß^-

Proof. By way of contradiction, assume that Г̂ (̂G|-̂ ]) = Tjfiiß^- Hence G^ G 
G Tj^{G[^^. In view of 2.9 there are Hj e K(G[^]) (j G J ) such that G[^] = VjeJ ^j ^^à 
all Hj belong to Lat Sub {G^ ĵ}. Let j e J. There exists Hj e c(Gf ĵ) such that K{Hj) 
is isomorphic to K{Hj). We distinguish two cases. 

a) H J Ç Yli^j Gl for each j e J. Because Yliei ^t = V/e/ <̂ / ^^^ ^^^^ ^i ^^ ̂ s^" 
morphic to G, we infer that G[^] belongs to Tic{G) which is a contradiction (in fact, Gis 
linearly ordered and archimedean, hence in view of 3.4 all elements of Tf^{G) are 
archimedean, but G^ß^ fails to be archimedean). 

b) There exists./ e J such that Hj J Yliei ^i- Then Я} = G^^y Thus K{Hj) cannot 
be isomorphic to К[Н]), and we arrived at a contradiction. 
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5.5. Corollary. Let ß be as in 5.4. Then 

(ГДСи) V Л) л {T^{G,„ V A) = A. 

5.6. Theorem. a[À) is a proper class. 

Proof. For each infinite cardinal a we have Tj^{G^oi}) v У4 G a[Ä) (cf. 5.3). From 
5.5 it follows that if j5 > a, then Tî ((j[a] v Л ф Tf^{G^ß^) v Л. Hence a{A) is a proper 
class. 

6. PRINCIPAL ELEMENTS OF .^ к 

An element Z G ̂ ^^ is said to be principal if there is G G ̂  such that X = 7к(С/). 
Let ^ be the class of all principal elements of ^j^. 

To each G e^ WQ assign a cardinal k{G) as follows: k{G) is the least cardinal a 
having the property that there are GIEK^G) ( / G / ) such that Vi^iGi = G and 
cardX(Gj) S a for each / el. 

A subclass X of G is said to be k-bounded if there is a cardinal a such that k{G) ^ a 
for each G eX. 

6.1. Proposition. L^^ X G ^1^. Then the following conditions are equivalent: 
(i) X is a principal element of ^j^. 

(ii) X is k-bounded. 

Proof. Suppose that X is principal, X = Tj^{G). Put cardX(G) = a. Then 2.9 
implies that for each Я G X we have ^(Я) ^ a; hence X is /c-bounded. 

Conversely, assume that X is /c-bounded, i.e., k[H) ^ a for each HeX. There 
exists a set S of lattices which has the following properties: 

(i) If L G S, then card L ^ a. 
(ii) If L G S, then there is Я^ G X such that Lis isomorphic to K[Hi). 

(iii) If H^EX and cardiC(ЯJ ^ a, then there is L G 5 such that Lis isomorphic 
to K{Hi). 

For each L G 5 we choose a fixed Я^ fulfilling (ii) and we put H^ = H^{L). We 
denote 

G = Y\,,sii.{L). 

Because HjfL)EX and since X is closed with respect to direct products (cf. [ l ] ) we 
infer that G belongs to X and hence Tjfi) й ^- Let Я G Z . In view of the definition 
of S there are H^ (iel) in K{G) such that V/e/ ^t = ^ and for each iE I, K{Hi) is 
isomorphic to a certain element of S. Hence Я^ G T;<:(G) for each / G / and thus 
Я G T;^(G). Therefore X = Tj^{G). 

6.2. Corollary. L e r Z G ^ , 7 G ^ ; ^ , Y£X. Then Ye^. 

From 6.1 and 2.10 we also obtain: 

160 



6.3. Corollary. Let I be a nonempty set and for each i el let X^ be a principal 
K-radical class. Then Vie/-^/ is a principal K-radical class as well. 

6.4. Proposition. Let A and A^ be as in Sec. 4. Then A ф^ and A^ ф^. 

Proof. Le: G e ^ , G ф {0} and let a be an infinite cardinal. Then k{G^ ^ a. 
Hence {k{H)}ji^^ is a proper class of cardinals. Thus the class A fails to be /c-bounded 
and in view of 6.1, A is not principal. Also, from the construction of elements of A^ 
applied in the proof of 4.6 it follows that A^ is not /:-bounded, hence A^ fails to be 
principal. 

6.5. Theorem. Let X be a principal K-radical class. Then both a(X) and a^iX) 
are proper classes. 

Proof. According to 6.1 there is a cardinal a such that k[G) < a for each G eX. 
Let G' e^, G' Ф {O}. For each ß > a WQ have k(Gß) > a, hence GßфX and thus, 
because of 4.4, X л Tj^{Gß) = RQ and thus X is covered by X v Tj^Gß). If ß^ > ß, 
then (since ^^^ is a Brouwer lattice) we have X v Ti^{Gß^) ф X v Tj^{Gp). Therefore 
a(X) is a proper class. The proof for ai{X) is analogous. 

7. i^-RADICAL CLASSES HAVING NO COVER 

In view of the above results the natural question arises: does there exist a iC-radical 
class X Ф ^ having the property that a{X) = 0? The following consideration (the 
idea of which is analogous to that performed in [4] for the lattice ^ of all radical 
classes) shows that the answer is affirmative. 

7.1. Lemma. Let X, Ye M^ such that X is covered by Y, Then there are G^ e Y\X, 
GieX such that Tj^{G2) is covered by Tj^G^). 

Proof. From Z < Yit follows that there is Gj e Y\X. Hence Tj,{G^) ^ У and 
TjJ^G^) S X. Put Tj^{G^) л X = Z. In view of 6.2, Z is a principal ^-radical class, 
i.e., there is G2 e Z with Z == Tji{G2). Then G2 eX. Since X is covered by У we have 
X V Tj^[G^) = У Since the interval {Tj^(G2\ '^/^(Gi)] is transposed to [X, У], 
Tj^{G2) is covered by T^[G^). 

7.2. Corollary. Let X e ^j^. Assume that for each G2 G X and each G^ e ^ such 
that TK(G^) e a{TK{G2)) we have G^ eX. Then a(X) = 0. 

Let AI be as in Sec. 4. 

7.3. Lemma. Let X e ^^, Z л Л^ = î o ^^^ ^^ <^(^)- ^^^^ Y /\ A^ = RQ. 
Proof. By way of contradiction, assume that Y A A^ = Z > RQ. According to 

4.8, the interval [RQ, Z ] contains no atom. Because X is covered by У and Z $ Z , 
we obtain X v Z = Y. Since X A Z = RQ, the interval [^RQ, Z ] is transposed to 
[X, y ] , hence RQ is covered by Z, which is a contradiction. 
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For each С ç ^^ we denote by J{C) the class of all Fe 0> such that there are Z^ e С 
and Gl e Z^ with Ye a{T^{G^. Next we put Xj{C) = sup С v sup J(C). 

For each ordinal a we assign a ^-radical class Ĵ ^ as follows. We put X^ = ^o-
Suppose that we have defined Xß for each ß < a. If a is a limit ordinal, then we put 
^a = Vß<a^ß- îf 0̂  is non-limit, a = 7 + 1, then we set X^ = X^([RQ. X J ) . 

Put XQ = Va ^a ' where a runs over the class of all ordinals. 

7.4. Proposition. a{Xo) = 0 and XQ ф ^ . 

Proof. The lelation а(Хо) = 0 follows from the construction of Ji'o ^^^ from 7.2. 
According to 7.3 we have XQ A A^ = RQ, hence XQ ф ^. 

Let us remark that If G e X e Mf^.G' e^ \ X, Tj^{G') e ^/(T^(G)), then X v T/^(G') G 
e a{X). By applying this remark and using a construction analogous to that of Xo the 
following proposition can be proved (the detailed proof will be omitted): 

7.5. Proposition. Let X e ^^i^. There exists YE (MJ^ such that 
(i) XUY; 

(ii) a{X) = 0; 
(iii) if Ze (Ш^. X ^Z and a{Z) = 0, then Y ^ Z. 
Let X^, Xß, Xc and S^ be as in Introduction. Now we shall prove that a{X) ф 0 

for each X e {X^, X^, Xc. S J . 

7.6. Proposition. a(X^) is a proper class. 

Proof. Let G be a nonzero archimedean linearly ordered group. For each infinite 
cardinal a let G^^^ ^^ ^^ *̂  ^^^- ^- ^^^ К == ^A "^ ^к{^м)' ^^ ^^^^ ^ w Ф^А- Hence 
in view of 5.1 we infer that Y„ e «(A^^). Now 5.4 implies that a{X^) is a propei class. 

Let us denote by F the additive group of all real functions / defined on the set M 
of all lational numbers X G ( 0 , 1) which have the following property: there are 
irrational numbers (Xj, ..., а„б(0, 1) with â  < a2 < ... < а„ (depending on / ) 
such tha t / i s a constant on each of the sets (0, a^) n M, (a^, «2) n M, ..., (a,„ l) n M. 

For / i , / 2 e F we put Д g /2 if / i(x) ^ fzi^) 's valid for each xe M. Then F is 
a lattice ordeied group. 

It follows immediately from the construction of Fthat each nonzero convex /-sub­
group of F is isomorphic to F. Hence in view of 4.3 we obtain: 

7.7. Lemma. Tj^F) is an atom of ^^.. 

7.8. Proposition. а{Хв) Ф 0. 

Proof. If {0} Ф G eXß, then there is a nonzero convex /-subgroup H of G such 
that K(H) is a chain (cf. 3.2). If G e c[F), then G does not have the mentioned proper­
ty; hence according to 2.9 we have XQ A TI^{F) = RQ. Therefore in view of 7.7, 
^B V F/̂ (G) covers Z^ .̂ 

Also, no nonzero convex /-subgroup of F is completely distributive; hence by 
analogous reasoning as in the proof of 7.8 we infer: 
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7.9. Proposition. a{Xc) + 0. 

7.10. Lemma. (Cf. [ l ] , p. 191.) Let G G ̂ . Then G belongs to S, if and only if each 
polar of G is complemented in K(G). 

Let G|;̂ ] be as above. Then 7.10 impHes that Ĉ ^̂  does not belong to 5^. 

7.11. Lemma. T,^{G^^^) л 5, = Tf^{G). 

Proof. We have Ti^{G) < Tj^iG^^^) and in view of 7.10, Tf^{G) ̂  5,; hence we have 
to verify that T^̂ (G[̂ ]) л S, g TJ^G), 

Let Я 6 Ti^{Gy^) A S,, Then there are Hj {j e J) in K{H) n Lat Sub (G^^J such 
that Я = Vjej ^j' Hence there exist Hj e Sub {G^̂ j} such that K(Hj) is isomorphic 
to K{H'j) for each j e J. Because of Я e 5, we have Яу e Ŝ  and Я} e Ŝ  for each 
7 e J. Thus Я^ Ф Gf̂ ] and therefore Я^ ^ \\ш G/ for each 7 e J (the denotations are 
as in Sec. 5). Hence H] e Tj^{G) and so Hj e Ti^{G) for each j G J, implying Я G T/^(G). 

7.12. Proposition. а[5^) is a proper class. 

Proof. From 7.11 and 5.1 we infer that Ti^{G^^^) v S^ belongs to a{Sj). Therefore 
in view of 5.4, a[Sf) is a proper class. 
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