
Czechoslovak Mathematical Journal

Ján Regenda
On the oscillation of solutions of a class of linear fourth order differential
equations

Czechoslovak Mathematical Journal, Vol. 33 (1983), No. 1, 141–148

Persistent URL: http://dml.cz/dmlcz/101865

Terms of use:
© Institute of Mathematics AS CR, 1983

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/101865
http://dml.cz


Czechoslovak Mathematical Journal, 33 (108) 1983, Praha 

ON THE OSCILLATION OF SOLUTIONS OF A CLASS OF LINEAR 

FOURTH ORDER DIFFERENTIAL EQUATIONS 

JÂN REGENDA, Bratislava 

(Received February 18, 1982) 

1. INTRODUCTION 

In the present paper we shall consider the differential equation 

(R) L[j;] = /^^ + P{t) y" + R{t) y' + Q(t) j ; = 0 , 

where P{i), R(t), Q{t) are real-valued continuous functions on the interval / = 
= < a , GO), — 00 < a < CO. 

In order to prove both the preparatory and the main results of this paper, we 
shall use the following assumptions 

(A) P{t) S 0 , R\t) ^ 2 P{t) Q{t) for all tel, 

(B) P{t) S О , R{t) й О , R\t) g 2 P{t) 0 (0 for ail tel 

and Q{t) not identically zero in any subinterval of / . 
One can verify easily that the above assumptions are satisfied if P{t) ^ R(t) gO, 

2 6 ( 0 = R(t) for all tel. 
Simple examples show that under the assumptions (A), (ß) the equation (R) 

includes oscillatory equations as well as nonoscillatory ones. 
The study of the oscillatory behaviour of solutions of linear fourth order dif­

ferential equations goes to Leighton and Nehari [2] and has received a great deal of 
attention up to present. For typical results on the subject we refer to the papers 
[1, 3, 5, 6]. 

A necessary and sufficient condition is given for the oscillation of the differential 
equation (R) in terms of the behaviour of nonoscillatory solutions. At the same time 
necessary and sufficient condition is derived for the nonosCillation of the equation (R). 

The results of this paper are obtained by methods similar to those of the paper [4]. 
A nontrivial solution of a differential equation of the n-th order is called oscillatory 

if its set of zeros is not bounded from above. Otherwise, it is called nonoscillatory. 
A differential equation of the n-th order will be called nonoscillatory, when all its 
solutions are nonoscillatory; oscillatory, when at least one of its solutions is oscil-
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latory. A differential equation of the n-th order is said to be disconjugate in an inter­
val / iff every nontrivial solution has at most n — 1 zeros in L 

Let C"(l) denote the set of all real-valued functions such that its n-th derivatives 
are continuous in / . 

2. PRELIMINARIES 

We begin by formulating preparatory results which are needed in proving the 
main theorem in Section 5. 

Lemma 1 [4]. Let A(t, s) be a nonnegative and continuous function for to S s S t 
(nonpositive for a ^ t S s ^ to). If g(t), ф(г) (i/^(r)) are continuous functions in the 
interval {to, oo) ({a, to}) and 

<p(0 = d{t) + A{t, s) (p(s) ds for t e {to, oo) 
J to 

il/(t)^g(t)+\ A{t,s)ф{s)ds, for t e {a, to}Y 

then every solution y(t) of the integral equation 

(1) y(t) = g{t)+ Г A(î,s)y{s)ds 
J to 

satisfies the inequality 

y{t) à (p{t) in <fo, oo) {y(t) g il/{t) in <a, Го» . 

If we suppose in addition that g{t) ^ 0 for Г 6 {to, X)) (g(t) ^ 0 for ^ e {a, to}), 
then the solution y(t) of (1) satisfies the inequality 

y{t) ^ g{t) ^0 for te {to, сю) {y{t) й g{t) ^ 0 for r e {a, /o>) • 

Lemma 2. Suppose that (A) holds and let y(t) he a nontrivial solution of (R) 
satisfying the initial conditions 

y(to) = yo^^. y'{to) = y'o-0. / t g ^ J o ^ O , / ' ( /о ) = У о ^ О 

(to el arbitrary). Then y^'\t) > 0 for all t > to, i = 0, 1, 2, 3. 
Under the additional assumption R(t) S 0, we can replace y'(to) = JQ = 0 by 

y'(to) = Jo = 0 ^^^ ^^^ conclusion of the Lemma is valid. 

Proof. The initial-value problem 

L[y] = 0, y(to) = yo, У%)=^Уо. y'{to) = yo. y'Vo)-yo 

is equivalent to the following Volterra's integral equation 

/ " ( 0 = ^ ( 0 + г A{t,s)y"'(s)ds, 
J to 
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where 

9(0 = y'ö - y'ô Г \P{S) + (v - 'о) R{s) + ^ ^ Qis)\ ds 

0 !' [R(s) + (s - to)Qis)'] ds - >'o Г Q{s)ds 
J to J to 

- Jo 

and 

A (^ s)=-f ^P{ç) + {^ - s) R{i) + ^ ^ ' e ( c ) j d^ . 

The hypotheses of the Lemma imply that g(t) > 0 and A(t, s) ^ 0 for t e (ÎQ, СО). 
Then by Lemma 1, y'"{t) ^ g(t) > 0 for all te[tQ, oo). Hence the assertion of the 
Lemma follows. 

Lemma 3. Suppose that (A) holds and let y(t) be a nontrivial solution of (R) 
satisfying the initial conditions 

y{to) = Уо^О, y'(to) = Уо = 0, 

У%) = У'о^О, y-(to) = y-SO, toe I. 
Then 

{-iyy^%t)>0 for all tE{a,to), i = 0,1,2,3. 

The p r o o f is similar to that of Lemma 2 and will be omitted. 
Note that if j ; is a solution of (R), then so is — y. Hence it follows from Lemma 2 that 

y(to) g 0, j/(/o) = 0, /'(to) S 0, У "(to) ^ 0 (but not all zero) implies y(t) < 0, 
y'(t) < 0, y'(t) < 0, y"(t) < 0 for all t > to. Similarly, it follows from Lemma 3 
that if у is a nontrivial solution such that y(to) й 0, /(to) = 0, у'(to) й 0 and 
/'(to) ^ 0 (but not all zero), then y(t) < 0, /(t) > 0, y"(t) < 0 and /"(t) > 0 
for all t 6 <öF, Го). 

Lemma 4. Suppose that (A) holds. Then for every nontrivial nonoscillatory solu­
tion u[t) of the equation (R) there exists a number т ^ a such that either 

u(t) u'(t) > 0 for t > T 
or 

u(t) u'(t) < 0 for t > T . 

Proof. Let u(t) be a nontrivial nonoscillatory solution of (R). Then there exists 
a number b "^ a such that u(t) Ф 0 in <b, oo). Assume, without loss of generality, 
that u(t) > 0 in <b, oo). In order to prove the Lemma we will first show that u'(t) 
can change from negative to positive values at most twice in the interval <b, oo). 
Let s^ and 2̂ (b ^ s^ < S2) be any two consecutive points at which u\t) changes 
from negative to positive values. Then the solution u(t) satisfies the following condi­
tions u(s) > 0, u'(s) = 0 and u"(s^ è 0, / = 1, 2. If u"'(s2) ^ 0 then by Lemma 2 
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we have u'{t) > 0 for t > S2- lfu''\s2) ^ 0 then by Lemma 3 we hawe u'{t) < 0 for 
t G <a, S2), which contradicts the assumption u'[si) = 0. This estabhshes our above 
assertion. 

Hence there exists a number TQ ^ s^ ^ b such that either u'[t) ^ 0 or u'(t) ^ 0 
for all t ^ To-

We note that w'(r) is not identically zero in any subinterval of/ since u(t) = constant 
is not a solution of (R). 

We will now show that there exists at most one point т > to such that ы'(т) = 0. 
In fact, if u'(t) ^ 0 for f ^ To and u'{t) has a zero at some point т > TQ then U"(T) = 0 
and U'"(T) ^ 0. Hence the solution u(t) satisfies the conditions и[т) > 0, и'(т) = О, 
г/"(т) = О and и''(т) ^ О, so that u{t) > О and u'(t) > О for ? > т by Lemma 2. 
In order to prove this assertion in the case if u'[t) ^ 0 for t ^ TQ, suppose that u'{t) 
has two zeros TQ, T^, TQ < T < TJ,. Then it follows that U"(TI) = 0 and U'\TI) ^ 0. 
Hence u(t) satisfies the conditions W(TI) > 0, u'^z^) = 0, и"(т^^) = 0, U"'{TI) ^ 0, 
so that u{t) > 0 and u'(t) < 0 for / G <a, т^) by Lemma 3 which contradicts м'(т) = 0. 
This completes the proof of the Lemma. 

Lemma 5. Let there be functions Wi(t)E C^{tQ, со), i = 1,2,3, / Q G / with the 
properties 

W2 > 0 , W3 > 0 , 

W(wi,W2;t)> 0, W{wi,w^;t)> 0, ^ ( ^ 2 , W3; r) > 0 , 

W(wi, W2, W3; t) > 0 for t e (to, GO) 

and 
L[w,] й 0 , L[w2] ^ 0 , L[w3] S 0 for te {t^, œ) , 

where W{w^, W2, W3; t), W(wi, w ;̂ t) denote the Wronskian determinants. Then 
the equation (R) is disconjugate in the interval <^tQ, 00) ([З], pp. 77 — 80). 

Lemma 6 [6]. Let c(t),f(t) be functions of class C^ÎQ, СО), assume that the 
differential equation 

w" + c(t) w = 0 

is nonoscillatory and f{t) does not change its sign in (^t^, 00). Then also the 
differential equation 

w" + c{t) w = f{t) 
is nonoscillatory in <(tQ, 00). 

3. THE EXISTENCE OF MONOTONIC SOLUTIONS 

Throughout the remainder of this paper let ZQ, z^, Z2 and Z3 denote the solutions of (R) 
defined on / by the initial conditions 

z\J\a) = S,j = 1^' ' * { for i,j = 0, 1, 2, 3 . 
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Theorem 1. Suppose that (A) holds. There exists a solution y(t) of (R) such that 
y{t) > 0, y'(t) > 0, /Xt) > 0, /'{t) > Qfor all t > a. 

Proof. Let y{t) be a solution of (R) which satisfies the initial conditions y(a) > 0, 
y'(a) = 0, y"{a) > 0 and y'\a) > 0. Then by Lemma 2,y{t) > 0.y\t) > 0, y"{t) > 
> 0, y"(t) > 0 for all t > a. 

Theorem 2. Suppose that (A) holds. There exists a solution z(t) of (R) such that 
z{t) > 0, z\t) < 0, z\t) > 0 and z''{t) й 0for all tel. 

Proof. For each natural number n > a, let CQ„, C ,̂,, C2„ and Сз„ be numbers 
satisfying 

3 

(2) Y ^in ^^i\^) = ^j^ j = 0, ...,3 ; a^ = a2 = a^ = 0, «4 < 0 . 
i = 0 

Let z„{t) = CQ„ ZQ^t) + Ci^ Zi(t) + C2n ^2(0 + 3̂« ^з(0- ^^^ existence of numbers 
Co„, Ci„, C2„ and Сз„, satisfying the above conditions, is easy to verify. 

Since ZQ, ZJ, Z2 and z^ are linearly independent, z„[t) is a nontrivial solution of (R). 
Since for each natuial number n, the sequences {ci„}, f = 0, 1, 2, 3 are bounded, 
there exists a sequence of integers {nj} such that the subsequences {ci„j} converge 
to numbers C/, / = 0, 1, 2, 3. From (2) we see that cl + cl + cj + cl = 1. The 
sequences {z„j[t)}, {z^.(r)}, {zn{t)} and {^Г(0} converge uniformly on any finite 
subinterval of/ to the functions z(^), z'(t), z"[t) and z'̂ (̂̂ ), respectively, where z(t) is 
a nontrivial solution of (R). By Lemma, 3 ( — 1)' z^^\t) ^ 0 for all tel and i = 
= 0, 1, 2, 3. Since z(t) is a nontrivial solution of (R), it is easy to show by the 
Uniqueness Theorem that there is no number т G / such that Z(T) = 0. Further, we 
will show that there is no number т el such that Z'(T) = 0 or Z''(T) = 0. In fact, 
if z'{t) vanished at a point tel, it would then follow that z'{t) = z\t) = z'\t) = 0 
for all t ^ T, since z^t) й 0, z\t) ^ 0 and z''{t) ^ 0 on / . Since z{t) > 0 for all 
tel, z'[t) > 0 for alW > T by Lemma 2, which would contradict the fact that 
z'[t) S 0 for all tel. If z'\t) vanished at a point т е / , then by the same argument 
as used above, z"(V) = z'^\t) = 0 for all ^ ^ т, so that z'(t) would be equal to a nega­
tive constant for all t ^ т. It follows that z(t) would eventually become negative 
in <T, 00), which would be a contradiction. Therefore, it follows that z[t) satisfies the 
requirements of the Theorem. 

4. CONDITIONS FOR DISCONJUGATION 

The following two theorems are proved from Lemma 5 in the same way as 
Theorems 4 and 5 were proved from Lemma 6 in [4]. Therefore the proofs will be 
omitted. 
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Theorem 3. Let there be functions Wi{t) e ^^{/o, oo), / = 1, 2, 3, ô ̂ ^ such that 

(4) Wi(r) > 0 , w\{t) < 0 , W[{t) > 0 for te {t^, сю) , 

2(0 > 0 , w i ( 0 > O , w ^ ^ O for teOo.^), 

з(0 > 0 , w',{t) > 0 , wl{t) >0 for te {to, oo), ^3(^0) = 0 
and 

Llwi] й 0 , L[w2] ^ 0 , L[wi\ йО for te {to, со) . 

Then the equation (R) is disconjugate on <^Q, 00). 

Theorem 4. Let there be functions Wi{t) e C^ito, 00), / = 1, 2, 3, to el such that 

(5) w^{t) > 0 , w[{t) < 0 , < ( 0 > 0 , w7(0 йО for te Oo, ^) , 

W2{t) > 0 , w^O > 0 , w^(0 > 0 , w'^{t) йО for te Oo, ^) > 

w^{t) > 0 , w'^{t) > 0 , wl{t) > 0 , ^3(0 > 0 for te {to, 00), 

> з̂(̂ о) = ^ з ( 0 = О 
and 

L[w^] S О , L[w2] ^ 0 , L[w3] ^0 for te {to, o)) . 

Then the equation (R) f5 disconjugate on Oo, ^ ) -

The following consequences follow from Theorems 3 and 4. 

Corollary 1. Let (R) have solutions w-̂ , W2, W3 satisfying {4). 

Then the equation (R) is disconjugate on <̂ o? ^ ) -

Corollary 2. Le^ (R) have solutions w^, W2 and w^ satistying (5). 

Then the equation (R) /5 disconjugate on <(̂ o» ^)-

The following sufficient conditions for (R) to be disconjugate are simple con­
sequences of Theorems 1, 2, 3 and 4. 

Corollary 3. Suppose that (A) holds and let there be a function weC^Oo, ^)y 
to el such that either w > 0, w' > 0, w" ^ 0, Llw'] ^ 0 or w > 0, w' > 0, w" > 0, 
ŵ '" ^ 0 and L [ W ] ^ 0 on (̂ 0? ^ ) - Then (R) /5 disconjugate on <?o> °o). 

5. NECESSARY AND SUFFICIENT CONDITIONS FOR OSCILLATORY 
AND NONOSCILLATORY EQUATIONS 

Theorem 5. Suppose that (B) holds. Then the equation (R) /5 oscillatory if and only 
if for every nonoscillatory solution y{t) of (R) we hawe either 

(6) y{t)y'{t)>0, y{t)y"{t)>0, y{t)y"'{t)>0 
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on {tQ, со) for some ÎQ el, or 

(6') yit)y'{t)<0 

on I. 

Proof. Suppose that (R) is oscillatory and let y(t) be a nonoscillatory solution 
of (R). Then by Lemma 4 there exists a number t^el such that either y(t) y'(t) > 0 
or y{t) y'(t) < 0 for all t ^ ti. There is no loss of generality in assuming that y(t) > 0 
for all t ^ ti. Substitution /'(t) = u{t) into (R) leads to the following differential 
equation for и 
(7) и" + P{t) и = -R{t) у' - Q{t) у . 
If j^'(^) > 0 for all t ^ ti, then —R{t) y' — Q{t) у does not change the sign in (f^, oo). 
Since the equation u" + P(t)u = 0 is nonoscillatory in {t^, oo), it follows that 
equation (7) is nonoscillatory in <^i, oo), by Lemma 6. Hence there exists a number 
h = h such that u{t) Ф 0, i.e. y"{t) ф 0 in </2, oo). From this it follows further that 
either y"{t) > 0 or y"{t) < 0 in <^2' ^ ) - We note that if y"{t) > 0, it then follows 
from (R) that y^^\t) ^ 0 (not identically zero in any subinterval). Hence the 
following cases are possible 

(a) 
(b) 

(c) 
(d) 

y{t) > 0 , 
y{t) > 0 , 

j'(0 > 0, 
y{t) > 0, 

/0 
/0 
/ ( ' 
yV 

)>o. 
• ) > o , 
' ) > 0 , 
') < 0 

y'V 
y'V 
y'V 

) > o , 
) > o , 
•) < 0 , 

y"'{t 
y"V 

) > o , 
) < o , 

for all t ^ ^0' where ô is some number greater than or equal to 2̂- Suppose that y{t) 
does not satisfy the conditions (6), (6'). Then either (b) or (c) holds. If a solution 
satisfying condition (b) or (c) existed, then the equation (R) would be nonoscillatory 
by Corollary 3, contrary to the hypothesis. This completes the proof of the first half 
of Theorem 5. 

The proof that (6) and (6') are sufficient for (R) to be oscillatory is the same as that 
of Theorem 3 ( [ l ] , p. 293) and will be omitted. 

R e m a r k 1. / / ( R ) is oscillatory, then it has three linearly independent oscillatory 
solutions. 

The proof of this is virtually the same as that of Theorem 4 ( [ l ] , p. 294) 
R e m a r k 2. We note that in view of Theorem 5 Remark 1, the conditions (6), (&) 

are equivalent to the existence of three linearly independent oscillatory solutions. 

Theorem 6. Suppose that{B) holds. Then the equation (R) is nonoscillatory on I if 
and only if there exists a number t^el and a solution y(t) of (R) such that either 

Х 0 > о , y'{t)>o, y"{t)<^, 
or 

y{t)>0, y'{t)>0, y"{t)>0, y"'{t)<0 
for all t ^ ?o-
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Proof. The sufficient condition follows from Corollary 3. It is easy to show that 
the existence of such a solution is also necessary. Indeed, if (R) is nonoscillatory 
there must exist a nonoscillatory solution y[t) which does not satisfy the conditions 
(6), (6'). It then follows from the proof of Theorem 5 that there exists a number ô ̂  ^ 
such that either y{t) > 0, /{t) > 0, /'(t) < 0 or y{t) > 0, y{t) > 0, y\t) > 0, 
y'"{t) < 0 for all t ^ Го. 

The following theorem is proved from Theorem 6 and Corollary 3 in the same way 
as Theorem 8 was proved from Theorem 7 and Corollaries 3 and 4 in [4]. The proof 
will be omitted. 

Theorem 7. Suppose that (ß) holds. Then (R) is nonoscillatory on I if and only 
if there exists a function w(t) e C^Oo^ ^)? ô ̂ ^? such that either 

w{t) > 0 , w'{t) > 0 , w"{t) < 0 , L[w] ^ 0 
or 

w{t) > 0 , w^t) > 0 , w\t) > 0 , w'^t) < 0 , L[vv] ^ 0 . 

Theorem 8. Suppose that (B) holds. Then (R) is nonoscillatory on I if and only if 
there exists a number t^el such that (R) is disconjugate on (^tQ, oo). 

The p r o o f of this theorem is similar to that of Theorem 9 [4] and is omitted. 
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