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Czechoslovak Mathematical Journal, 33 (108) 1983, Praha 

A DISTANCE BETWEEN ISOMORPHISM CLASSES OF TREES 

BoHDAN ZELINKA, ЫЬСГСС 

(Received December 21, 1981) 

In [ l ] a certain distance between isomorphism classes of graphs was introduced. 
Here we shall study an analogon of this distance for trees. 

Consider the set ^^ of all isomorphism classes of trees with n vertices, where n ^ 3. 
For any two elements ^ i , 2̂ 2 of ^n ^^ introduce the number ^ r (^ i , "X^ as the least 
integer with the property that there exists a tree with n + ^r(^i? 2̂ 2) "^^^ices which 
contains a subtree T̂  G %^ and subtree T2 e X2. For the sake of simplicity we shall 
also use the notation bjiT^, T^ for two trees T̂  and T2; this will mean bji^^, %^ 
for the classes %^, %2 such that T̂  e X^, Г2 e %2' 

Theorem 1. The functional bj is a metric on the set ^ „ . 

Proof. Evidently (5j(Xi, X2) ^ 0 for any two elements X^, X2 ^^ T„ and 
^т{Хъ Xz) = 0 if and only if X^ == ^2- Also evidently ST{X^, X2) = ^ r (^2^ i ) -
Now let Xj^,X2, X^ be three elements of ^ „ . There exists a tree T^2 with n + 
+ ^ r ( ^ i ' ^2) vertices which contains a subtree T^ e X^ and a subtree Г2 G X2 and 
there exists a tree T23 with n + (5j(^2? ^3) vertices which contains a subtree T2 G 2̂ 2 
and a subtree T3 G З^З- The trees Г2, T2 are isomorphic; take an isomorphic mapping 
of T2 onto T2 and identify each vertex of T2 with its image in this mapping. We may 
suppose that T12 and T23 are vertex-disjoint. The graph T obtained in the described 
way from the trees T^2 ^^^ ^23 î  evidently a tree. It has n + от(Х^^, X2) + <5r(^2' ^3) 
vertices and contains a subtree T^ e X^ and a subtree T2 G 2̂ 2- Hence 

ÔT{X,, X,) й ÔT{X„ X2) + ôr{X2, X,) 

and the triangle inequality holds. 

Theorem 2. Let X^e^^, 2/2 G ^ „ , T^eX^, T2 G 2̂ 2- ^^^ к he a non-negative 
integer^ к < n. Then the following two assertions are equivalent: 

(i) There exists a tree T with n + к vertices which contains a subtree isomorphic 
to Ti and a subtree isomorphic to T2. 

(ii) There exists a tree TQ with n — к vertices such that both T^ and T2 contain 
subtrees isomorphic to TQ. 
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Proof, (i) => (ii). Let (i) hold. Let T/, T2 be subtrees of Г isomorphic to T^, Г2, 
respectively. As к < n, the trees T/, T2 have a non-empty intersection and this inter­
section is a subtree TJ of T which has at least n ~ к vertices. Choose a subtree To 
of TQ with exactly n — к vertices. If we take an isomorphic mapping of T[ onto T^ 
and an isomorphic mapping of T2 onto Г2, then the images of T^ in these mappings 
are subtrees of T^ and T2 which are isomorphic to one another. 

(ii) => (i). Let (ii) hold. Without loss of generality suppose that Tj, T2 are vertex-
disjoint. Let To, To be subtrees of T ,̂ Tj, respectively, which are both isomorphic 
to To- Take an isomorphic mapping of TQ onto To and identify each vertex of To 
with its image in this mapping. The graph T obtained in this way is evidently a tree 
with n + к vertices and it contains T ,̂ T2 as subtrees. 

Similarly as in [ l ] we may consider a graph ^„ whose vertex set is .T„ and in which 
two vertices X^, X2 ^^^ adjacent if and only if о^^Х^, X2) = 1. 

Theorem 3. The distance of any two vertices Xi,X2 of ^^ is equal to ôj(Xi, X2). 

Proof. Let Xi, X2 be two vertices of ^^ and let Sj(X^, X2) = k. Then there exists 
a tree Twith n + к vertices which contains a subtree T̂  G X^ and a subtree T2 e 2^2-
In Texactly n ~ к vertices are common to Tj and T2 (see Theorem 2). Further, there 
are к vertices of T̂  not belonging to T2 and к vertices of Tj not belonging to T .̂ 
The vertices of T̂  not belonging to Tj will be denoted by u^, ...,U}^ in such a way 
that each Ui is adjacent either to a common vertex of T̂  and T2, or to a vertex Uj 
with J < г; this can be easily done. The vertices of T2 not belonging to T2 will be de­
noted by v^, ..., Vj^ in such a way that each Vi is adjacent either to a common vertex 
of Ti and T2, or to a vertex Vj with j > i. Then for each 7 = 1, ..., k, the graph Si 
obtained from T2 by deleting the vertices ŵ  for / S J and adding the vertices Vi for 
i ^ j together with the edges joining them with each other and with the common 
vertices of T̂  and T2 in T, is a tree. Evidently Sf, = T ,̂ ST{T2, S^) = 1, ^^^(5 ,̂ 5,.+ i) = 
= 1 for / = 1, ..., /c ~ 1. The vertices T2, S^,..., 5̂ ^ = T̂  (here we speak about 
trees as vertices of ^„ instead of classes containing them; we do this for the sake of 
simpHcity) form a path of the length к in ^„ and thus the distance of X^ and X2 in ^„ 
is at most ÔT(XI, 22)- Now suppose that the distance between X^ and X2 in ^„ is /. 
There exists a path of the length / in ^„ consisting of the vertices T̂  = SQ, S[, ..., 5^ = 
= T2. We have ÔT{S[, S J + J ) = 1 for f = 0, . . . , /C - L Let SJ be a tree with n + 1 
vertices which contains a subtree isomorphic to S[ and a subtree isomorphic to S-+i-
For each i = 0,,.., к — 2 we choose an isomorphism of the subtree of S'l isomorphic 
to 5J+1 onto the subtree of S'l+i isomorphic to S'l+i and identify each vertex of the 
domain of this mapping with its image. Then we obtain a tree with n + / vertices 
which contains a subtree from X^ and a subtree from 2̂ 2- Thus the distance between 
Xi and X2 in ^„ is at least Sj(Xi, X2); together with the previous lesult this yields 
that this distance is equal to ô^iX^, 22)-

A snake is a tree consisting of one path. Its length is the length of this path. 
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Theorem 4. The diameter of the graph ^„ is n — 3. There exists exactly one pair 
of vertices of '̂ „ whose distance is n — 3. 

Proof. As n ^ 3, each tree from ^„ contains a subtree which is a snake of the 
length 2; it has three vertices. If X^ e ^ „ , %2 ^ ^ю ^i ^ ^ u ^i ^ ^2 ' then according 
to Theorem 2 there exists a tree with In — Ъ vertices which contains a subtree iso­
morphic to Tj and a subtree isomorphic to Г2. Thus <5r(Xi, %^ ^ n — 3 for any two 
vertices X^, X2 of ^„. Now let Sj be the snake of the length n — 1 and let S2 be a star 
with n ~ 1 edges. Any subtree of S^ (or ^2) with more than three vertices is a snake 
(or a star, respectively) with more than two edges. Therefore (ii) from Theorem 2 
for к ^ n — 3 does not hold, thus (i) does not hold, either, and the isomorphism 
classes containing S^ and ^2 have the distance exactly n — 3. Any tree with n vertices 
which is neither a snake nor a star contains a snake with four vertices and a star 
with four vertices as subtrees; hence the distance of its isomorphism class from any 
other isomorphism class from rT„ is at most n — 4. 

For every positive integer /c ^ 3 we shall define the tree T(k). First we define the 
graph To(/c). The vertex set of ГО(/<) consists of all vectors of the dimensions 0, 1, ... 
...,]/c/2[ — l(the symbol]x[denotes the least integer greater than or equal to x) 
whose coordinates are the numbers from the set (1, ..., /c — 1]. Two vectors o, v 
are adjacent if and only if one of them is obtained from the other by adding one 
coordinate. Jf к is odd, we take two disjoint copies of To(/c) and join the vertices cor­
responding to the zero vector in both of them. If к is even, we take a new vertex a 
and к pairwise disjoint copies of Го(/с) and join a with the vertices corresponding to 
the zero vector in all of them. The tree thus obtained will be denoted by T(/c). 

Lemma 1. The tree T(k) has the maximal number of vertices among all trees 
with the diameter at most к and the maximal degree at most k. 

Proof. Let Tbe a tree with the diameter к and the maximal degree k. If к is even, 
then T has one centre с and the distance of each vertex of T from с is at most kjl. 
As the maximal degree of Tis к, for each / = 1, •. -, kjl there are at most k(k — l) '~^ 

/ c / 2 - l 

vertices of T whose distance from с is /. Thus Г has at most 1 + /c ^ (/c — l) '~^ 
i = 0 

vertices and this is the number of vertices of T[k). The proof for к odd is analogous. 
By T(/C) we denote the number of vertices of T(^k) for each к ^ 3. Evidently 

k/2-1 

т{к) = i + к X {к - i ) ' "^ for /v even , 
j = 0 

/ c / 2 - 1 

т{к) - 2 X (^ - 1 ) ' " ' for/c odd . 
i = 0 

Further, for /Î ^ 6 we denote 

a(n) = max [keN \ т(/с) ^ n] , 

where N denotes the set of all positive integers. 
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Theorem 5. Let g be the radius of ^ „ , Then 

Q ^ n — a[n) — 1 . 

Proof. Let к = (т{п) and construct the tree С If т(/с) = n, then С ^ T{k). If 
T(/C) < n, then the tree С is an arbitrary tree with n vertices containing T(k) as 
a subtree. Let Г be an arbitrary tree with n vertices. If the diameter of Tis greater 
than /c, then both T and С contain a snake with к + 1 vertices as a subtree. If (£ 
and 2̂  aie isomorphism classes containing С and T, respectively, then от[^, X) ^ 
^ n — к — \. If the diameter of Tis less than k, then (as it has n ^ т(^) vertices) 
by Lemma 1 its maximal degree must be greater than k. Then both С and Г contain 
a star with /c + 1 vertices as a subtree and again (5j((£, %) ^ n — к — 1. The distance 
of d from the isomorphism class containing a snake and from one containing a star 
is evidently exactly n — к — 1. Thus the radius of ^„ is at most n — к — 1 = 
z= n — a(n) — 1. 

Conjecture 1. The radius of ^^ is equal to n — a(n) — 1. 
In the sequel we shall study caterpillars. A caterpillar is a tree with the property 

that after deleting all of its terminal vertices (vertices of degree l) a snake is obtained 
(a graph consisting of one vertex is also considered a snake). The snake just mentioned 
is called the body of the caterpillar. 

Theorem 6. Let Xi e X„, Xj ^ '^ю T^ eX^, T2 e ^2- ^^^ ^i» ^2 t>e caterpillars and 
let ÔY(XI, X2) = к. Then there exists a caterpillar T with n -i- к vertices which 
contains a subtree isomorphic to T^ and a subtree isomorphic to T2. 

Proof. As ^ r ( ^ i ' ^ 2 ) = 5̂ according to Theorem 2 there exists a tree TQ with 
n — к vertices such that both T^ and T2 contain subtrees isomorphic to TQ. We have 
n — к ^ 3, therefore TQ has at least two edges. As it is a subtree of a caterpillar, it is 
a caterpillar. Let B(Ti), B{T2), B(To) be the bodies of the caterpillars T^, T2, TQ, 
respectively. Let Г be the tree constructed as in the proof of Theorem 2. If Tis not 
a caterpillar, then there exists an edge e^ of B(Ti) not belonging to В(Т2) and an edge 
^2 of jß(T2) not belonging to В(Т^), such that they both are incident with a vertex VQ 
of B(TQ). Let v^ (or V2) be the end vertex of ^̂  (or of 2̂? respectively) distinct from Do-
By identifying the vertices v^, V2 in Та tree with n -\- к ~ 1 vertices is obtained which 
contains both T̂  and T2 as subtrees; this is a contradiction with the assumption that 
(5j(!Xi, X2) = k. Thus Tis a caterpillar, which was to be proved. 

Corollary. The set of all isomorphism classes of caterpillars with n vertices 
induces a subgraph ^„ of ^^ ^i^h the property that the distance in ^„ is the same 
as in ^„. The diameter of ^^ is n — 3. 

Now for every positive integer к we construct a caterpillar T[k). The body of T(/c) 
is a snake of the length к — 2. The degree of any vertex of this body in T(/c) is k. 
Evidently the number of vertices of T(/c) is k^' — 2k + 3. 
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Lemma 2. The caterpillar Т(/с) has the maximal number of vertices among all 
caterpillars with the diameter at most к and the maximal degree at most k. 

Proof. Evidently the diameter of a caterpillar is the length of its body plus two. 
This implies the assertion. 

Theorem 7. Let Q be the radius of ^ „ . Then 

Q ^ n — a[n) — 1 , 
where 

â{n) = max {k e N \ k^ - 2k + 3 S n} . 

Proo f is analogous to that of Theorem 5. 

Conjecture 2. The radius of ^„ is equal to n — â(n) — 1. 
In the end we shall compare the distance ôj with the distance introduced in [1] 

on the set of all isomorphism classes of undirected giaphs with n vertices. The distance 
(5(©1, ©2) of two such classes was defined as the least number к such that there 
exists a graph with n + к vertices which contains an induced subgraph belonging 
to ©1 and an induced subgraph belonging to (62. 

Theorem 8. For two elements X^, X2 ^f ^nfo^^ n ^1 the distances àj{%^, 2̂ 2)? 
(5(^1, 2^2) ^^^ different in general. 

Proof. Let 61 (or 61) be the isomorphism class containing a snake (or a star, 
respectively) with n vertices. We know that ^^(6^, 82) = n — Ъ. Now let 5^ e S^, 
S2 e (З2. In S^ take an independent set with the maximal number of elements; it has 
]n/2[ vertices. Identify each vertex of this set with one terminal vertex of 82- We 
obtain a graph with [3n/2] vertices which contains S^ and ^2 as induced subgraphs. 
Thus 

^(61, 62) й [3n/2] - n = [njl] < /2 - 3 = ^ r ( ^ i . ^2) • 
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