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ALMOST PRODUCT RIEMANNIAN MANIFOLDS 

HANI FARRAN, Kuwait 

(Received November 24, 1981) 

Introduction and notation. An almost product manifold is a smooth m-manifold M 
with a smooth tensor field F of type (1,1) such that F^ = I^. If M has a positive defi­
nite Riemannian metric g such that g(X, Y) = g(X, У), (where X, Y are arbitrary 
vector fields and X = FX throughout the paper) then M is called an almost product 
Riemannian manifold or almost para Hermite manifold, [ l ] , [2], [5]. If (JDJ^F) Y — 
= 0 for all X, У then M is called para Kahler. D is the natural metric connection. 
The manifold M will be called para Hermite if {DxF) 7 Ф 0 and there exist real 
constants Ki,K2, ...,Kj, not all zeros such that: 

(*) (D^F) Y + K,(D^F) Y + K,(D,F) Y + K,{D^F) Y + Kj,DyF) X + 

+ K,{DyF)X + K^{DYF)X + K,{DYF)X = 0 . 

(*) will be called a para Hermite condition. 
In this paper we will determine all classes of para Hermite manifolds and discuss 

inclusions among them. In the last section we discuss the relation between integra-
bility and parallelism of distributions on M as related to par Hermite structures. 
1 would like to thank professor R. S. Mishra for the useful discussions. 

Proposition 1. Let {M, g, F) be an almost product Riemannian manifold. If 
F'{X,Y) = g{X,Y)then: 

i) F'{X,Y) = F'{YX)=F'{X,Y), 
ii) {D,F') (Y, Z) = g{{D^F) Y,Z)_= g[Y, {D,F) Z), 

in) {D^F'){Y,Z)= -{D,F'){YZ), 
iv) {D,F'){Y,Z)= ~(D,F')(YZ), 
y){D^F'){Y,Z) = (D,F'){Z,Y) 

where X, Y, Z are arbitrary vector fields. 

The p r o o f of this proposition is easy and will be omitted. 

Theorem 1. The following is a para Hermite condition: 

(Pi) {D,F)Y-{DyF)X = 0. 

A para Hermite manifold satisfying (Pj) will be called P^-Hermite. 
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Proof. Define / = (D^F) Z a = {ОуР)Х, then {/, a} admits the following table 
of multiplication: 

Table 1 

/ 
a 

I 

I 
a 

a 

a 
I 

Thus the set G^ of all linear combinations of/, a is an infinite commutative ring under 
addition and multiplication as defined in table 1. Now in Gj we have: 

I = (7\ (/ - (j) (/ + (j) = 0 . 

Thus we have one of the following possibilities: 

i) / - Ö- = 0, / + c7 + 0, then {DXF) Y - {DyF) X = 0 and the manifold is 
Pj-Hermite. 

ii) / - Ö- Ф 0, / + Ö- = 0, then {DxF) Y + {ОуР)Х = О or (D^F) Y= ~ {DyF)X. 
Using Proposition 1 we get: 

(D.F) {Y,Z)= -(DyF') {X, Z) = -{DyF') (Z, X) = 

= {D^F'){X,Y)= -{D^F'){Y,Z). 
Thus {DxF') {Y, Z) = 0. Since Z is arbitrary then using Proposition 1 again we get 
{DXF) 7 =̂  0 and / + 0" = 0 is equivalent to the para Kahler condition, i.e. it is not 
a para Hermite condition. 

iii) / — (7 = 0, / + cr = 0, is not a para Hermite condition as can be seen from (ii) 
above, 

iv) / — cr Ф 0, / + <r Ф 0, the manifold is not para Hermite. 
Since / — cr = 0 is a para Hermite condition then (/ — a)" = 0, n e N will give para 
Hermite conditions. But {I - аУ = Ool - 2a + I = 0 o2{l - a) = 0 which is 
the Pj-Hermite condition. So is (/ — cr)" = 0, n eN. Thus we conclude that in Gj, 
the only para Hermite condition is the one obtained. 

Theorem 2. The following are para Hermite conditions: 
[Pi) {F>xF) Y - {DxF) У = 0 , P^-Hermite , 

(Рз) {DxF) Y + {DjF) 7 - 0 , P^-Hermite , 

(P4) {DxF) Y ~ {DxF) F = 0 , P^-Hermite , 

(P5) {DxF) Y + {DxF) 7=0, P5-Hermite , 

(Рб) {DxF) Y ~ {DxF) F = 0 , P^-Hermite , 

(P7) {DxF) Y + {DxF) Y= 0, P^-H ermite , 

(Pg) {DxF) Y - {DxF) Y - {DxF) Y + {DxF) F = 0 , P^-Hermite , 
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(Pg) (D^F) Y - (D^F) Y + (D^F) Y - {D^F) F - 0 , Pg-Hermite , 

(Pio) i^xF) Y + (DjF) Y ~ (DxF) Y - (D^F) F = 0 , P,o-Hermite , 

(Pi i) {D,,F) Y + (D^F) y + {Dj,F) Y + (D^Fj F - 0 , P^ ̂ Hermite . 

Proof. Let / = (i);^F) У, a - (DjF) У, 5̂ = (D^F) Y, y = (DjF) F. Then /, a, /?, y 
admit the following table of multiplication: 

Table 2 

/ 
a 
ŷ  

y 

/ 

/ 
a 
ß 
y 

(X 

a 
I 

y 
ß 

ß 

ß 
У 
I 
а 

У 

У 
ß 
а 
I 

The set G 2 of all linear combinations of/, a, /?, 7 will be an infinite commutative ring 
under addition and multiplication as in table 2. Now in G2 we have: 

/ - a^ , (/ - a) (/ + a) - 0 , 

/ = y ^ (/ - y) (/ + y) =. 0 , 

Arguments similar to those in theorem 1 will give P,-Hermite, i = 2, ..., 7. Since 
products of para Hermite conditions give para Hermite conditions, we take products 
of conditions (2) to (7) on the following table: 

Table 3 

P2 
P3 
PA 

P5 
Pe 
Pi 

Ps 
P9 
Pio 
Pll 

Рг 

P2 

Ръ 

0 
Ръ 

PA 

Ps 
Рго 
PA 

_Zi_ 
P9 
Pn 
0 
^ 5 

Pe 

P9 
Л о 
^^,0 

Рэ 
Рв 

Pi 

Ps 
Л 1 
Ps 
Pll 
0 
Pi 

Ps 

Ps 
0 
Ps 
0 
0 
Ps 
Ps 

P9 

P9 
0 
0 
P9 
P9 
0 
0 
P9 

Л о 

0 
Л о 
Л о 
0 
Л о 
0 
0 
0 
Л о 

Pix 

0 
Л 1 
0 
Л 1 
0 
Л 1 
0 
0 
0 
^ ' l . 

Thus from table 3 we see that multiplications of P2 to P7 yield 

(Pg) (/ - (x){I ~ ß) = 0, P ̂ -Hermite , 

(P9) [I ~ oc){I + ß) = 0, Pg-Hermite , 
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(/ + a) (/ - ^) = о , Руо-iiermite , 

(/ + a) (/ + /̂ ) = О , P^^-Hermite 

and that P2 to P^^ are the only structures that can be obtained in G2. 
Now, in order to get more structures, we should be able to multiply elements of G^ 

by those of G2. This can be done if G^, G2 are subrings of a larger ring G. 
G can be constructed in four different ways according to how we interpret the 

operations a, ß, 7, a. 

Case 1. Let a, ß, y bar Z , У, X and У respectively and a switches slots. In this case 
the set G3 of all linear combinations of /, a, ß, у, a, ca, aß, ay is a commutative 
ring with multiplication defined by tables 1, 2 and the following: 

(A) aoc = oca = {DyF) X , aß = ßa = (DyF) X , ay = ya = {DyF) X . 

Theorem 3. The following are para Hermite conditions: 

(P12) {^xP) У - {DyP) X - (Dj^F) Y + (DyF) X = 0, P^2-^ermite , 

(P13) {D^F) Y - {DyF) X + {DjF) Y - {DyF) Z = 0 , P,,-Hermite , 

(P14) {D^F) Y - {DyF) X - {D^F) Y + (DyF) Z = 0 , P^^-Hermite , 

(Pj 5) {DxF) Y - {DyF) X + {D^F) Y ~ {D^F) X = 0, Pi ̂ -Hermite , 

(Pi б) {DxF) Y - {DyF) X - (Z)^P) F + (DyP) X = 0, P,,-Hermite , 

(^17) (^z^) Y - {DyF) X + (JDJP) У - (DyF) X = 0 , P^j-Hermite , 

(^is) (^xi^) ^ - {DxF) У - {DxF) Y + {D^F) Y ~ {DyF) X + 

+ {DyF)X + {DyF)X ~ {DyF)X = 0 , P^^-Hermite , 

{P19) (DxF) Y - {D^F) Y + {D^F) Y - (Dj,F) Y - [DyF) X + 

+ {DyF)X - {DyF)X + {DyF)X = 0 , P^g-Hermite, 

(^20) {DxF) Y + {DxF) Y - [D^F) Y - {Dj,F) Y - {DyF) X -

- {DyF)X + {DyF)X + {DyF)X = 0 , P2o-Hermite , 

(̂ ^21) (DxF) Y + (D^F) У + [D^F) Y + ( D ; , F ) У - ( D , F ) Z -

- [DyF) X - (DyF) X ~ (DyF) J = 0 , Р2Г H ermite . 

Proof. Conditions 12 to 21 are given respectively by: 

(/ _ ^ ) ( / _ 4 (/ _ a){I + a), (/ - a){I - ß), {I - a){I + ß) , 

{I - a){l - yl {I - a){I + y), {I - a){l - a - Ŝ + 7) , 

{I - a){l - (X + ß - y), {I - a){l -h oi - ß - y) , {[ - a){l Л- (X + ß + y) ^ 

From the above construction and theorems 1 and 2 we see that these are the only 
structures in G3. 
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Case 2. In this case we let a, ß, y bar first, seconds, first and second slots respectively 
and a switches vectors. The set G^ of all linear combinations of/, a, ß, y, a, aoc, aß, ay 
is an infinite commutative ring with G ,̂ G2 as subrings. In G4 product is given by 
Tables 1, 2 and the following: 

(B) ooc = aa = (DyF) X , aß = ßa = {DyF) X , ay = ya = (DyF) X . 

Theorem 4. The following are para Hermite conditions 

{P22) {I)xF) Y - (^y^) X ~ (D^F) Y + (DYF) X = 0, Р^г'НегтИе , 

(^2з) [D^F) Y - (DyF) X + {Dj,F) Y - [DyF) Z = 0 , P2rHermite , 

(^24) K^xF) У ~ (DyF) X - {Dj,F) Y + {DyF) X = 0 , P2^-Hermite , 

(^25) {D^F) Y ~ {DyF) X + {D^F) Y ~ {DyF) X = 0 , P2s-Hermite . 

Proof. These are respectively given by (/ — a){l ~ a), (/ ~ a){l + a), {I — a). 
.{I-ß),{l-a){l + ß). 

The rest of the products give structures already given in theorem 3. 

Case 3. Let a, ß, y bar vectors and a switches vectors. Here we have: 

(C) Ga = ßa = {DYF) X , oca = aß = {DyF) X , ay = ya = {DyF) X . 

If we take G5 to be the set of all linear combinations of / , a, ß, y, a, aoc, oca, ay, 
then G5 will be an infinite non commutative ring with G ,̂ G2 as subrings. 

To get new structures in G5 we have to multiply on both sides. It can be seen easily 
from A, В and С that if we multiply in one direction, we obtain the structures of 
theorem 3, and if we multiply in the other direction we get those of theorem 4. Thus 
in this case no new structures are obtained. 

Case 4. Here oc, ß, у bar slots and a switches slots and we get: 

a(T = ö-yÖ =: {DyF)X , aoc = ßa = {DyF)X , ay ^ ya = (DyF) J 

and as in case 3 nothing new is obtained. 

Inclusions. Now, let us study inclusions among these classes of para Hermite 
structures. The class of Fj-Hermite manifolds is contained in the class of Fj-Hermite 
manifolds {Pi с F^) if 

where ( F j , {Pj) represent the para Hermite conditions. 

Theorem 5. In the class of para Hermite manifolds the following inclusion rela­
tions hold: 

Fl ^ Рб ^ Fi^ F4., P-] <^ P^ , P2, F5, P^ cz Pg , 

F3, F4, F5 c: Fjo ? F3, F5, Pj cz Рц , 
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PuP2<=Pi2, РиРг^Рц, 
P„P,^P,,, P„P,czP,,, 
Pj , P4 с: Pj4 , P^, P^ c: P24. , 

P„P, C P , 5 , P „ P , ^ P , 5 , 

Рг,Рб<=Ргб^ P,,Pi^Pyi, Pi,PscPi8, 

P j , P9 c: p jg , P\, Pio ^ P20 ' - ^1 ' ^11 ^ -^21 • 

Proof. We will only prove that Pj с P^. The rest follow directly from the defini­
tions of the structures. 

Since {D^F^) = (D^F) F + F{D^F), and F^ = 4 we get: 

(a) {D,F)Y= ~-{D,F)Y, 

for all vector fields X, Fand hence 

(b) [D^F)Y= ~{D^F)Y, 

if (Pi) holds, i.e. {D^F) Y - (ОуР)Х = О, then from (b) we get: 

{Dj,F)Y= ^{DrF)X = {D,F)X = {DyF)X = (D^F) Y 

and (D^F) Y - (DjP) Y=0 which is (P^). 

Distributions. It is well known that the existence of an almost product structure F 
on a Riemannian manifold (M, g) is equivalent to the existence of two complementary 
distributions P, Q on M. That is, starting with F, then P and 2 can be respectively 
defined by the following projections: 

bi === i[l.n + ^ ] , b , = i[/„, - P] . 

Conversely, starting with two complementary distributions P, g on M, then P can 
be defined in a natural way as follows: F[X + Y) = X — Y where X + Tis any 
vector field. In fact, we can start with one distribution P and take Q its orthogonal 
complement. 

In the following theorems, which give a geometric explanation of some of the 
para Hermite structures found, F is always constructed as above. The proofs of these 
theorems are direct applications of the results of Walker [3] and Willmore [4] and 
will be omitted. 

Theorem 6. Let P be a distribution on a Riemannian manifold (M, g). If(M, g, P) 
is Pii-Hermite then P is a semi-parallel. 

Theorem 7. Let P, Q be two complementary distributions on a Riemannian 
manifold (M, g). If (M, g, P) /5 Pg-Hermite then one of the distributions is parallel 
along the other. 
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Theorem 8. Let P, Q be two complementary distributions on a Riemannian mani­

fold (M, g). if (M, g, F) is Pj-Hermite then both distributions are semi parallel. 

Theorem 9. Let P be a distribution on a Riemannian manifold (M, g). If (M, g, F) 

is P^-Hermite then P is parallel and hence integrable. 

Theorem 10. Let P, Q be two complementary distributions on a Riemannian 

manifold (M, g). If (M, g, F) is para Kahler then both distributions are parallel 

and hence integrable. 
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