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The generalization of Schreier-Zassenhaus theorem for algebras consists in the
following. There are given two congruence series in an algebra; isomorphic refine-
ments of these series are looked for, i.e. refinements and a bijection of these refine-
ments such that the corresponding congruences are isomorphic as factor algebras
(and, of course, existence conditions are examined, too). A number of attempts at
such a generalization is known. In the present paper we call attention to two such
attempts. O. Bortivka in [2] (see also [ 1] 17.6) attained one such resultand A. Chatelet
in [3] (see also [7] Theorem 88) another one. We shall not mention the other
results. Both the theorems are algebra generalizations of the Schreier-Zassenhaus
theorem for invariant series of subgroups.

A particular attention should be paid to Bortivka’s attempt [2] (see also [1] 10.1)
at a formulation of an analogous theorem for partition series on a set without opera-
tions. The question arises whether or not such a theorem may be applied to algebras.
Namely, if we omit algebra operations the isomorphism of the corresponding congru-
ences (partitions)is reduced to a set theoretical equivalence. If the construction of this
isomorphism (equivalence) is not known then the theorem cannot be applied to al-
gebras and thus does not represent a generalization of Schreier-Zassenhaus group
theorem. O. Bortvka [2], [1] discovered the set theoretical character of the Zassen-
haus’ construction of the isomorphism of refinements and so ensured that his set
theoretical theorem [1] 10.1 is applicable to algebras [1] 17.6. The reader can find
more details in Part I of the present paper ([9]). In both the Parts I and 1I we use
Boruvka’s idea — the notion of coupled partitions. The purpose of Part I is to
find a theorem which is an algebra generalization of Schreier-Zassenhaus group
theorem and to prove it under the most general conditions (in some sense necessary
and sufficient). The aim of Part 1l is to find a common generalization of the theorems
of Bortivka [2] ([1] 10.1 and 17.6), Chatelet [3] ([7] Theorem 88) and, of course,
the Schreier-Zassenhaus group theorem, namely under such conditions which have
a formulation as simple as possible. Purposefully, we drop the intention of achieving
the greatest generality.

For terminology and denotation, cf. [1], [2], [5] and [9]. Some fundamental
notions will be listed in the following.
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A partition in a set & is a system of nonempty pairwise disjoint subsets of the set 6.
The system of all partitions in & is clearly in one-to-one correspondence with the
system of all symmetric and transitive binary relations in &. For this reason we shall
not distinguish between both notions. If 4 is any binary relation in ®, x € ® and
0+ B < 6, we define A(x) = {ye® : yAx}, A(B) = U{A(x) : xe B} and Y4 =
= U{A(x) :xe G} = A(®). If 4 is a partition and A(x) + 0, we call the set A(x)
a block of the partition A and (JA the domain of the partition A [5]; if U4 = 6
we speak about the partition on ® or about the partition of the set . 1f 0 = B < ©,
{8} means the partition in & with a unique block 8. If A is a partitionin ®,0 + B <
< ©®, we define BC A ={A'nB:A4"e A, A' n B =+ 0}. This partition is called
a closure of the set B in the partition A. If A is a binary relation in ® and 0 + B <
< 6, then the relation B[] A4 is defined as (B x B) n 4 and called the inter-
section of A with B. In particular, if 4 is a partition then B[4 = {B} A 4 =
={A'nB:A"eA, A' A B + 0} [1] 2.3. Two partitions in ® are called coupled
if each block of one partition meets exactly one block of the second partition [1] 4.1.
The set of all binary relations in &, 2(®), is a complete lattice with regard to the set
inclusion. The set of all partitions in ®, 2(6), is a complete lattice with regard to
the set inclusion as well, infima in 2(®) and 2(®) are meets. Operations in 2(®)
are denoted by N, U, N, U, in 2(6) by A, v, A,V (Vg Vs if necessary). The
symbol 2 denotes the partial order in 2(®), while A 2 B, where A and Bare parti-
tions in ®, means that each block of B is a block of A. Under the product of two
binary relations A4 and B in & we understand the relation AB = {(a, b)) e 6 x ©:
there exists ¢ € & with aAcBb}. The relations 4 and Bin ® commute if AB == BA.
Let (6, Q) be an algebra. Partitions in & which are stable binary relations in (6, Q),
are called congruences in (6, ). The set of all congruences in (6, ), #(6, Q), is
a complete lattice with regard to the set inclusion, its operations are denoted by
Axs Vs Ay V- Wehave Ay = Az = () [5] 1.1. The domain of the congruence
in (6, Q) is a subalgebra of (G, Q); if (®, Q) is an Q-gioup and 0 + A e #(6, Q)
then A(0) is an ideal of the Q-subgroup (JA4 and A = (J4/A(0) [5] I 1.4.

1.

Definition 1.0. ([5] IV 4.8) We say that a set 0 + B < 6 respects a partition A
in®if A'e A, A' B + 0 implies A < B.

Lemma 1.1. (See Lemma 1.1 [9]) Let A and B be partitions in a set & and 0 +
+ B < 6. Then B[ (A v B) = (B A) v (B B). The equality follows if B
respects the partitions A and B or if B 2 |JA n \UB. An analogous assertion holds
for the product. (The symbol = means the order in the lattice of all binary relations

in ®.)

Definition 1.2. A partition A’ on a set ® is said to be an extension on & of a parti-
tion Ain ®if A =JAC 4.
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Notation 1.3. Let B and C be partitions in a set ®, ee (JB n (\C, B, a partition
on B(e) and C, a partition on C(e). As in [9] we define B;; = B, v (B A C), By, =
=By v (B A Cy), By = By(B A C), Bjy = By(B A Cy), K =By,(e)[1 By, K =
= By,(e) "l By, Relations C,, Cyq, Cyy, Cio. L and L are defined symmetrically
with regard to the symbols B and C. Further let us define A = B(e) N C(e), M =
= (ATTBy) v (ATT1Co) = ATT(By v Co). M = (A By) (AT1Co) =AM
M (ByCo) and N, N symmetrically.

Let By < B, Cy < C’ be extensions on & of the partitions By, B, C, and C,
respectively. Analogously, we define B;,, Bj,, ..., L', M', N’ and .

Lemma 1.4. The relations defined in 1.3 possess the following properties
denoted by (1)—(12). Similar properties (1')—(12') can be obtained by inter-
changing B and C.

By the definition we have B;,(e) = {x € &: there exists a € ® with xBya(B A C) e}
and so

(1) Byy(e) = U{Bo(a) : a €A}, Ble) 2 Byy(e) 2 U,
(2) Byy(e) 1 (B A Co) = Byy(e) 1 C.
We have namely Bj(e) [ (B A Co) = [By,(e) M B] A [Byyi(e) 1 Co] =
= {B,,(e)} A [Byi(e) 1 Co] = Byi(e) M C, since by (1) Byy(e) is contained in the
block B(e) of the partition B.
(3) Biy(e) n Cyy(e) = .
The relation follows directly from (1) and (1).

(4) B(e) = Byy(e).

This follows from the relation By 71 4" = B, ] 2 and (1).

(5) For ye ® we have K(y) = U{Bo(a):ae,} for some A, < A, e.g. A =
= K(y) n . Further, y € A implies y e K(y).

Indeed K(y) = By,(e) n U{Bo(a) :ae(B A Co)(y)}, then by (1), we have the
expression for K(y). We can choose 2, = K(y) n . We have namely K(y) n 4 2 ¥,
(for a € 2, implies a € By(a) < K(y)), thus (€:=) U{Bo(a) : a e K(y) n A} 2 K(y).
Conversely, for a e K(y) n % we have on the one hand By(a) < By,(e) and on the
other hand aByb(B A C,)y for some be ®. Hence By(a) = By(b) = U{By(c):
ice(B A Co)(»)} 0 Byy(e) = K(»), then € = K(y). The last assertion: If ye 2
then by (1) y € By,(e) and yBoy(B A C,) y. Hence y € K().

(6) The system of sets T = {K(y): y e A} covers By,(e). If K is a partition then
K =T.

The first assertion follows directly from (5) and (1). The second assertion: If K is
a partition then T'is a set of some blocks of the partition K, i.e. K 2 T. Hence T'is
a partition. Let xKy. By (5), a € % exists such that a € K(y). Hence x € K(y) = K(a)
and thus xTy. Hence K < T. Finally K = T.
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(7) M = A1 (BoCo) = (AM Bo) (A Co): M' = M.
Then the relation M is a partition if and only if the partitions 2L [] B, and
A [ C, commute or equivalently if M = N.
In this case M is a partition on % and M = N = (A[7] By) v
v(AMCy) =M

The first assertion follows from 1.1. The second assertion: If x' [7] BoCqy then
x,ye W and xByaCyy for some ae ®. Hence eB’ x B'aC'yC’e, thus eB'aCe,
ie. ae . Consequently M' < ([ B,) (W I Cq) is proved. But (AT By).

(AT Co) = M is on the right side. Thus M’ = M. The inclusion M < M’ is evi-
dent. The last two assertions follow from the properties of the commutmg partitions
on a set (on A) (e.g. [5] 3.1.1(5)).

(8) K = B,,(e) "1 Bo(B A Co) = [B,,(e) M Bo] [By1(e) I Co]- Then the relation K
is a partition if and only if the partitions By,(e) "] By and By,(e) [] C, commute.

The first assertion follows from 1.1, since by (1) By4(e) 2 UBy n (B A C,) =
The relation K as a product of partitions is a partition if and only if the partitions
commute [5] 3.1.

(9) K = By,(e) M Byo = [B11(e) [ Bo] v [Bi1(e) 1 Co], A = UK < Byy(e) and
every block of the partition K meets 2I.

The first assertion follows from (1), (2) and 1.1 and the last two assertions from (1).

(10) M = A (By v Co) = (AT By) v (A Cp). The relation M is a partition
if and only if M = M or equivalently N = N or equivalently M = N.

The representation of M follows from 1.1. As A [] B, and A [7] C, are partitions
on U and M is their product (see (7)), the rest of the assertion follows from the pro-
perties of commuting partitions on a set (e.g. [5] 3.1.1(5)).

(11) M =AM K = Cle) [ K.

We have C(e) MK = A1 By =(AMByo) nC=ATT(Bjyn C) = A
M (BoA C) (B A Co)=[ATT(Bo A C)] [ATT (B A Co)] = (AT Bo) (AT Co) =
= M. The second equality follows from the fact that 2 is a subset of a block of the
partition C, the fourth from 4.14 [5], the fifth from 1.1 and the last from (7).

(12) If M is a partition and a € A then K(a) = K(a).
For ae A we have xKa = x[B;,(e) [ (By, v (B A Co))] a = x € Byy(e), xA;x,

x14,%, ...x,_;A4,a, where A4,, ..., A4, are by turns equal to B, or B A C,. Hence
Xq5 .- X,_1, @ € W and thus
(%) X UM Apxy o Xy AT 4,6

If A, = B A Cy, then x € By;(e) n JCy = U and thus the preceding sequence (*)
can be extended at the beginning by the relation x2 [ (B A Co) x;. Hence
x(A 1 By) v (A Cy) a(the partitions A [ (B A C,)and A [ C, being evidently
the same), thus by (7) x(2 [ B,) (A 1 C,) a and by (1) and (8) xKa.
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Now let A, = B,. From (x) it follows that x,( [ B,) (A1 Co) a and by (1)
and (8) x,Ka. Then the following relations hold: x(B,,(e) M Bo) x,Ka and by (8)
x(By1(e) 1 Bo) x,(By1(e) M By) ¥(By1(e) [ Cy) a for some y e ®, thus x(By,(e)
[ Bo) (By1(e) M Co) a, ie. xKa.

Definition 1.5. ([1] 4.1) Two partitions in a set ® are said to be coupled if each
block of one partition meets exactly one block of the other partition.

Lemma 1.5a. (Bortvka [1] 4.1, sce also 1.4 [9]) Partitions A and D in a set ©
are coupled if and only if

(a) UDM1A=UAM D,
(b) Every block of the partition A meets (JD (or equivalently \JA n D) and
symmetrically.
Evidently, (a) is equivalent to
(@) UAnUD)MMA=(U4AanUD)M D
The following Theorem 1.6 follows from [9] 1.6 and 1.8. The special conditions
of 1.6 make it possible to give a short direct proof.

Theorem 1.6. Let B and C be partitions in a set ®, ee JB n |JC, B, a partition
on B(e) and C, a partition on C(e). If the partitions U1 B, (= UC, 1 By) and
A Co (= UB, M Co) commute then K, Land M are pairwise coupled partitions
(on Byy(e), Cyy(e) and A, respectively). Moreover,

WMK=AML=KML=M=N.

Proof. The commutativity of the partitions A [] B, and U [ C, implies that the
product (2 [ B,) (A [ Cy) is equal to M and is a partition (1.4(7)), so the relation
A K (=M by 1.4(11)) is a partition, too. This partition is the system of sets
{2 " K(a): a e A}, which is, by 1.4(12), equal to {A " K(a):aeA} = A K.
N = A [ Lis proved analogously. As M is a partition, we have M = N (1.4(10)).
By 1.5 and 1.4(9), the partitions K, Land M are pairwise coupled. Finally, K A L=
=AMKAL)=AMK)A(UAUMNL)=M.

We shall introduce some conditions equivalent to the condition of Theorem 1.6.

Lemma 1.7. Let B, be a partition on B(e) and C, a partition on C(e). Then the
following conditions are equivalent.
(i) A1 By, and A Cy, commute,
(ii) M is a partition,
(iii) 7= {K(y):ye A} is a partition,
(iv) T=K.
Proof. i< ii by 1.4(7).

i = iii: x e K(y;) 0 K(y,) = (see 1.4(5)) x € By(a,) 0 By(a,) for some a,,a, e
€ A = a; € By(a,) = Bo(x) = By(a;) < K(y;) n K(y,) =0+ [A n K(y()] 0

45



A [A A K(y,)]- Since the intersection of two blocks of the partition M = A K
(1.4(11)) is nonempty, thus the blocks are the same. By 1.4(5), K(y,) = U{B(a) :
caeR(y,) n A} = UY{Bo(a) : a e K(y,) n A} = K(y,) holds. Therefore T'is a parti-
tion.

i = iv: Suppose xTy. Then there is z € 9 such that x, y € K(z). Consequently
x, y € Byy(e), xByoz, yByoz. Thus x By,(e) [ Byoz, ¥ By4(€) M Bz and from the
transitivity xKy. Hence T < K. We shall prove T = K and so T = K. By 1.4(1), (5)
and (6) we have T = B,;(e) [ B,. We shall prove T = By,(e) [ (B A C,). Indeed,
from the relation x By;(e) (B A Co) y it follows that x, y e B (e) (< B(e) =
= UBy), xB A Coy and ye B (e) n Co(y) = B(e) n C(e) = A. From the first
relation, we obtain xByx(B A C,) y, x, y € B,,(e), i.e. xeK(y). The second one
implies y € K(y) (1.4(5)) and we have xTy. Consequently, T contains the supremum
[Byi(e) M1 Bo] v [By4(€) (B A Co)], which is equal to K by 1.4(9) and 1.4(2).

iv = iii is evident.

iii = ii: If we prove A [ T = A [ K it will be proved that M is a partition for
by 1.4(11) A1 K = M. By definition A K = {(x,y)e A x A:xeK(y)} and
AM T={(x,y)e A x A:x, yeK(z) for some z e A}. In the first case, yeK(y)
by 1.4(5) and in the second K(z) = K(y), since K is a partition. Thus A [ T =
=AMK.

Let us recall some lemmas from [9].

Lemma 2.1. (see Lemma 2.1 [9]) If A and D are congruences in an algebra
(6,Q) and JA 2 UD then A vy D = A v, D.

Let 2 and D be Q-subgroups of an Q-group (G, Q).

Definition 2.2. (see Definition 2.2 [9]) 2 and D are called Q-commuting Q-sub-
groupsif [U, D] = A + D, where [, D] means the Q-subgroup of (6, Q) generated
by the set A U D.

Clearly, Q-commuting Q-subgroups are commuting subgroups.

Lemma 2.3. (sce Lemma 2.3 [9]) Let U and D be Q-subgroups of an Q-group
(®, Q). Then the following conditions (a) to (e) fulfil a<>b= (< d<e.
(a) W and D are Q-commuting,

(b) /[, D] = 6% . 6,

(c) 6/, % and 6/,D commute,

(d) 6/A v, 6D = 6/A.6/D,
(e) A and D commute.

Analogous assertions hold for the left-sided decompositions.
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Remark 2.4. Theorem 1.6 implies ““The general four-group theorem™ [1] 23.2 and
consequently even the Zassenhaus Lemma (in a strengthened setting).

Corollary 2.5. (BorGvka [1] 23.2) Let B 2 B, and € 2 €, be Q-subgroups of
an Q-group (®, Q). Let the following Q-subgroups be Q-commuting:

BNEC and BnE, with By; C€nB and €N B, with E,.
Then the following (left- or righz-sided) decompositions
1) K=%B,+8n€EB,+BnEC,, L=C +ECnB[C, +Cn By,
M=8BnEB,nC+EnB
are pairwise coupled. All given sums of Q-subgroups are Q-subgroups. Further,
BAOMK=BnC)ML=KAL=M.

(Zassenhaus Lemma.) In particular, if B, and €, are ideals of B and €, respec-
tively, then all the partitions (1) are congruences and the corresponding factor
Q-groups are isomorphic.

Proof. Let us define B, = B[V, and B = B/B (where | means e.g. the right
sided decomposition). Similarly C, and C are defined. Let e = 0 = the zero element
of the additive group ®. Then (in the notation from Theorem 1.6) 2 = B(0) n
N C(0) =B N E. The partitions A B, = (B E)[1B/B, =BnEB,nE
and A Co = € n B/€;, n B commute since the Q-subgroups B, N €and €, N B
are Q-commuting (2.3 and [9] Theorem 2.5(iv)). Thus the conditions of Theorem 1.6
are fulfilled. By 1.4(1) B;(0) = U{Bo(a): a e A} = B, + B n € and by supposi-
tion, this set is an Q-subgroup ([4] 111 4.1). By 1.4(9) and (2),

(2 K = (B11(0) 1 By) v (B11(0) 1 (B A Cy)) = (B + B E[By) v
vV (BnEBnE,),
for BA Cyp=B[1€/€ =BnEBnCE, Then (2)can be written in the form
By +BnEB, + BnC,.

Inded, this partition (say S) contains both the partitions on the right side of (2),
therefore it contains K as well and its domain agrees to (JK. Let R be a partition,
S=2R2K and aeUR(= By + B €). Then R(a) — a 2 K(0) = {B,,(0) M
M[Bo v (BAC)(0)2 By +BNE, so that By + BN E, + a = S(a) 2
2 R(a) 2 By + B €y + a; hence S(a) = R(a), thus S = K. Analogously the
representations of Land M are looked for.

Now, if B, and €, are ideals of B and €, respectively, then by [4] 111 4.1 B, +
+BnECE + €n Bare Q-subgroups of (6, Q). K as Z-supremum of congruences

47



in (®, Q) the domain of the first of which contains that of the other one (see (2)).
is a congruence. This completes the proof of (a strengthened form of) Zassenhaus
Lemma.

Lemma 2.6. Let B and C be partitions in a set ®, ee\JB n |JC, By a partition
on B(e), Cy a partition on C(e) and let By < B', Cy < C’ be extensions on ® of the
partitions Bo, B, C, and C, respectively. If B'(e) [ By and B'(e) [ Co commute
then A B, (= C(e)[ By) and AT Cy (= Ble) 1 Cy) commute and K' =
= R’ = K. Analogous theorem holds if we interchange B and C.

Proof. First the proof of the relation K’ = K. By 1.4(1), (2), (4) and 1.1 we have
K' = Bi(e)1[By v (B A Co)] = Byy(e) 1 {B(e) M [By v (B A Co)l} =
= Bii(e) T {[B'(e) T Bo] v [B(e) M Col}
similarly
n R' = B\(0) 1 [B() 1 B [B() 11 G5
Since the supremum of two partitions on a set (on B'(e)) is equal to their product
if (and only if) these partitions commute ([8] 1.1), we have K’ = K'.

We shall prove K’ = K. (The following statements (2) and (3) hold independently
of the suppositions of Lemma.)

(2 xK'z < xKz (for ze ).

Indeed, fix zeA. Then (see 1.4(4) and (1)) xK'z = x e By (e), xBjoz =>x¢€
€ B,(e) = B(e), xByaCyz, aB'z for some a € ®. Now, aBz follows from the relations
z € B(e), aB'z, consequently a € B(z) = B(e). From this and from the relation xBga
we obtain xB,a.We have proved xByaBz. From the relations z € C(e), aCyz we obtain
aCyz. Together with the preceding result we have xB,,z and consequently xKz

because Bi,(e) = By(e) (see 1.4(4)). With regard to the relation K’ = K we have
(2). From (2) it follows immediately that

(3) xK'z = xKz = xKz (for ze ).

Now, let the suppositions of Lemma be satisfied. Then K’ is a partition which is
equal to K’'. From 1.4(4) and (6), it follows that every block of the partition K’
meets ' (= A). From the relation xK'y we conclude the existence of an element
ze A with the property x, y € K'(z), therefore xKz and yKz by (3). Hence xKy
and thus K’ < K. Further K € K’ = K’. Consequently K’ = K.

Finally, we shall prove that the partitions 2 [] B, and U [] C, commute. We have

x(W M Bo) (AT Co) y = x(WM By) (AM Cp) y =
= x(B'(e) 1 B5) (B'(e) 1 Co) y = x(B'(e) [ Co) (B'(e) M By) v -

Thus x, y € A and xCoaBgy for some a € . Relations x e C(e) and xCya imply
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xCoa, consequently a € Co(x) = C(x) = C(e). Similarly: y e B(e), aByy = aB,y =
= aeBy(y) = B(y) = B(e). Hence ae N, then x(A [ Co) (AT By) y. We have
proved

(AT Bo) (AT Cp) = (AT Co) (AT Byy) .

The reverse inclusion is proved analogously.

Lemma 2.7. Let (®©, Q) be an algebra, B and C partitions in the set ® and e e
€ UB n UC. Let Byand C, be partitions on B(e) and C(e), respectively. If By and C,
are congruences in the algebra (() Q) then the relations K and L are congruences
on the subalgebras By,(e) and C,(e), respectively. If M is a partition (i.e. if the
partitions A [ By and A [ Cy commute), M is a congruence on the subalgebra N
and the congruences K, Land M are pairwise coupled (as partitions) and therefore
isomorphic (as factor algebras).

Proof. By supposition, JB, = B(e) and (JC, = C(e) are subalgebras of (®, Q),
thus A = B(e) n C(e) is a subalgebra, too. We shall show that By,(e) is a subalgebra.
Let w € Q be n-ary, xy, ..., x, € By,(e). By 1.4(1) a, € A (<= B,(e)) exist such that
x,Boay (k =1,... n). Since B, is a congruence, we have x; ... x,wBya, ... a,w and
because U is a subalgebra, we have a, ... g, € A. Again, by 1.4(1), we have x, ...

. x,0 € By,(e), consequently B (e) (and similarly C;,(e)) is a subalgebra. B (e) [
l—l B, and C,,(e) 1 C; are therefore congruences in (®, 2). The partition K =

= (By4(e) [ Bo) v 5 (By4(e) [ Co)(1.4(9)) as the Z-supremum of congruences in (®, 2)
whose domains are comparable sets (the domain of the first partition is B,l(e), that
of the other one is obtained in  (1.4(1)), is a congruence on the subalgebra B, (e)
(2.1). Similarly, L is a congruence on the subalgebra Cy,(e). Finally M = ([ B,).
(AT Cy) asthe product of two congruences is a stable relationin (®, Q)([5]3.2).
Hence if M is a partition, it is a congruence on the subalgebra . The rest follows
from 1.6.

In the following Theorem 2.8 a generalization of Chételet’s Theorem (see [3] or [7]
Theorem 88) will be deduced as a corollary of Theorem 1.6 and Lemmas 2.6 and 2.7.
Information in more detail is given in Remark 2.9 below.

Theorem 2.8. Let (6, Q) be an algebra, B and C partitions in the set ®, ec
€ UB n UC, By and C, congruences in the algebra (®, Q), B, and C, partitions on
B(e)and C(e), respectively, By, B', Co and C' extensions on ® of the partitions By, B, C,,
and C. respectively. If the partitions B'(e) [ Bg, B'(e) [l Co commute and the parti-
tions C'(e) [l By, C'(e) [ Cy commute, then K' = K' = K, L' = L'=L M =M,
the relations K, Land M are congruences on the subaigebras B,,(e), C,,(e) and U
of the algebra (®, Q), respectively, they are pairwise coupled (as partitions) and
therefore isomorphic (asfactor algebras).

Proof. By 26 K' = R’ = Kand L' = L' = L, by 1.4(7) M’ = M, by 2.6 and 2.7
K, Land M are congruences on the subalgebras By(e), C,(e) and 2, respectively,
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of the algebra (®, Q). By 1.6 K, Land M are pairwise coupled (as partitions) and
therefore isomorphic (as factor algebras).

Remark 2.9. We shall explain in more detail relations between 2.8 and Chatelet’s
Theorem ([3], [7] Theorem 88).

1. Denote
B; = (pi+1> B'1 = ‘pi, 36 = ‘Di—u Cé = .Pj+15 C’1 = lllj’ C6 = Y’j—l
In Chatelet’s Theorem and in Theorem 2.8, it is supposed that Bj(e) (denoted by
K(®;) in Theorem 88) is a subalgebra of (®, 2) and B, = Bj(e) [1 B, = K(®;) [
M @;_, is a congruence on K(®;). Similarly for ¥,. Theorem 88 requires the com-
mutativity of the partitions ®; and ®;_; with both partitions ¥, and ¥,_,. Theorem
2.8 requires only the commutativity of the partitions Bj(e) [ By = K(®;) [1 @;_1,
Bi(e) M Co = K(P; ) M ¥;-, and the commutativity of the partitions Cj(e) [ By =
= K(qu) 1 45‘_1, e) I_l CO = K(T/) I lPJ 1
Theorem 88 asserts that the relations (in fact, partitions by hypotheSIS)
D=0, ¥, AP, = ¢i_1(9’j A (Di) = B{)(C'l A B'l) = B},,
V;i=Y,19:; A ¥; = ?I’j_l(<bi A Tj) = Cé,(B'l A C’l) =Ciy,
P;;-1=By v (By A Cy) =Blo, ¥ji-1=Cov (Cy A By) = Cio
have the following properties

K(®;)11 @ ;—, = Bis(e) 1 By, = K’
is a congruence on the subalgebra K(®;,) = Bj,(e) (similarly for ¥) and

K =K(@;) &, =KY,)M ¥, =L.
All these assertions follow from Theorem 2.8.

2. Theorem 2.8 gives a strengthened version of the (essential) part of Chatelet’s
Theorem (as to the whole Theorem — see 3.4). It supposes instead of the com-
mutativity of the partitions ®;_,, ¥;_; only the commutativity of intersections of
these partitions with K(®;) and the commutativity of intersections of these paititions
with K(¥,), which is a weaker requirement as we shall show further (point 4). The
assertion of Theorem 2.8 is stronger because it proves that the corresponding parti-
tions are coupled.

3. Zassenhaus Lemma (in the formulation of Corollary 2.5) is easily obtained from
Theorem 2.8. Using the notation of Corollary 2.5 let us define: e = 0 = the zero
element of the group ®,

B, =%B/B,, B =%B/8B, C,=C€g,, C =C¢[E,
By =6/8,, B =6/8, C, =6/, C =6/,
(all decompositions will be understood, e.g. the right sided ones). The partitions

B,, B, C, and C are congruences in ((6, Q), Bj, B, Ci and C’ their extensions on ®.

- 50



The partitions B'(e) [1 By = B 1 6/B, = B[B,and B'(e) 1 Cp = B 6/C, =
= BB 1 €, as congruences on the Q-group B commute (2.3). Cj(e) M By and
C'l(e) M Cy commute for similar reasons. Thus the suppositions of Theorem 2.8
are fulfilled.

Let us change the formulation of the assertion of Theorem 2.8 for our situation.
By 1.4(4) and [5] 3.5.5 we have

B;1(0) = By4(0) = [Bo(B A €)](0) =
= By(0) + UBo 1 B(0)n C(0) = By + BAE.
By 2.6 K' = K’ = K. Thus
K=K =B ,(0)[ Bl =(Bo + BnC) M [6/B, v (6/B A 6/C,)] =
= (B, + BnE)M6/(B, + BnCy)
(by 2.3 (a = b, d) — since B, is an ideal of B). Hence
K=%B,+8nE/B, + BnE,.

Similarly we obtain L and M. Now, the assertions of the Zassenhaus Lemma (in the
formulation of Corollary 2.5) follow from 2.8.

4. Example for which the suppositions of Theorem 2.8 are fulfilled and the com-
mutativity of the partitions By, Cy (supposed in Theorem 88) fails.

Let (6, Q) be an Q-group and let the Q-subgroups B,, B, €, and € be chosen
as in point 3. If B, and €, do not commute the partitions By = ©/B, and Cy =
= ©/C, do not commute (2.3). On the other hand, by 2.3 and [4] 11l 4.1, the parti-
tions B'(0) [ By = B[ 6/B, = B[B,and B'(0) [ C; = B[ 6/€, = B/B n €,
commute and the partitions C'(0)[] By = €/€ n B, and C'(0)[] Cy = E[E,
commute as well.

Another consequence of Theorem 1.6 and Lemmas 2.6 and 2.7 is Theorem [1]
10.8 or its algebra version 17.6.

Corsllary 2.10. Let By < B’ and Cy < C' be partitions on a set ®, e € ®, let the
partitions B'(e) [ By and B'(e) [ Cy commute and let the partitions C'(e) [ By
and C'(e) 11 C; commute. Denote by B and C partitions with the unique block
B'(e) and C'(e), respectively, B, = B'(e) [l By and C, = B’ (e) [ Cy. Then the
partitions K', L' and M’ are pairwise coupled and satisfy K' =K' =K, L = L[ =
=L, M =M

If ((ﬁ Q) is an algebra and if the partitions By, B, Co and C' are congruences
on (®, Q) then K', L' and M' are isomorphic congruences on (6, Q).

Proof. The conditions of Lemma 2.6 are fulfilled so that K' = K’ = K, L' =
= L' = L and by 1.4(7) M’ = M. In virtue of 2.6 one can use Theorem 1.6, therefore
the partitions K, L, M and thus even the partitions K, L', M’ are pairwise coupled.
Hence the algebra version follows trivially.
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Remark 2.11. If we suppose the conditions of 2.10 to be satisfied for every ee ®,
we obtain from 2.10 the essential part of Theorem 10.8 [1] (as to the whole Theo-
rem — see Remark 3.3). In more detail: Let

B,<B,<..<B,, C,=<C,<..C,

be two partition series on a set ® (see Definition 3.1 below). In Theorem 10.8 [1],
under the supposition of commutativity of every partition B; with every C;, refine-
ments of these series are constructed which are co-basally joint; this result can be
formulated in the following way. Partitions

(1) [Bi-i(B:i A Ci)] () T1[Bi-1(B; A C;-4)] and
[C;-4(C; A B)](e) T [C;—4(C; A B;_;)] are coupled.
This is, however, the assertion of 2.10 if we put
By=B.,, B =B, Co=C;_,, C=C,.
Using this notation the assertion (1) reads as follows
K’ and L' are coupled partitions.

With regard to the commutativity of By and B’ with both the partitions Cy and C’
we have (see point 2)

K! — K! ) Z/ — Z/ ,
so that (1) is the assertion of Corollary 2.10.

2. Let us compare the conditions of Theorem 10.8 [ 1] and those of Corollary 2.10:

The commutativity of B, and C, implies the commutativity of the partitions
B'(e) [ By and B'(e) [ C, and the commutativity of the partitions C'(e) [ By
and C’(e) 1 Cq for every ee ®. (This is true since (B'(e) 1 By) (B'(e) M Co) =
— (B(e) 1 Bo) (B(e) 11 (B A Cp)) = B() M [Bo(B' A Co)] = Be) 11 (BaCy) —
see 1.1. We obtain the last equality as follows. Evidently B'(e) [ (B;Co) = B'(e) I
M [Bo(B" A Cp)]- To obtain the converse inequality, put x B'(e) [ (B,Cp) y. Then
x, y € B'(e), xByaCpy for an a e ®. It suffices to prove aB'y. Indeed, x € B'(e) and
xBga implies eB'xBga, and B, < B’ implies eB'xB'a, i.e. a € B'(e). Then the relations
a, y € B'(e) give aB'y.)

The converse assertion about the commutativity is not true as the following
example shows.

3. Example where the conditions of Theorem 2.10 are satisfied (even the con-
ditions of Theorem 2.8) for every e e ®, and in spite of this B, and Cy do not
commute. This example is presented by an arbitrary Q-group (®, Q) in which non-
commuting Q-subgroups B and € and their ideals B, and €,, respectively, are given.

If we denote the (e.g. right sided) decompositions ®/B, G/€, /B, and 6/, by
B’, C', B, and Cy, respectively, then the partitions By and Cj do not commute since
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the subgroups B, and €, do not commute (2.3), while the partitions
B(e)[1By = (B +e) 1 6G/B, and

B(e)[Co=(B+e)lM16G/C,=(B+e)16/BnE,
commute. To prove it we consider first the following:

(B'(e) 1 By) v (B(e) 1 Co) =""[(B + )1 6/By] v

VB +e)M6BnE]=2(B+¢e)M(6/B, vG/BnE)=
=B + e)T[(6/B,) (6/B Cp)] =P [(B + €)1 6/B] -
B +e)MM6/BnE] =2 (B(e) By)(B(e) 11 Cop) -
The second and fourth equalities are true sincz B + e respects the partitions

6/B, and 6/B N €, (1.1). The third equality follows from 2.3 (since B, and B N €,
commute). The obtained result says that the supremum of partitions is their product;

consequently, the partitions commute. Similarly it can be proved that the partitions
C'(e) ' By and C'(e) [ Co commute.

Lemma 2.12. Let By< B’ and Cy £ C' be partitions on a set ® and ee ®. Let
the partitions B'(e) [ B, and B'(e) [l C' commute. Then B} ,(e) = Bi,(e).

Proof. Let xBjje. Since evidently Bj,(e) = B'(e) we have x = xoAx, -..
. Xy—1A,x, = e for some xy,...,X,_; € B'(e), where A,,..., 4, are alternately
equal to By and B’ A C'. By supposition the partitions B'(e) [ By and B'(e) Il
M(B A C)=B(e) [ C commute, therefore x,_;A4; Ay, Xqq = x,—;(B(e) [
r Ak) (Bl(e) M Ak+1) Xk+1 = xk—l(B’(e) Il Ak+1)(Bl(e) M A) Xip 1 = X1 Aiss -
.Ar s - Hence xBj e and consequently Bj;(e) = Bj,(e).

3.

Definition 3.1. ([1] I 10.1) A finite chain
(*) Ay s A4, =£... 24,

of partitions in a set ® is said to be a partition series (from A; to A,) in the set ®.

([1] I 10.2) Let ee UA,. A local chain of a partition series (x) is the partition
chain {A;(e)} < A,(e)[M A; = As(e) [ A, < ... £ Ae) [ A,_;. We speak also
about the e-chain.

([1]1 10.6) We say that two partition series are e-joint if there exists a bijection of
the e-chain of one series on the e-chain of the other one such that the corresponding
partitions are coupled.

Let

By<By<..<B, C,£C;<..2C

be two partition series on a set ® and e e ©.
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Define
(1) By = Bi_i«(Bi A C)), Bjj=Bi_; v (B rC),
Ki; = Bi(e)M Bi;-1, Ki;=Bi{e)MBi -1,
M;; = (C{e) M Bi_,)(Be) 1 C;—,), K;;=Bie) B;j—y,
where
Bi_y =Bj(e)T1Bi_;, Cjy=Cie)1Cjy-

Relations Cj;, C;, Li;, Lj;, L;;, N;; are defined symmetrically (by interchanging B
and C).

Theorem 3.2. 1. Let
(a) B, <B,<..<B, C,<C,<..2C,

be two partition series on a set ® and ee ®. Put
B,.,=B.vC.=C.., and By =By A C; =Cq.
Iffor2 <isr+1,25jss+1
(b) Bi(e) M B;-y and Bie)[1Cj_, commute, and
Cie)1Cj—y and Cje)[ Bi—; commute

then there exist e-joint refinements of the series (a).

These refinements are (2) and (3) (see proof) and do not depend on the element e;
the members K;; and L}; of the e-chains (4) and (5), respectively, of these refinements
are coupled.

II. Let (®, Q) be an algebra. Define as in (1) B;_, and C;_, for2 £ i <r + 1,
2 <j = s+ 1 If for some pair (i,j)B;_y and C;_, are congruences in (6, Q)
then K;;, L;; and M;; (defined in (1)) are congruences on the subalgebras B, (e),
C,e) and Be) n C/(e) of the algebra (®, Q), respectively, they are pairwise
coupled (as partitions) and hence isomorphic (as factor algebras).

Note. Since for i =1, 1 £j<s+2and2<i<r+1,j=15+ 2, Bi(e)I
M Bi_; and Bj(e) [ C;_; as comparable partitions commute (and symmetrically),
then (b) implies

(v) Bi(e)M B;-, and Bj(e)[1Cj-; commutefor 1 <i<r+1,
lsj=ss+2,

Cie)T1C;—, and Cje)I1B;-, commutefor 1 <i

IIA

r+ 2,

15j<Ss+1.
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Proof. I. The refinements of the series (a) can be chosen as follows:

(2) Bé(= B;o) = Blll s...= Bll,s+1(= Bi = Béo) =
<B)y <..=B (=B =Bi10) B 1=...= Bl 1s+1(= Bi+1)>
(3) Cé(z C;o) = C,u =...= Cll,r+1(: C'1 = Céo) =<

SCH S 2C(=C=Clhi0) S Cint S s S Chi (= Cinr) -
The equalities are evident since

Bio =B, v (B; n Co) = Bi_; v By = Bj_,,

Bi,1 = Bi_; v (Bi A Ciyy) = Bi_y v B} = B;

and analogously for Cj, and Cj,, . The inequalities are clear.
The e-chains are the following ones (see also (7) and (8))

(4) {B{)(e)} <K = §K;,s+1 =K; £...2K] 11 S e S K'H s+1

() {C(o)) =L

All inequalities are evident up to K; 1 < Kiyq 1t

IIA

. éL],H»] §L21 § s §Ls-{-l,l é _Ll+lr+1-

K= ;s+1(3) [ B;, = Bisy o(e) MB;, < ;+1,1(e) M By =
= Bi+1,1(e) 1 Bi+1,0 = Ki+1,1 .
By 2.12,K}; = K; if Bj(e) [ B;_, and Bj(e) [ C; commute. Then by the first part of
(b) (see also (b’) in Note), we have
(7) Ki; = Kj; for all Kj; from (4) and Lj; = Lj; for all Lj; from (5).
Define as in (1)
B,_y = Bj(e)[1B;-; and C;_; = Cj(e)[1Cj-, for
1<i<r+1, 1<j<s+1.
Then B;_; and C;_, are extensions on & of B;_, and C;_,, and also, B;_, and C;_,
are partitions on B(e) and Cj(e), respectively. By 2.6
(8) K;; =K;; and Lj; = L; forall K;;and L}; from (7)
and the partitions JC;_; [l B;_; and UB;_; [1 C;_; commute for 1 £ i < r + 1,

1<j<s+ 1 By 16 K;;,L;; and M;; are pairwise coupled partitions for 1 <
<i=<r+1,1=<j<s+ L Thus the chains (4) and (5) are e-joint.
1I. Now, if for some (i,j) (2 £ i £+ 1,2 £ j < s + 1) the partitions B;,_ and
C;- (defined above) are congruences in an algebra (®, Q) then the partitions B,
and C, are also congruences in (®, Q) and by Theorem 2.8, K;;, L;; and M; are
congruences on the subalgebras B;;(e), C;(e) and Bj(e) n Cj(e) of the algebra ((6 Q),
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respectively (1 <i<r+1,1=<j=<s+ 1), they are pairwise coupled (as parti-
tions) and hence isomorphic (as factor algebras). This completes the proof of
Theorem.

Remark 3.3. As consequences of Theorem 3.2 we obtain Theorems 10.8and 17.6[1]
having the following form.

Let
(c) B,<B,<..£<B, CisC,=s..5C

w S

be two partition (congruence) series on a set ® (on an algebra (6, Q)). Let
B; and C; commutefor 1 <i<r, 1<j<5s.

Then refinements of the series (c) exist such that for arbitrary e € ® these refinements
are e-joint. In the algebra case, elements of the refinements are congruences in (6, Q)
and the corresponding congruences of these (e-joint) refinements are isomorphic
(as factor algebras).

Proof. We prove that the condition (b) of Theorem 3.2 is satisfied. It is seen that
(4 =) Bi(e)T1 Bi—y and (D =) Bi(e)I1Cj_,
commute for 2 < i<r+1, 2<j<s+ 1 and symmetrically (where B,,, =
= B/ v C; = Clyy).

Indeed, we have xADy = xB_,C;_,y = xCj_,aB;_,y for some a € . We have
also y € Bj(e), consequently Bj(y) = Bj(e) and further a € B;_(y) < Bi(y) = Bi(e)
and x € Bj(e), therefore xDAy. This completes the proof.

In Remark 2.11 it has been proved that the conditions of Theorem 3.2 are weaker
than the conditions of Theorem 10.8 [1].

The following generalization of Chatelet’s Theorem ([7] Theorem 88) is another
corollary of Theorem 3.2.

Corollary 3.4. Let (6, Q) be an algebra, e ®, and let
(1) By<B,<..=<B, C;£C,=..2C

be two partition series on a set ®. Let the partitions belonging to the e-chains of
these series be congruences in the algebra (®, Q).

Iffor2<isr2<j=<s
(2) the partitions Bj(e) [ Bj_, , Bi(e) M1 C;—, commute, and
the partitions Cj(e)[1 Cj_;, Cje)[1 Bi—y commute,

then there exist e-joint refinements of the series (1) and the partitions belonging
to their e-chains are congruences in the algebra (6, Q). Indeed, the coupled
members of the e-chains are isomorphic algebras.
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Note 3.5. The results of the present paper suggest a simple sufficient condition
under which Theorem 3.5 [9] is true. This condition reads

A

(*) UB;MC;-y and YC,_, M B; commute for 1 <i

IIA

IA
~.
IIA

S,

UC,M B,y and UB;_; [1C; commutefor 1= S.

IIA
IIA
~.
IIA

This follows from Proposition 1.8 [9]. With respect to the supposition B, = C, and
B, = C, of Theorem 3.5 [9], the partitions (JB; [ Cy, UC, [ B; commute for
1 =i = r and the partitions (JC, "] By, UB, 1 C; commute for 1 £ j < s, thus
condition () is equivalent to the following one

(%) UB:T1C; and UC;T1B; commutefor 1<i<r—1,
1<j<s—1.
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