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ON CLASSES OF GRAPHS DETERMINED BY FORBIDDEN SUBGRAPHS 

SvATOPLUK PoLJAK and VojTECH RÖDL, Praha 

(Received February 18, 1980) 

1. INTRODUCTION 

One of the most frequent ways of defining a class of graphs is by means of forbidden 
subgraphs. (For a survey see [2]). Let ^ be a set of graphs. We say that ^ is deter­
mined by a set Ж of forbidden subgraphs if ^ = {G = (F, £)[ | F | = ?i and G does 
not contain any Я е J f as an induced subgraph}. We can measure the complexity 
of a class ^ by minimum number к with the property: ^ is determined by a set Ж 
of forbidden graphs with at most к vertices. It appears that, for n large, it is not 
possible to divide all graphs with n vertices into two classes of small complexity. We 
give a quantitative expression of this fact in § 4. 

In § 3 we study the following related question. What is the minimum number ^,,(/c) 
of graphs with к vertices so that every graph with n vertices contains at least one of 
them as an induced subgraph? (A set of graphs with this property is called n-univer-
sal.) This problem generalizes in a way the Ramsey numbers as (pn{k) = 2 if n is so 
large that any graph with n vertices contains either a clique or an independent set of 
cardinality k. 

2. BASIC NOTIONS 

Let G be a graph, we shall denote by V[G) and £(G) the vertex and edge set, respec­
tively. 

We say that H is an induced subgraph of G if V{H) is a subset of F(G) and E[H) is 
equal to the set E{G) restricted to V{H) (i.e. E{H) = E{G) n [V{H)Y). Note that 
all subgraphs considered in this paper are induced. 

By the symbol Gra" we denote the set of all graphs with n vertices without loops. 

We define Gra = (J Gra". Let J f be a system of graphs. We define F o r b ^ as the class 
n = l 

of all graphs not containing a subgraph isomorphic to H for any H e Ж, Put Forb" = 
= Gra" n Forb Ж. Let ^ be a given set of graphs. It is easy to see that Ж with 
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Forb Ж ^ ^ need not exist. On the other hand if ^ c: Gra" then obviously for 
Ж = Gra" - ^ we have ^ = Forb'' Ж: thus the following question arises. What is 
the minimal к such that Ж с Gra* and ^ = Forb" Ж1 The set ^ has in some sense 
a "simple structure" if the к with the above property is small — in this case we can 
recognize for a given graph G e Gra" whether G e^ in short time. Let G G Forb". 
Then obviously every graph from ^ = Gra" — ^ contains a subgraph isomorphic to 
some H E Ж. In this case we say that Ж is n-universal for ^ . This fact we denote 
by ^ = Univ" ЖЛï^ =^ Gra" we say that Ж is n-universal. 

We shall conclude this section with one definition which will be often used in our 
paper: Let G ,̂ G2 be two graphs and H be an induced subgraph of both G^ and G2. 
We say that a graph F is an amalgamation of G^ and G2 if | ^ ( ^ ) | = | ^ ( ^ i ) | + 
+ | F ( G 2 ) | — 1^(^)1 and F contains (as induced subgraphs) copies of G^ and G2 the 
intersection of which is isomorphic to H. 

3. «-UNIVERSAL GRAPHS 

Denote by (рп{Щ = тт{\ж\;Ж a Gra*" and Ж is n-universal}. In this sec­
tion we shall give some bounds for the behavior of the function (pX^)- The problem 
of determination of values of (pn{k) includes the problem of determination of Ramsey 
numbers as the following holds: 

3.1. Proposition. 

a) n(̂ > = 1 for к = i 

ß) n^^^ = 2 for 2 S к S r{n) 

y) n^^^ > 2 for к > r(n), 

where r(n) is the maximal к such that every graph with n vertices contains either the 
complete graph with к vertices K^ or a discrete graph with к vertices 0̂^ as an 
induced subgraph. 

For the p r o o f it is sufficient to reahze that if Ж is n-universal then both Kj^ and 0̂  
are contained in Ж, 

The bounds for the number r{n) are given by the following 

3.2. Proposition. (See [ l ] , § 12.) 

J- log2 n < r{n) < 2 log2 n . 2 

Let us note that the slight improvements of the above bounds are known (see [5], 
[4]). As we are able to give rough bounds for the quantities studied in our paper 
only, the restrictions given by Proposition 3.2. are sufficiently exact for our purposes. 
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3.3. Theorem. 

A) . ^ Ф«(^) for every n and к ^ n 
k\ C) 

Moreover, if к ^ r(n), then 
22k 

B) 9n{^) < for i log2 n < к S \og2 n , 
2n 

C) ф„(/с) < 2^') /'̂ ''Л ' /o r log2 n <k<nl2; к ^4, 

D) ф„(/с) ^ 2 . 2^'^ ^ /'/c - r ^ ^ ] ) for k^njl, 

where Jx | denotes the upper integer part of the number x. 

Proof. First we prove the inequality A). Without loss of generality suppose that 
Gra" = {G; V(G) = ( l , 2 , . . . , n}}. Let (p„{k) = p; hence there exists Ж cz Gra^ 
such that Ж" = {Я^ H2,..., Я ,̂} is п-universal. 

For an arbitrary Я G Gia^ we have 

\{G e Gra"; Я is isomorphic to a subgraph of G}| ^ A:!. / J. : 

Thus, 

2'̂ 2; = |{G G Gra" I 3i : H^ isomorphic to a subgraph of G}\ S P • kl . I \ ~ 
W 0(2) 

2(2)-C 

and hence ç„{k) ^ 2^^^/ fkl . ( " U . 

2 

Before proving the inequalities B), C), D) choose in every G e Gra" a fixed sequence 
of vertices xf, xf,..., xf+i, where t = [log2 /t], and a sequence of independent sets 
X = X^ :D X^ -=:>... :D Xf+i such that the following holds. 

i) xf G Z ? - Xf+u X,+ I G X , + I, for every г = 1,2, ..., Г, 
ii) Ef cz E{G) or £f n £(G) - 0 for f = 1, 2 , . . . , Г and Ef = {(xf, y\ yeXf^,}. 

Now we prove the inequality B). Define the set of sequences ^ с {0, l|^~i by 

P = {Pu P2,-"^ Pk-i)^^ iff either Pi = 0 for every г = 1, ..., ^ - /c + 2 
or Pi = 1 for every i = 1,..., t — к + 2 . 

As'^t = {2[t - к + 2) - i) + {{k ~ 1) - {t - к + 2)), for every s = 
= (5i, 52,..., 5f)G {0,1}' we can choose i^ < /2 < ••• < f̂c-i such that p = 
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For every sequence p G i^ we define the graph Hp with the vertex set {v^, V2, ..., î }̂ 
such that for i < j 

{vi, Vj} e E{Hp) iff Pi = 1 , 

Put Ж = {H pi ре ^}. For a given graph G e Gra" we define a 0,1-sequence 5 = 
= {S^,S2, . . . , 5,) by 

_ / 1 for £f с E{G) 
^' " \ 0 for Ef n E{G) = 0 . 

Choose /? G ^ such that p is 3, subsequence of S. Clearly Hp is an induced subgraph 
of G. Hence 

92/c 92A: 

' ' 4.2' n 

C) Let 0̂ be the largest positive integer such that n ^ к , 2'°. Define the set Ж as 
follows: 

Н = {КЕ)еЖ iff- V={v,,V2,...,v,^,v,^^,,,.„v,] and 

for every i = 1, ..., Го and Ei = {{i;̂ , г^}; i < j ^ к} 

either £^ n £ = 0 or E^ci E . 

Ж is universal for Gra" as every subgraph induced on vertices x^, xf, •••, î̂̂ ? 

Jfo+i' •••' 3̂fc where {v^o+i' •••' j j ^ ^to is isomorphic to some НеЖ. 
Estimate the cardinality of 

(k-to\ 9(2) 9(2) 
Ш <2''l^ ^ ^ = < ~ for k>A 

as fo + 3 ^ log2 (8w//c) and for A: ^ 4 also log2 (8n//c) ^ log2 n + 1. 

D) Define «^ as follows: 

Н = {У,Е)еЖ iff" F = {t;i, Î;2, ..., %} and there exists J , 

к - l'^d^\{n ~ l)/2] such that for E^ = {{v^, Vj], 2 й i й d} 

either E^ n E = 0 or E^ cz E , 

As in the previous case it is easy to verify that Ж is universal and 

\Ж\ й 2 .2^'"''K{k - \{n -- Ip]) . 
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4. CUTS 

A pair ^ 1 , ^2 of nonempty sets of graphs is called a cut if ^ | u ^^ = Gra" for 
some /7, and moreover "̂ ^ n ^̂ 2 = 0- In this section we study the following question. 
Let /c, / be such that there exist Ж^ с Gra^, Ж2 c= Gra' such that the sets ^^ = 
= Forb" Ж I, ^2 = Forb" Ж 2 form a cut. What is the relation among n, к and 17 
For n ^ 2 obviously both Ж^ and =^2 ^^'^ nonempty and thus also к ^2 and 
/ ^ 2. Choose an Я^ G Ж^ and Я2 e «^2 ^nd consider the disjoint sum Я^ 4- Я2. 
The cardinality of the vertex set of the graph Я^ + Я2 is at least и + 1. In the 
opposite case the graph H^ + H2 would be a subgraph of a graph F with n vertices 
and hence F ф Forb" Ж^^ u Forb" c^2- Thus we have proved that к + I > n. 

If we replace in the above argument the disjoint sum Я] + Я2 by a graph which is an 
amalgamation of graphs H^ and Я2 in a vertex (one-point amalgamation) we prove 
the following. 

4.1. Proposition. 
к + I > n + 1 . 

In this section we find some refinements of the above statement. More precisely, for 
given n,k {k < n) we define \1/{к, n) as the minimum / such that there exists a cut 
^15 ^2 with the above properties. We give some estimation for the function ^(k, n). 

4.2. Theorem. Let n ^ 2, к ^ 2. Then 

A) ф(п ~ k, n) S 2k + 2; 

B) ф(п — к, n) > к + i log2 (J, where ^ = min [к, n — к), 
if 
(1) ^ ^ ^ / c 4 - ( l o g 2 / c ) / 2 ^ 

^ ~ к- (l0g2 kf 

Proof. First we prove the inequality A). Put 

^1 = Forb {0„_ J , ^2 = Forb {Я G Gra^'+2 ß{H) t к + 1} , 
where ß{H) = min {|л|; Л cz К(Я) and е n Л Ф 0 for every е е £ ( Я ) } . We prove 
now that ^1 u ^2 = Gra". Let G G ^ 1 , i.e. G contains 0„_^ and hence ß{G) ^ ^. 
Thus G G ^ 2 -

The proof of ^1 n ^2 = 0 will follow from the following 

4.3. Lemma. Let ß{G) = p. Then there exists a subgraph H of G such that 
\V{H)\ g 2p and ß[H) = p. 

Proof of lemma. Put G = (F, É). Let A cz V, \Ä\ = p be such that each edge 
of G contains a vertex of ^ . Define a relation R cz Л x ЕЪу 

(x, e)E R iïï XE e . 
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The existence of a matching F = {(х^, e j , ..., (x^, e j } с R of the cardinality p 
follows from the König-Hall Theorem [3]. The graph H induced on the set 

p 

и {^h ^/} 

where ei = [vi, x j has the required properties. 
Let now G G ^25 i-e- if Я is a subgraph of G which has 2/c + 2 vertices then ^(Я) ^ 

^ /c. According to Lemma 4.3, )^(G) ^ /cand hence G contains 0„_̂ ^ as a subgraph. 
We prove the inequality B). Let n and k be given. Consider a cut ^ | , ^2 with the 

minimum / such that 
^1 = Forb Ж^, Ж^ cz Grsi"-", 

^2 = Forb .Г2 , Ж2 с Gra^. 

Moreover, let к be such that (i) holds. We shall consider thiee cases. 
a) Suppose K„ e ^ 1 , 0„ G ^2 (the case 0„ G ^ 1 , K„ e ^2 is analogous as all the pro­

perties considered here are invariant with respect to complement). 
We prove that 

(2) ф(п - k, n) > к + i log2 к . 

Suppose that (2) does not hold, i.e. 

(3) luk-h i log2 к . 

From (1) and (3) we get that 

(4) k{n - k~ l)^n{l- k - If + k{J - k- 1) . 

By Proposition 4.1 we ha we / — /c — 1 > 0 and hence 

/5) n - k - l ^ n{l - k - l ) ^ ^ 
^ ^ I - k - l ~ к 

We show that we can choose positive integers a, b such that 

(6) a{l - k - \)йп - k - 1 

(7) b{l - k - \)<l - \ . 

Now (5) implies the existence of a positive integer a such that 

(8) n - k - i ^ ^ nil - k - I) 
_ a ^ 

I - k - i к 

which clearly implies the inequality (6). Put b = \njc\ from (8) it follows that 

Ï. / Г ^ 1 к . ^ - 1 
Ь ^ < + 1 = . 

\l - k - i \ I - к - 1 I - k - 1 
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Consider a partition of an n-point set Z = IJ ^ / ^^^^^'^ that |X,| == a for every / g 
i = i 

^ [nja] and define a complete b-partite graph F with the vertex set X such that 
X eXi and x' eXj are joined by an edge if / ф 7. From (6) and (7) it follows that 
every n — к and /-subset of X = V(F) contains iC^_;, and 0/_;., respectively. 

If F e <̂ i then F ф Forb Jf 2 ^1^^ hence there exists a subgraph H of F such that 
НеЖ2 ^^^ thus Я does not contain 0̂ „;̂  as a subgraph. From the assumption 
0„ e -̂ 2 = Forb Ж2 it follows that 0„ ^ Forb J f ^ and hence 0„_;, e J f j . The amalga­
mation of Я and 0„_fc in 0̂ _̂ v is a graph which contains graphs from both Ж1 and Ж2 
which contradicts Forb Ж^ u Forb J^2 = Gra". 

Analogously if F e ^2 then there exists an Я G Ж^ such that Ki_i,is a subgraph of Я. 
From iC,, e ^1 it follows that iCfG c^2 and hence there exists a graph with n vertices 
containing both Ki and G as subgraphs, 

2) Suppose i^„, 0 „ e ^ i and thus Ki, 0̂  e ^^2- As |7(Я) | = n - к for НеЖ^, 
H contains either K,.(„_/..) or 0^(„-^). Suppose that I ^ к + r(n — /c). Fix an Я e .^^ 
and consider the amalgamation of Я and either Ki or 0/ in î ;.(„_jt) or 0г(„_;̂ ,, respec­
tively. Thus we obtain a graph F with n — к + I — r(n — k) ^ n vertices, which 
contains either Ki or 0̂  and hence F ^ ^2- As Я is a subgraph of F we also have 
F e ^2 ~ ^ contradiction. Thus we proved I > к Л- r{n ~ k) and as r(m) > 
> \ log2 m for every m we also have / > /c + i log2 (n — /<). 

3) Suppose that i^„, 0„ G ^2 ^̂ ^̂  hence i^„-fc, 0 n - f e ^ ^ i ' Analogously to 2) the 
assumption I ^ к + r(/c) leads to the existence of a graph of order n which is not 
an element of ^^ and ^2? respectively. Thus / > /c + i log2 k. 
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