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THE LEAST SEPARATIVE CONGRUENCE ON A WEAKLY
COMMUTATIVE SEMIGROUP
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In [1], a relation = on an arbitrary semigroup S has been defined. For elements a
and b of S, a # b if and only if ab" = b"*! = p"a and ba" = a"*! = a"b for a posi-
tive integer n. It has been proved that, if S is a weakly commutative semigroup,
then 7 is a separative congruence on S. The author has proved that, if S is a duo semi-
group (i.e. every one-sided ideal of S is two-sided), then S/n is a maximal separative
homomorphic image of S. See Theorem 5 of [1].

In this note we shall extend this result on duo semigroups to weakly commutative
semigroups.

Definition 1. A semigroup S is called weakly commutative if, for any a,be S,
we have (ab)* = xa = by for some x, y € S and a positive integer k. See Definition
6.4 of [2].

Definition 2. We define a relation 7 on a semigroup S as follows: a = b if and only
if ab" = b"*! = b"q and ba" = a"*! = a"b for a positive integer n. See [1].

Remark 1. Let S be a semigroup, a and be S and ¢ a congruence on S. If
ab"* ' o b"*? and (ab")" o (b"* )" for positive integers n and m, then (ab™)™ o (b"+1)M
for any positive integer M > m.

Similarly, if b"*'a ¢ b"*? and (b"a)" ¢ (b"*1)" for positive integers n and m,
then (b"a)™ o (b"*")™ for any positive integer M > m.

Proof. We prove only the first part of the remark, because the second part can
be proved in a similar way. Let us suppose ab"*! ¢ b"*2, (ab")" o (b"**)™ for some
a, b e S and positive integers n and m. Let M be an arbitrary positive integer with
M > m. Then (ab")" = (ab")" ™ (ab")" o (ab"y ™ (p**1)" =
— (abn)M—m~1 abnbn+1(bn+l)m—1 0 (abn)M—m—l (bn+1)m+1 0...0 (bn+1)m+M~m —
= (b" )M,

Lemma 1. (B. Pondglicek [1]). If S is a weakly commutative semigroup, then n
is a separative congruence on S.
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Theorem 1. If S is a weakly commutative semigroup, then S[n is a maximal
separative homomorphic image of S.

Lemma 2. Let S be a weakly commutative semigroup and ¢ a separative con-
gruence on S. Let a,be S. If ab™ ¢ b"*! g b"a and ba" ¢ a"*! g a"b for a positive
integer n, then a g b.

Proof. Since g is a separative congruence, the result is true for n = 1. Assume
now that the assertion holds for n = 1. Let ab"*1 g b"*2 g b"*'g and ba"*' pa"*? ¢
¢ a"*'b. Since S is weakly commutative, (ab")* = by for some y e S and a positive
integer k. Thus (ab")**! = ab"*1y o b"*2y = b"*(ab")* = b"*'ab"(ab") ™" o
o (b"*1)? (ab™ 1 g... o (b 1) F 1. Similarly, (b"a)' = ub for some u € S and a posi-
tive integer t. Thus

(bna)H—l — ubn+1a Qubn+2 — (bna)t bn+1 — (bna)t—l bnabn+l 0
0 (bna)t~-1 (bn+1)2 0...0 (bn+l)t+1 .
Consequently, (ab")**' o (b"*')f*! and (b"*')'*'o(b"a)'*'. By Remark 1, it
follows that
(ab™)" @ (b"* )" @ (b"a)™ for a positive integer m .
Let m; = min {m: (ab")" ¢ (b"**)" o (b"a)"}. We prove that m, = 1. Let us sup-
pose that m; # 1 and let
I L if m, is an even number ,
2 my; + 1 if m, is an odd number .
Then, by Remark 1,
(abn)mz ) (bn+1)mz 0 (bna)mz .
Let my = n12/2. Then m3 > m, and
((abn)ma)z - (abn)Zma — (abn)mz 0 (bn+ 1)"12 — ((bn+1)ms)2 =
— (bn+1)m; 0 (bna)mz — (bna)lm;, — ((bna)mg)Z X

(abn)ms (bn-f—l)mg — (abn)m;—-l abnbn+l(bn+1)m;—1 0
Q(abn)m3—1 (bn+1)2 (bn+1)m3~1 — (abn)m3—1 (bn+1)m3+1 Q... Q(bn+1)2nu — ((bn+ l)ma)l

and

Moreover,

(bna)m; (bn+ I)M3 — (bna)m;— 1 bnabn+ 1(bn+ l)mg -1 0
0 (bna m3— 1 (bn+ 1)2 (bn+1)n13-' 1 — (bna)mg,—l (bn+ 1)M3+I 0...0 (bn+ 1)2m3 — ((bn+ l)m3)2 .
Thus we have ((ab")™)? o (ab™)™ (b"* 1™ o ((b"*')™)* and
(@) o (vra)> (0 o (1)
Since g is a separative congruence, it follows that

(abn)m3 0 (bn+1)m3 0 (bna)ms .

631



Since this result contradicts my < m;, we have m; = 1. Consequently, ab" o b"*! o
o b"a. We can prove ba"g a"*! ¢ a"h in a similar way. Hence we get a o b. The
result therefore follows by induction. Thus the lemma is proved.

The proof of Theorem 1. Let ¢ be an arbitrary separative congruence on
a weakly commutative semigroup S. If an b (a, b€ S), then ab" = b"*! = b"a and
ba" = a"*' = a"b for a positive integer n. Thus ab” ¢ b"*! o b"q and ba" o a"* 1 ¢
¢ a"b. By Lemma 2, it follows that a ¢ b. Consequently n < .

Corollary 1. If S is a duo semigroup, then S[n is a maximal separative homo-
morphic image of S.

Corollary 2. If S is a normal semigroup (i.e. aS = Sa for any a € S), then Sz
is a maximal separative homomorphic image of S.

Corollary 3. If S is a quasicommutative semigroup (i.e. for any a, b € S, we have
ab = b"a for a positive integer r), then S/n is a maximal separative homomorphic
image of S.
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