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A SIMPLE PROOF OF THE MINIMAX-THEOREM
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As it is well-known (see e.g. the references [1], ..., [5]) the Minimax-Theorem can
be verified by using the Kakutani-fixed-point-Theorem or by applying the duality
theory of convex optimization. This paper presents a simpler proof based in the main
part on induction and on the continuity of the solutions of some parametric optimiza-
tion problems. Further the Weierstrass Theorem related to the minimum of a con-
tinuous function is applied.

Theorem. Let A and B be convex, compact and non-empty subsets of the Euclidean
space E, and let f : A x B — R be a contiuous function which is convex on A for
each fixed b in B and concave on B for each fixed a in A. Then the function f has
at least one saddle point, i.e. a point (a, b) in A x B satisfying

(1) f(a,y) = f(a, b) < f(x, b)
for all x in A and y in B.

Proof. At first let us additionally assume that the function f is strongly convex-
concave. Then we find that at most one saddle point exists and the functions a(f),
b(t) and x(r) defined below will be single-valued.

Obviously, the Theorem holds if the sum

d =dim 4 + dim B
is equal to zero. Now we consider the case d = k and suppose the Theorem to be

true for d < k. One of the sets 4 and B, say A4, then contains more than one point
and there is an element c in E, such that A is not included in any affine half-space

C, = {x]er,,, (c,x) =1} (teR).
Setting
A, =AnC, and T= {t/A, * 0}

we observe that T'is a closed interval [, *] and that

dim 4, < dim 4
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for all 1 in T. By applying the theorem to A4, and B there is exactly one point (a(t), b(t))
in A, x B satisfying

(D S(a(1), y) = f(a(2), b(1)) = f(x, b(1))

for all x € A,, y € B. Further, the points a(t) and b(t) continuously depend on ¢
(see the remark) and this is also true for the points x(f) which minimize the function
f(. b(1)) on A.

If the inequality

©) J(a(2), b(1)) = /(x(1), b(1))
holds for some ¢ in T then the point (a(t), b(t)) fulfils (1) and the proof (under our
additional assumption) is complete. In the other case, however, one concludes
from (1),

x(t)e ANA, and (¢, x(t)) ¢

for all ¢ in T. For the continuous function

h(t) =t — (c, x(t))
we thus obtain h(t,) < 0 and h(t*) > 0, and consequently a point t, in T exists such
that h(z,) = 0. That means x(t,) € 4,, and leads to a contradiction.
Hence the inequality (2) holds for some ¢ in Tand the Theorem is true for strongly
convex-concave f.
In order to complete the proof for the full Theorem we introduce (for & > 0) the
strongly convex-concave function

flx y) = S y) + elx|* = el

where the Euclidean norm is taken. Since for each ¢ > 0 a saddle point (a,, b,)
exists with respect to f, we find a saddle point for f as a cluster point of any sequence

{(az )] emo-

Remark. The continuity of the functions a(z), b(t) and x(t) considered above
as well as the fact that any cluster point of the sequence {(a,, b;)}.- fulfils (1) follows
from well-known stability results for parametric optimization problems. For com-
pleteness and convenience we add the following Lemma whose proof also shows that
the continuity-properties can be verified without great investigations.

Lemma. Let A, B and f as in the Theorem, let g : A X B — R be continuous and
¢, d in E, be arbitrary points. For t € R we form
A, = {x[xeA, (e.x)=1t}, B,={y|yeB, (dy) =1}

and for e R we define F(x,y) = f(x,y) + ¢.9(x, y). Then, the set M of all
points (a, b, & 1) such that (a, b) is a saddle point of F, with respect to A, x B,
is closed in Ezp+ -
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Proof. Since A and B are compact it sufficies to show that for any (a, b, ¢, f) in
(4, x B, x E;)\M there is a neighbourhood N that does not meet M. Since the

saddle point condition is not satisfied there 1s an x € A4, (or a corresponding point
y € B,) such that

F,(x, b) < F(a, b).

By the continuity-assumptions there exists a 6 > 0 such that if max {le’ - a|,
[x = x|, |a' = a], |b" — b|} <& we obtain

(3) F.(x',b') < F.(a', b').

Now we choose, if they exist, points x* and x~ in 4 with

(c, x+) >t, (c,x’) <t

and, if one does not exist, we put the corresponding point x* or x~ equal to x.
For sufficiently small |t — | then either A, = 0 holds or one of the line segments
[x,x*], [x, x7] meets 4, whete the common point x,. converges to x as t' — t.

Hence, we have either 4,, = @ or
Ap n{x | |x = x| <o} +0
if lt’ — t| is small enough, say less than §'.
Thus we obtain from (3) that M does not meet the set

N ={(a, b, ¢, 1) l It' - tl < ¢, max {|a’ — a|, ||b" — b, Ia’ - el} < 3}

and the Lemma is verified.
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