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FACTORIZATIONS OF MATRICES AND FUNCTIONS
OF TWO VARIABLES
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(Received November 15, 1980)

In this paper we shall give a characterization of functions and matrices that can
be decomposed in the forms

s, ) = SAE 0. and () = (X b0 eli)-

In the case when # is sufficiently many times differentiable we get a characteriza-
tion and a construction of f, and g, from h in terms of partial and ordinary
differential equations.

Without regularity conditions on the function h and for matrices, we give a charac-
terization and even explicit formulas for evaluating f, gy, and b,(i), ¢,(j). These
formulas enable us to perform efficient computer computations, because the values
of fi(x), gi(t), as well as b,(i), c(j) can be evaluated parallelly for different (x, 1),
and (i, j) by pointwise multiplications only.

Moreover, if & is continuous or of a class C? on I x J, then the same kind of regu-
larity holds for f, on I and g, on J for all k = 1, ..., n. This means that we also have
explicit formulas for solutions of the partial and ordinary differential equations
mentioned above.

We write
ih h,  hy ... hum ]
D, (h) := ‘[\ hy hy  heye o hyggm |
[ Bom hamy Bamge oo gmpm E

for a function h of x and ¢ with continuous 8'*/h[d'x 0/t = hon I x J < R?,
i,j < m. (Here I and J are unions of intervals.)

Theorem 1. If a function h :I x J — R, having continuous derivatives hi; for
i, j < n, can be written in the form

(1) h(x, 1) =k=§1fk(x) o) on IxJ,
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then

) : det D,(h)=0 on Ix J.

If, moreover, fi € C'(1), gy € C'(J) and

(2, det (fP(x)) £ 0 forall xel and det(g(1)) =0 forall telJ,
then also

(2,) det D,_y(h) 0 forall (x,1)el x J

holds.

If h satisfies (2) and (2,) then there exist f e C'(I) and g, € C"(J), k =1,....n
such that (1) and (2,) hold (and thus f, and g, are linearly independent). All
decompositions of h of the form

1) = ¥ 7x) 1)
k=1
are exactly those for which

(Fio oo f) = (f1s oo fu) - C*, and  (Gyy -0 Gy) = (915 --0 9,) - €71,

where C is an arbitrary n by n nonsingular constant matrix, CT and C™' being
its transpose and inverse, respectively.

Remark 1. The functions f, and g, in (1) can be constructed from an / satisfying
(2) and (2,) as solutions of two ordinary linear differential equations with coef-
ficients evaluated from h (see (4,) below for f; and its tianspose anologue for gy).
For constructing f, and g, from h satisfying (2) and (2,), see also Theorem 3 and
Remark 5 below.

Proof of Theorem 1. If i is of the form (1), then h(x, 1,), h,(x, to), ... hu(x. 15)
are n + 1 functions, each of them is a linear combination with constant coefficients
of n functions fi, ..., f,, so h, h,, ..., h,. are linearly dependent. Hence their Wronski
determinant of order n + 1 is zero, i.e. det D,(h) = 0. We also have

(3) IIkagk S fugh kag(n 1)
D,_(h) = kagk Shge . gt )
/SRR W el ol
ifl /2 e \1 s,gl g, ... g(1n~1)§E
_ 'fxl /2 R J‘ 192 gy ... g(zn—x)“
P }\ N |[ .
if{"—l) fén_l) (n l)[‘ ’ign g,, gr(."—l) i

hence (2,) holds because of (2,).
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If h satisfies (2) and (2,), then there exist A; = A(x, t),i =0, ..., n — 1, such that
(4) hw = Agh + Ajh, + ... + Ay (Bt
By = Aohy + Ajhye + oo + Ay (hyn-1y

Bpgn = Aghgn + Aghyn + oo+ Ay yhpnm1n

holds. These A, are differentiable with respect to x, because the system of the first n
equations of (4) has a (unique) system of solutions Ay, ..., 4,_; which are quotients
of polynomials in hyi;, i < n — 1, j < n. By differentiating (4,) with respect to x
and subtracting (4,) we get

My, oA o,

hy + ... +
o0x 0x ox

h,n—l =0.

Similarly (4,) and (4;) give

4, h, + 4, ey + oo + 0y
0x ox

]1xtn~l =0

and analogously up to

0A 0A 0A, _
-0 hxn—l -} k' hxn—lt + ... + not hln-*ltn—l =0.
0x 0x 0x

Since det D,_,(h) * 0, all d4,/0x = 0. Hence A, are functions of ¢ only.
Thus h satisfies (4,) for all x, € I and it can be written as

(5) h(xO’ t) =k§_“xfk(xo) gk(’) >

where g, are independent solutions of (4,); hence also g, e C"(J) and det (g{”) % 0
on J, cf. (2;). Any other set g, of independent solutions of (4,) satisfies

(6) G1> -5 90) = (91, -, 9,) C1

with a nonsingular constant n by n matrix C.

Now, from (5) we have f, € C'(I) and due to (3), where det D,_,(h) # 0, the first
part of (2,) holds too and f, are independent (since they also satisfy a linear
differential equation). Moreover, after the g, were chosen, the f; are uniquely
determined for a given h in order that (3) be satisfied. That also gives (fy, ..., f) =
= (f1..... f,) - CT, if the g, are chosen as in (6). Q.E.D.

Theorem 2. A matrix H = (H;;), i = 1,...,r;j = 1,..., s, can be written in the
form

) (1) = (£ F) Gi0)
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with n independent vectors Fi(i), ..., F,(i), and n independent vectors G,(j), ...
-oes G(j), if and only if

rank H =n, n < min(r,s).
If this assumption is satisfied, then all decompositions of H in the form
() = (X Fi() G))
are exactly those for which
F=F.C, G=C"'.G,

C being a nonsingular real n by n matrix,

F = (Fy) = (Fi)), F=(Fy):=(F(),

G = (Gy):=(G())), G =(Gy):=(G))-

Remark 2. If the linear independence of F; and G, is not supposed, then rank H <
< n < min (r, s).

Remark 3. If the assumption of Theorem 2 is satisfied, then all the decompositions
(7) can be constructed from H by using (8) below.

Proof of Theorem 2. 1° If (7) is satisfied, i.e., H = F. G, then rank F < n,
n<r rank G < n, n <s, hence rank H < n, n < min (r, s), cf. Remark 2. If F,
and G, are linearly independent, then rank F = n, rank G = n, and rank H = n.

2° Let rank H = n. Then H can be reindexed in the foim

H* H*.M |
P

H=,{ H* P.H*. M|

where H* is a nonsingular n by n matrix, M and P are suitable n by (s — n) and
(r — n) by n matrices, respectively.

Choose any nonsingular n by n matrix F* and put G* := F*~!. H*. Evidently
H* = F*.G* and any such relation for a given H* can be established exactly by
taking F*. Cand C~'. G* instead of F* and G*, respectively, for any nonsingular n

by n matrix C. Then we can write
®) _ |
H=lp. F¥|

K |G*, G*. M|,

or

F* |

p s Gi=l6% 6% M|,

H=F.G for F:=H
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All factorizations of H into F . G are exactly those where

F*.C
P.F*.C

f-|
[

1=F.“c, and G=|C'.G* C'.G*.M|=C".G,

Q.E.D.

Now we shall apply Theorem 2 to get a characterization of functions h satisfying
(1) without requiring the differentiability of h.

According to [1, Sec. 4.2.5], n functions ¢, : S - R, (S is a subset of R, S need
not be an interval; k = 1, ... n) are linearly independent on S < R, if there exist n
points x;, k = 1, ..., n, in S such that the matrix

n !|¢x(x1)’ cees ¢n(x1)1
W[d’k, Xk]k=1 = !¢1(xn)’ - ¢"(x")i

is regular.

Theorem 3. Let I and J be arbitrary nonempty sets.
A function h : 1 x J — R can be written in the form (1) with linearly independent
fi and g, if and only if the maximum of the rank of the matrices

hix;,t.)), i=1,..,r; j=1,...,s,
J

is n when x;€l, t;e J, r and s being arbitrary integers.
If, in addition, I and J are intervals, he C'(I x J), d 2 0, then f, € C*(I) and
g€ CU(J) forall k =1,...,n.

Remark 4. The explicit formula for evaluating f; and g, from a given h will be given

in (10) below. From the point of view of computation it is important that, when

constant matrices H* and G* are chosen, then the values of f, at x and g, at t depend

“only on the values of / at (x;, ) and at (x, ), k = 1, ..., n, respectively. Hence the f,

and g, can be evaluated separately and at the same time for different arguments,
see (10).

Remark 5. Note that the formula (10) below also gives in a constructive way the
functions f; and g, by which the solutions & of the nonlinear partial differential
equation det D,(h) = 0 can be decomposed in the sense of (1) without the necessity
of solving linear differential equations as mentioned in Remark 1.

Proof of Theorem 3. 1° If h(x, 1) = Y. fi(x) gi(t) on I x J, then (7) i satisfied
k=1

for

Hij:= h(x;, t;), F(i):= filxi), G{j):= gut;)
and any r-tuple of x; € I and s-tuple of ¢; € J. In view of Remark 2, rank (Hu) < n.
Since f, and g, are linearly independent, there exist an n-tuple of x; € I and an n-tuple
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of t; € J such that both W[f,, x,] and W[g;, 1] are nonsingular. For these n-tuples,
(Hi;) = W[/ x] - W[ g 1], hence the rank n is achieved.

2° Let H* := (H};) = (h(x;, t;)), i = 1,...,n:j = 1, ..., n, be a nonsingular n by n
matrix. Consider an (n + 1) by (n + 1) matrix

(s 14)s -oe B(xys 1), h(xys 1)
L h(xgs 11), e B(3gs 1), h(x, t) "H* .

J
h(x,, 1), - h(x,, 1), h(x, t)
VR 1) b ), (k1) )

where a is an n by 1 vector, and b is a 1 by n vector. The rank of the matrix is n.
Choose any nonsingular n by n matrix C. Then

©) 1

>

H* . C|

EIH* all,
b.c |

1 1 x—1 |
Jc ¢t H* ! La| = .}b ‘|

see also (8). Define
(f1(x)s s ) := (h(x, 1), ..., h(x,1,)) . C = b .C,
(10) g:(1) ‘ ‘h(xu 1)
o= CctH Y .. [l=C'.H*'.a
o) G )
xel, teJ. Due to (9),

c=b.C.C"'.H* ' . a=b.H*'. 4
and we have

B 1) = Y A(0) 0u()

The matrices C and H* in (10) are constant, hence, if he C{(I x J), d 2 0, [ and J
are intervals, then
x> h(x, t)e CY(I) and t+— h(x, t)e C(J), and also f, € C¥I), gie C(J) for all
k=1,...,n Q.ED.

A program for evaluating f, and g, from a given h may be constructed as follows
(dot denotes matrix multiplication):

STEP 1 For a sufficiently large or dense set {(x;, 1;)ii = 1,...,8;j = 1,..., 7},
determine the rank of the matrix H = (h(x;, 1,)) as n, ﬁnd a regular n
by n submatrix H* of H, the corresponding indices forming the sets K
and L (each of the cardinality n).

STEP 2 Choose a regular n by n matrix C.

STEP 3(i) Take the row vector {h(x;, 1,); [ € L} from H* and determine the vector
(f1(xi)s o fulxi) := {h(x;, 1,); e L} . Cfori =1,2,...s
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STEP 4(j) Take the column vector {h(xy, t;); k € K} from H* and determine the

g:(1))

vector || ... ||:= é'l CHE {h(x, t;); keK}forj=1,2,...,1

STEP 5

STEP 6

9.(t))

Check the relation

gl(t_)) ”

| = = h(x;, 1;) .
gn(tj)

Fori=1,...sandj = 1, ..., r it should be satisfied, otherwise there is
an error in the computation.

(fl(xi)’ .- "fn(xi)) é

Now, we may enlarge the initial set {(x;, ¢;); i =1, ...,s; j = 1,...,7}
by adding (x;, t;), i > s andfor j > r. Go to STEP 3(i), i > s, and
STEP 4(j), j > r. Then do STEP 5 for i > s, j > r. If all the relations
are satisfied, then the extensions of fi(x;) for i > s and g,(t,) forj > r
form the factorization (1) If there is an error here, we may either accept
the extended f; and g, as approximations of our factorization, or we
may change the initial set of (x;, 7;), or enlarge it by adding points with
i>s,j>r.

Remark 6. STEP 3 and STEP 4 are independent of each other, and also STEP 3(i)
and STEP 3(i') as well as STEP 4(j) and STEP 4(j’) are independent, hence they
can be performed simultaneously.

Remark 7. All arithmetic operations are expressible by pointwise multiplications

only.

I thank Professors J. Aczél and J. Baker for careful reading and valuable remarks
on the final version of the manuscript.
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