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1. INTRODUCTION

Contextual grammars and some of their modifications were introduced by S.
Marcus [13]. Further modifications were defined by other authors [14], [15], [18],
[20], [11]. These variants of contextual grammars were studied in several papers
[16], [19], [10], [21].

In the present paper, we describe the greater part of these grammars in terms of
context-free algebras (cf. [12], [6] p. 299). Since context-free algebras are equivalent
with context-free grammars, we obtain the description of various types of contextual
grammars in terms of context-free and, particularly, lincar grammars. In two cases,
we obtain linear grammars with regulated derivations where this regulation is dif-
ferent from the regulation studied in the literature (cf. [22] Chapter V). In two other
cases, special types of linear grammars are obtained. In this way, the greater part of
the theory of contextual grammars becomes part of the theory of linear grammars.
Procedures transforming contextual grammars into the corresponding linear ones
are descrited in the paper.

This approach requires some complements of the theory of context-free algebras.
Since we try to formulate our theorems in the most general way, these complements
are formulated for partial and heterogeneous algebras (cf. [2], [9]). The investiga-
tions of subalgebras and of so called indexing mappings in heterogeneous algebras
prove to be useful. Two theorems concerning subalgebras generated by sets and by
families of sets are used; the structure of such subalgebras is described in terms of
derivations (cf. [4] p. 9, [5] p. 29, [22] p. 6). As a particular case, we obtain the
equivalence of context-free algebras and context-free grammars (cf. [12], [6] p. 299)
and also the assertion that the system of subalgebras of an algebra is algebraic
(cf. [17, [23]. [3] p- 81).

In what follows, we need some fundamental notions of the theory of formal

*) Some results of this paper were presented in the author’s lectures held in the Institute of
Computer Science PAS in Warsaw and in the Mathematical Institute of the University Iasi
during Summer 1977.
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languages. Especially, V* is the free monoid over a set V. The elements in V* are said
to be strings over V. The binary operation of V* is called catenation; the catenation
of strings x, y in V* is denoted by xy, the catenation of subsets X, Y, of V* is written
as XY. The length of x € V* is denoted by lx[

If Vis a set and L < V*, then Lis said to be a language.

Let U be a set. An ordered pair (1, z) of strings over U is said to be a production
over U. Let R be a set of productions over U. For x, y in U*, we put y = x (R) if
there exist u, v in U* and (¢, z) in R such that y = utv, uzv = x. If x, y are in U*
and (z;)/—, is a sequence of sfrings in U* where p > 0, then (z,)_, is called a y-
derivation of x in R of length p whenever y = z, z, = x, and z;,_, = z; (R) for
i=1.2,..., p. We wiite y =* x (R) if there exists at least one y-derivation of x in R.

An ordered triple G = (V, S, R) where V, S are mutually disjoint sets and R is a set
of productions over ¥V U S is called a generalized grammar. Elements in ¥ are called
terminal symbols and elements in S nonterminal symbols of G. A y-derivation
of x in R is called terminal with respect to G if x € V*. We put L(G, s) = {w; we V*
and s =* w (R)} for every s € S; the language L(G, s) is said to be s-generated by G.
A language is said to be generated by a generalized grammar G = (V, S, R) if it
is s-generated by G for some s in S.

A generalized grammai (¥, S, R) is said to be a grammar if the sets V, S, R are
finite. A grammar (V, S, R) is called context-free if y € S for every (y, x) € R. A con-
text-free grammar (¥, S, R) is said to be linear if either x € V* or x e V*SV* for
every (y, x)eR.

2. PARTIAL ALGEBRAS

Let A4 be a set, a = 0 a nonnegative integer, and f a partial mapping of
A x A x...x Ainto A. This means that there exists a subset D, of A" and fis

e e e

a times
a mapping of D, into 4. Then fis said to be a partial a-ary operation on A; the
number a is called the arity of f. An a-ary operation on A4 is said to be complete
if D, = A

Elements of A are a-tuples formed of elements in 4. We note that there exists
exactly one O-tuple. Thus, a complete nullary operation on A contains exactly one
ordered pair (0, ¢) where 0 is the only O-tuple and c is an element in 4. Hence a com-
plete nullary opzration on A4 defines a fixed element of A or a constant in A4; we
identify complete nullary opzrations on 4 with elements in 4. A noncomplete nullary
operation is the empty set. )

A partial algebra is an ordered pair (4, F) where A is a set and F a family of partial
operations on A. We put F = (f,),.; and denote by a(¢) the arity and by D, the domain
of f,. Partial algebras will be denoted by Gothic types. Hence, a partial algebra 2
can be written as (4, (f,).cr)- A partial algebra is called complete if all its operations
are complete.
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Let A = (A4, (f,).er) be a partial algebra, B a subset of A. The set B is said to be
closed in A if it has the following property. If ¢ € T'is arbitrary, x,, ..., X, are in B,
and (xq, ..., X,) € D,, then f,(xy, ..., X,p) € B. If Bis a closed set in A, then we put,
for every te T, g, = f, n B“"*'. Clearly, (B, (g,).cr) is a partial algebra; it is said
to be a subalgebra of 2. Since g, is completely determined by f, and B, we shall not
distinguish between f, and g¢,. Furthermore, if B is closed, the partial algebra
(B, (9.).er) is completely determined by B. Hence, we shall not distinguish between
closed sets in 2 and subalgebras of 2.

If A = (A, (f,)wer) is a partial algebra, then A is closed in A and the intersection of
a nonempty family of sets closed in 2 is closed in 2. Especially, if B < A is arbitrary,
there exists the least closed set in 2 including B; it is the intersection of the nonempty
family consisting of all closed sets including B. This least closed subset of 2 including
B and, by abuse of language, the corresponding subalgebra will be denoted by[B]m.

We shall characterize the set [B]¥ by means of a generalized grammar.

1. Definition. Let 2 = (4, (f,),r) be a partial algebra, B a subset of 4. We put

Q0=Bu{(),)u{fsteT}, S=4-B,

P={(x/); teT a(t) =0, xe A, x = f,} U{(x, /(X1 s Xarn)); 1€ T, alt) >0,
x€A, (X0 Xon) € Dy X = (315 1y 300}

%(, B) = (Q, S, P).

Clearly, ¢ is an operator assigning a generalized grammar to any partial algebra
A = (A4, (f,)er) and to any subset B of 4. The left side member of a production of
this generalized grammar is a symbol in A, the right side member is a string formed
of elements in A, commas, parentheses, and symbols f,.

2. Proposition. Let U = (A, (f,)r) be a partial algebra, B a subset of A. Then
[B]gI is the set of all elements x in A such that a terminal x-derivation with respect
10 (U, B) exists.

Proof. We put 4(2, B) = (Q, S, P), C = {x; x € 4, x =* w (P) for some w € Q*}.
It is easy to see that B = C and that C is closed in A. This implies that [B]* < C.

Let V(n) denote the following assertion. If x € 4 and a terminal x-derivation of
length <n with respzct to %(%, B) exists, then x € [B]%. By an easy induction, we
prove that ¥(n) holds for any nonnegative integer n. This means that C < [B]*. O

Since algebraic tools are elaborated for partial operations but not for relations,
we master relations by decomposing them into partial operations.

3. Definition. Let 4 be a set, ¢ a binary relation on A. A family of mappings (g,),eT
from A to A is said to be a g-presenting family of partial unary operations if

Ugt=Q-

teT
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It is easy to prove

4. Proposition. Let A be a set, ¢ a binary relation on A, (f,),ET an arbitrary
o-presenting family of partial unary operations, (f)er, @ family of complete
nullary operations on A, B a subset of A. Then the following assertions are equi-
valent.

(i) B is closed in (A, (f,)ierour)-

(i) The following conditions are satisfied.
(a) f.€B forany teT,.
(b) If xe B, (x,y)€q, then ye B. [J

5. Corollary. Let A be a set, ¢ a binary relation on A, (f,),eT an arbitrary 9-
presenting family of partial unary operations, (f,),r, a family of complete nullary
operations on A, B a subset of A. Let D, be the domain of f, for every t € T. Then
the following assertions are equivalent.

(i) B is the least subset of A such that f,e B for every te T, and that x € B,
(x,y)eo imply yeB.

(i) B is the subalgebra of (A, (f,)..r) generated by the set {f,; t To}-

(iti) B is the set of all elements x € A that are of the form x = So(foleo (fi,(x0))
...)) where p Z 0 is an integer, x, = f, for some te Ty, t;e T for 1 < i < p, xp €
€Dy, . and fo, (. (fi,(x0)) -..) € D for1<i<p-1

Proof. The equivalence of (i) and (i) is a consequence of 4, the equivalence of (ii)
and (iii) is a consequence of 2 regarding the fact that the left side member and the

right side member of any production of (%1, B) are two expressions for the same
element in 4. [

3. HETEROGENEOUS ALGEBRAS

Let S be a nonempty set, 4 = (A,),.s an indexed family of sets. Then the set A, is

said to be the s-th component of A. A family A = (4,),. is called finite if | A, is
seS

a finite set. We denote by O the family (0,),_s where O, = 0 for every s € S.

Suppose that 4 = (As)seS5 B = (Bs)ses are indexed families of sets. If B, < A,
for every s € S, then Bis said to be a subfamily of A; we also say that 4 “includes” B.

Let S be a set, K a family of indexed families 4 = (A4,),.s- We put A(s) = A,
for any 4 € K and any s € S and we define the family 4° = (AY),s by putting A] =

= () A(s) for every s e S. By abuse of language, 4° is called the “intersection”™ of
AeK

the family K.
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Let (A,).s be an indexed family of sets. If a is a nonnegative integer, s =
= 5(0)s(1) ... s(a) a string over S of length a + 1, and f a mapping of A, X
X Aygy X ... X Ay into Ay, then fis said to be an operation on (A;).s of arity a
with the scheme s. The arity a = 0 is also admitted; if a = 0, then s = s(0) and
J € Ay, is a fixed element of A, or a constant.

A heterogeneous algebra is an ordered pair A = (4, F) where A = (A is an
indexed family of sets and F = (f,),eT is an indexed family of operations with schemes
on (A),s. For the sake of brevity, a(r) will denote the arity, s(r) = s(0, 7) s(1, 7) ...
... s(a(t), ) the scheme, and D, the domain of f,. Clearly, D, = Ay, X ...

- X Agaey

Let A = ((Ay)sess (f2)ier) be a heterogeneous algebra, Z a set, b a bijection of S
onto Z. Let us put B, = A1, for any z in Z, z(i, t) = b(s(i, t)) for any t € T and
any i, 0 < i < a(t). Then B = ((B.)..z, (f,).er) is @ heterogeneous algebra where
z(t) = z(0, 1) z(1, 1) ... z(a(2), 1) is the scheme of f, for any ¢ T. This algebra B is
obtained from A by renaming the indices; it is said to be equivalent to A. The
operations of B are identical with those of 2; only the schemes and components are
expressed in a different way. Clearly, for any heterogeneous algebra A = ((4,),s
(f+)ier), we may find an equivalent algebra B = ((B.).cz, (f,)er) such that Z n U B, =

zeZ

= (; such a heterogencous algebra is said to be disjoint.

Heterogeneous algebras can be considered as special cases of partial algebras.
Indeed, let ((A,)ses» (/,)er) be a heterogeneous algebra. Then (U A, (f,),er) is a partial
seS

algebra.
Let A = ((Ay)ses> (fi)rer) be a heterogeneous algebra, (B,),s a family of sets

“included” in (A,);es- The family (B,).s is said to be closed in Uif it has the following
two properties.

1°If1e T, a(t) = 0, s(t) = s(0, 1), then f, € By .

2°If teT, a(t) > 0, s(t) = s(0, 1) s(1, 1) ... s(a(1), 1), x; € By, for i=1,2,...
., a(t), then fi(xy, ..., Xu1)) € Byo,0-

Let A = ((Ay)ses> (f1)ier) be a heterogeneous algebra, (B,),.s a closed family of sets
in A. For every te T, the set g, = f, m(BS(O,,) X By X oo X Bs(a,,)),)) is an
operation on (By),s with the scheme s(r). Hence, ((B,).s» (1)) is @ heterogeneous
algebra; it is said to be a subalgebra of 2. Since g, is completely determined by f,
and (B,),.s, we shall not distinguish between f, and g,. Furthermore, if (B,),.s is closed
in 2, the heterogeneous algebra ((B,).s, (9,).r) is completely determined by (Bj)scs-
Hence, we shall not distinguish between closed families in [ and subalgebras of 2.
We shall denote the set of all subalgebras of 2 by Sub 2.

The set Sub U is nonempty, ordered by “inclusion”, and closed with respect
to “intersections” in the above defined sense.

Let A = ((A,)sess (f1)er) be a heterogeneous algebra, B = (B;),s an arbitrary
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subfamily of (A;),s. There exists the least closed family (Cy),.s in 2 “including” B;
it is the “intersection” of the nonempty family consisting of all closed families “in-
cluding” B. The subalgebra ((Cy)ss, (f1)ier) of U is called the subalgebra generated
by the family B. We put C, = [B]Y for every s € S.

In what follows, we shall deal with mappings assigning sets of indices to elements
of heterogeneous algebras. More exactly:

1. Definition. Let 2 = ((A,)scs> (/:)rer) be a heterogeneous algebra. A mapping @

of U 4, into 25 is said to be indexing in A if it has the following properties.
seS

(0) If so €S, xe U 4, and so € ¢(x), then x € A
: seS

(a) If te T, a(t) = 0, s(t) = 5(0, 2), then 5(0, 1) € D(f,).
(b) If teT, a(r) >0, s(t) = s(0, 1) s(1, 1) ... s(a(t), 1), s(i, 1) e @(x;) for some
x;eUdyand i = 1,2,..., a(t), then s(0, 1) € D(f (x4, ..., Xo(1)))-
seS
We denote by Ind U the set of all indexing mappings in 2. If @, ¥ € Ind A and
®(x) = Y(x) for every x e | 4, we put ¢ < V.

seS

2. Definition. Let U = ((4,)scs» (f)er) be a heterogeneous algebra, B = (B,).s
a subfamily of (4,),.s, ¢ a mapping of U A, into 2°. We put (B, ®) € oy if (and only

seS

if), for every x € J 4, and every s, € S, the conditions x € B, so € @(x) are equi-
seS
valent.

3. Proposition. Let A = ((A,).s: (f1)ier) be a heterogeneous algebra, B = (B,),s
a subfamily of (Ay)ss, ® a mapping of U Ay into 25 such that (B, ®) € oy

seS

Then @ € Ind A iff ((B)ses» (f1)er) € Sub A
Proof. Cleaily, (a) is equivalent to 1° and (b) to 2°. [J

By 3, oy is a bijection of Sub A onto Ind 2. Suppose (B, (f,).r) € Sub A,
(C,(f)er) €Sub A, e Ind A, ¥ e Ind A, (B, @) € oy, (C, ¥) € gy.. It is easy to see
that B is “included” in C iff @ < ¥. Thus we have

4. Proposition. If A is a heterogeneous algebra, then oy is an isomorphism of
Sub A onto Ind A. [

We shall characterize the subalgebra generated by a family of sets by means of
a generalized grammar. It is necessary to mention that f,(X;, x,, ..., X)) is not the
only possible way of notation for the result of applying the operation f, to the a(t)-
tuple (X, X,, ..., X,(); for another way of notation, see for example [3] p. 48.
We shall use a little more general way.
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5. Definition. Let % = ((A,).s, (f;).er) be a heterogeneous algebra, W a set disjoint
from S. Let u be a mapping of T'into (J 4, U W* with the following properties:

seS

(1) If 1€ Tand a(r) = 0, then u(t) = f,; we put u(0, 1) = u(r).

(2) If te T and a(f) > 0, then u(r) is a string in W* of length a(r) + 1, u(t) =
= u(0, 1) ... u(a(t), t) where u(i, t)e Wfor 0 < i £ a(t).

(3) Ifte T, t' € T, and f, * f,., then u(t) # u(t).

Then u is said to be a standard mapping of W into Y A, U W*.

seS

To every standard mapping of a heterogeneous algebra 2, we assign a standard
way of notation. For every t€ T and any x; € Ay, With 1 < i < a(1), we write
(0, 1) x, u(l, 1) ... X, u(a(t), t) for fi(xy, ..., Xu(;)) Whenever a(f) > 0.

Clearly, putting u(0, t) = f,( , which may be considered as an indivisible symbol,
u(i, f) = , for 1 < i < a(t), u(a(), t) = ), we obtain our usual way of notation.

We may form composites of the operations f, and apply them to elements
in U A,. For example, if te T, t' € T, x} € Ay for 1 < i < a(t)), x;€ Ay, for

seS

i*2,1=<i=<a(t),and S(O, )= 5(2, t), then ft(xlaft'(x/l’ e x;(t’))’ s Xaqy) € Asco.0-

Since f, are partial operations in |J 4, the composites cannot be formed mechanically
seS

respecting only the arities of the operations; also the schemes must be respected.
This leads us to the definition of terms and their values. Terms are strings of symbols

and their values are elements in |J 4.
seS

6. Definition. Let A = ((A,)scs> (f1)er) be a heterogeneous algebra and u its
standard mapping.

1° If x e J 4,, then x is a term and v(x) = x.
seS
2° If te T, a(t) = 0, then u(0, 1) is a term and v(u(0, 1)) = u(0, 1).
3° If te T, a(t) > 0, and if x, is a term such that v(x;) € Ay, for 1 < i < at),
then u(0, 1) xqu(l, 1) ... x,u(a(), t) is a term and v(u(0, 1) x;u(l, 1) ...
- Xant(a(t), 1)) = u(0, 1) v(x,) u(1, 1) ... v(x,00) u(a(t), 1).
4° There exist no other terms than those defined either by 1° or by 2° or by 3°.
If n is a term, then v(n) is said to be its value; it is an element in |J A, while terms

seS

are formal expressions or strings. For a set N of terms, we put o{N) = {v(n): ne N}.

7. Definition. Let A = ((4,),cs. (f))er) be a disjoint heterogeneous algebra, u its
standard mapping into U 4, U W*, and B = (B,),s a subfamily of (A4,),.s. We put

seS
0 =UB,LuW,

seS

R, = {(s.x); xe B, se S}, Ry = {(5(0,1), u(0,1)); te T, a(t) = 0,
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Ry = {(s(0, 1), u(0, 1) s(1, 1) ... S(a(t), ) u(a(t), t)); te T, a(t) > 0},
R =R, UR,UR,;,
A(2, B) = (0, S, R).

Clearly, #°(, B) is a generalized grammar and L(#'(%, B), s) is a set of strings
for every s € S. We prove that these strings are terms whose values form the set [B]fI

8. Proposition. Let A = ((A,)ss (fi)er) be a disjoint heterogeneous algebra,
B a subfamily of (A,)ss. Then'v{L(# (2, B),s)y = [B]¥ for every se S where v
and 4 (N, B) are constructed by means of the same standard mapping.

Proof. Let ¥(n) denote the following assertion. If se S, x € L(:# (Y, B), s).and
there exists an s-derivation of x of length <n with respect to 1’(91’, B), then v(x)e
e[B].

It is easy to see that V(1) holds.

Let m > 1 be an integer and suppose that V(n) holds for every n, 1 = n < m.
Suppose x € L(#°(, B), s), let (z;)i~, be an s-derivation of x of length m with
respect to (U, B). Then z, = s and there exists ¢ € T'such that s = s(0, 1), (s(0, 1),
u(0, 1) s(L, ) u(1, 1) ... s(a(t), 1) u(a(t), 1)) € Ry, zy = u(0, 1) s(1, 1) u(1, 1)... s(a(z), 1)
u(a(t), 7). Then, for any i =1,2,..., a(t), there exists x; e L(4'(2, B), s(i, 1)) and
an s(i, 1)-derivation of x; of length less than m with respect to (2, B) such that
x = u(0, 1) xu(l, 1) ... X pu(a(?), t). This implies that o(x;)e[B]Y;, for i=
= 1,2,...,a(t). By definition, we obtain v(x) = u(0, 1) v(x,) u(l, 1) ...

) ala), 1 € [BT =[BT

Thus, ¥(m) holds.

By induction, it follows that o(L(# (2, B), s)> < [B] for every s e S.

We now easily prove that (v{L(# (2, B), 5))),s is a closed family in 2 “including”
B. This implies that ([B]Y)s is “included” in (o¢L(A#(2, B), 5))ses-

Thus, o{L(A'(2, B),5)> = [B]fI for every seS. [

9. Corollary. Let N = ((A,)ss: (f,)ier) be a disjoint heterogeneous algebra,
B a subfamily of (Ay)ss» So € S, and x € [B]s.. Then there exists a finite subfamily C
of B such that x e [C]2.

If o(r) = x, there exists an so-derivation of ¢ with respect to (2, B) = (Q, S, R)

where only a finite number of productions of the form (s, r) with s € S and r e U B
seS

has been used. Let C denote the finite set of all these elements r e |J B,. We put
seS

C, = Cn B forevery se S, C = (C,)s Clearly, xe[C]X. O

If ((A)sess (f1)rer) is @ heterogeneous algebra and S has exactly one element s,
then we put A = A, and (4, (f,).r) is a complete algebra. Hence, a complete algebra
is a special case of a partial algebra and of a heterogeneous algebra; closed subsets
of the partial algebra coincide with closed families of the heterogeneous algebra.
Thus, we obtain
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10. Corollary. Let A = (A, (f)).r) be a complete algebra, B < A. If x¢€ [B]%,
then x € [C]* for a finite subset C of B. []

See [1], [23], [3] p- 81.

11. Definition. A heterogencous algebra ((A4,).s, (f;)ier) is said to be of simple
structure if te T, t' e T, t + ', s(t) = s(¢') imply f, * f,.

12. Proposition. For every heterogeneous algebra U = ((Ay)ss, (fi)er) there
exists a heterogeneous algebra of simple structure B = ((A,)ses» (9iex) such that
both have the same closed subfamilies.

Proof. For any te T, '€ T, we put t ~ t' if s(t) = s(t'), f, = f,.. Clearly, ~ is
an equivalence on T. Let K < T be a set such that K n C has exactly one element
for every Ce Tj~. We put g, = fi, z(k) = s(k) for every k e K where z(k) is the
scheme of g,.

If (C,)ses is closed in 2, it is closed in B. Let, conversely, (Cy),.s be closed in B.
Let 1€ T be arbitrary, s(r) = s(0,1)...s(a(t), 1), x;e Cy;,py for i =1,2,...,a(t).
Suppose keK, k ~ t. Then s(t) = z(k), f, = g, which implies f,(xy, ..., X,)) =
= guX1s s Xa() € Czo.1y = Cy0.0- Hence, (C)es is closed in A [J

4. CONTEXT-FREE ALGEBRAS

1. Definition. A heterogencous algebra A = ((4,),.s, (fi)er) is said to be context
free if the following conditions are satisfied.

(1) The sets S, T are finite.

(2) There exists a finite set V such that A, = V* for any s e S.

(3) There exists a standard mapping u of A into U A, U (V*)* = (V*)* in such
S

a way that for any te€ T, f(X{, ..., X)) = (0, 1) xqu(1, 1) ... x,yu(a(t), 1) where
the expression u(0, 1) x,u(1, 1) ... x,yu(a(t), 1) means the catenation of strings
u(0, 1), x5, u(1, 1), ..., Xu0y» u(a(t), ) in the given order. This standard mapping u
will be said to be principal and the symbol u will be reserved for the principal map-
ping of the algebra.

Terms and generalized grammars of a heterogeneous algebra (see 3.6 and 3.7)
are defined by means of an arbitrary standard mapping. By a term and a generalized
grammar of a context-free algebra, we always mean a term and a generalized grammar
defined by means of the principal mapping.

By definition, a term of a context-free algebra is a string in (V*)*. A term that is
a string of length 1 in (V*)* coincides with its value by 3.6 1° and 2°. Using 3° of 3.6
and (3), we prove by an easy induction that the value of an arbitrary term which is
a string z,7, ... z, in (V*)* is obtained by catenation of the elements z, z,, ..., zZ,
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where these elements are strings in V*. Since our way of notation does not distinguish
between a string of strings and the catenation of these strings, we obtain, by 3.8,

2. Proposition. Let A = ((Ay)ses. (f1)er) be a disjoint context-free algebra.
Then [O]Y = L(#(2, O), s) for every se S. [

Regarding 3.7, we see that, for a context-free algebra U = ((Ay)ses> (f1)ier) With
A, = V*, we choose W= V* and, hence, Q = V*. Further, if B = O, we obtain
R; =0 and, hence, R = R, U Ry = {(s(0, 1), u(0, 1) s(1, #) u(L, 1) ... s(a(r), 1) .
.u(a(t), 1)); t € T}. Thus, #'(A, 0) = (V*, S, R). Therefore, if we take Vinstead of V*
in the triple (V'*, S, R), we obtain a context-free grammar. To be precise, we have

3. Definition. Let A = ((A4,)ses» (f1)er) be a disjoint context-free algebra with
A, = V* for every s€ S. Let #'(, 0) = (V*, S, R). We put Z(A) = (V, S, R).

Hence, % is an operator assigning a context-free grammar to any disjoint context-
-free algebia.

As a consequence, we obtain

4. Corollary. Let N = ((A,)ses. (f:)er) be a disjoint context-free algebra. Then
[0]" = L(Z(N), s) for any seS. O

A context-free algebra of simple structure may be always reconstructed from
a context-free grammar as follows from the following

5. Definition. Let G = (V, S, P) be a context-free grammar. We put A4, = V*
for every se S. If t € P, then 1 = (s(0, £), u(0, 1) s(1, ) ... s(a(t), t) u(a(z), 1)) for an
integer a(t) 2 0, s(0,1),s(1,1),...,s(a(t), 1) in S and u(0, 1), u(1,1),..., u(a(r), 1)
in V* For every teP, we put fxy, ..., X,p) = u(0, 1) xqu(l, 1) ... x,u(a(t), 1)
where X, ..., X, are arbitrarily chosen in ¥* and we define the scheme s(t) of f, to
be s(0,1)s(L,1)... s(a(t), 7). Then A = ((4)s, (fi)eep) is a disjoint context-free
algebra of simple structure. We put &(G) = A.

6. Proposition. If G is a context-free grammar, then #(#£(G)) = G. [

7. Corollary. Let G = (V, S, R) be a context-free grammar. Then [O]7© =
= L(G, s) for every se S.

Indeed, by 4 and 6, we have [0]¥® = L(£(#(G)),s) = L(G,s). O

Regarding 4 and 7, we have

8. Corollary ([12], [6] p. 299). A language is generated by a context-free gram-
mar iff it is a component of the least subalgebra of a context-free algebra. []

Disjoint context-free algebras of simple structure may be described in the form of
context-free grammars. There exists one more way of describing them.
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9. Definition. Let A = ((4,),cs, (/,)ier) be a disjoint context-free algebra of simple
structure with 4, = V* for every s € S. We put

N = {u(1); 1e T},

x(u) = {s(1); there exists t € T with u = u(t)} for every u €N,

L={u;ueN, |u| =1}, M ={u; ueN, |u| > 1},

@ =2 L,y = x["M (where f [* P denotes the restriction of the mapping f to
the subset P of its domain),

Hence, a disjoint context-free algebra of simple structure is expressed in the form
of a 6-tuple of sets. This leads us to the following definition.

10. Definition. Let V, S be finite disjoint sets, L a finite subset of V*, M a finite
set of strings of length >1 formed of strings over V*, ¢ a mapping assigning, to
every x € L, a subset of S,/ a mapping assigning, to every string of length n > 1
over V*, a finite set of strings of length n over S. Then the ordered 6-tuple (V, L, M,
S, ¢, y) is called a labelled multicontextual grammar.

We have seen that the operator S assings a labelled multicontextual grammar
to every disjoint context-free algebra of simple structure. We now define an operator
assigning a disjoint context-free algebra of simple structure to every labelled multi-
contextual grammar.

11. Definition. Let H = (V, L,M,S, o, l//) be a labelled multicontextual grammar.
We put
U=LuUM,;any ueU is astring u(0) u(1) ... u(a) over V*,

7 =9V,
T = {(u.s); ueU, sey(u)}.

If t =(u,s)eT, then we put a(t) = [u[ -1 = [SI =1, s(t) = s, u(t) = u,
SFilxgs oo X)) = u(0, 1) xqu(1, 1) ... x,yu(a(t), ) for any X, x,, ..., X, in V*
where u(0, t), u(1, ), ..., u(a(t), 1) are members of the string u(t).

Furthermore, we put A, = V* for any s€ S, #(H) = ((Ay)sess (/1)rer)-

Clearly, % is an operator assigning a disjoint context-free algebra of simple struc-
ture to every labelled multicontextual grammar.

Let A = ((A4,)ess (f1)rer) be a context-free algebra of simple structure with A, = V*
for any se€ S. Then any f, is defined by means of u(t). Thus, te T, ' €T, t + ',
s(t) = s(¢') imply u(t) # u(r'). Therefore, the mapping assigning the ordered pair
(u(1), s(t)) to any t € Tis a bijection. Hence, without loss of generality, we may suppo-
se that Tis a finite set of ordered pairs (u, s) where u is a string over V* and s a string
over S, both of the same length. For any ¢ = (u, s) e T, we have Iul =a(t) +1= Isl,
u(ty = u, s(t) = s, Slxis oo Xaw) = u(0, 1) xqu(l, 1) ... x,u(a(t), 1)  where
X1, s Xy are arbitrary strings over Vand u(0, £) u(1, 1) ... u(a(t), t) = u(?).

Il
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We prove

12. Proposition. Let A be a disjoint context-free algebra of simple structure.
Then %(A#(AN)) = 2A.

Proof. We put A = ((4,)s, (f1)er) Where A, = V* for every s € S. We suppose
that Tis a finite set of ordered pairs (u, s) where u is a string over V*, s is a string
over S, and ]u[ = [s] Hence, for any ¢ = (u, s) e T, we have lul =a(t)+ 1= ]s],
u(t) = u, s(t) = s, f(xq, ..., xag,)) = u(0, 1) xqu(1, 1) ... x,yu(a(t), r) where u(0, 1) ...
...u(a(t), 1) = u(t). Further, we put #(A)= (V,L M,S’, ¢,¥), B(A(N)) =
= ((A%)ses> (9 )er-)- By 9, we have V' =V, 8" = S, N = {u(t); te T} = {u; (u,s) e
eT}, L= {u;(u,s)eT, lul =1},M = {u;(u,s)e T, lul > 1}, x(u) = {s(t); u = u(r)
for some teT} = {s; (u,s)e T}, o(u) = {s; (u,s)e T} for.lu! =1, Y(u) = {s;
(u,s)e T} for |u| > 1. By 11, this implies " = §' = S, A, = V* = A, for every
seS, U=LuM=N={u(t); teT}, y=9puy =y T ={(u,s); uel, se
ey(u)} = {(u,s); ueN, sey(u)} = T. For every (u,s)e T' = T, [ul —-1= |s[ —1
is the arity of g, s(¢) is its scheme and g,xy, ..., X)) = u(0, 1) x,u(L, 1) ...
- Xgt(a(t)) = fi(xy, ..., Xq(,))- Hence, for every te T' = T, we have g, = f, and
they both have the same scheme. Thus, Z(#()) = (A)sess (9)er) = (Asess
(ft)lET) = 0O

A labelled multicontextual grammar has been defined as an ordered 6-tuple of
sets. The language generated by such a grammar is defined as follows.

13. Definition. Let H = (V, L, M, S, ¢, /) be a labelled multicontextual grammar,
@ the smallest indexing mapping on %(H). Then, for every se S, the language
s-generated by H is defined to be {x; x € V'*, se &(x)} and is denoted by L(H, s).
A language is said to be generated by H if it is s-generated by H for some s € S.

‘By 3.2 and 3.4, we obtain

14. Proposition. Let H = (V, L, M, S, @, ) be a labelled multicontextual gram-
mar. Then, for any se S, we have L(H, s) = [0]?"". O

By 12 and 14, we have

15. Corollary. Let A = ((4,)ws. (f)er) be a disjoint context-free algebra of
simple structure, s € S. Then [0]* = L(#/(Y),s). O

Regarding 14, 15, and 3.12, we obtain

16. Corollary. A language is generated by a labelled multicontextual grammar
iff it is a component of the least subalgebra of a context-free algebra. []
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5. CONTEXTUAL GRAMMARS

1. Definition. A labelled multicontextual grammar H = (V, L,M,S, o, |//) is
called a labelled contextual grammar if ]u[ = 2 for every u € M.

Let H = (V, L, M, S, ¢, /) be a labelled contextual grammar. By 4.11, Z(H) =
= ((Ay)ses> (f:)ier) has the property that ¢ € T implies either a(t) = 0, u(t) = u(0, t),
s(t) = 5(0,1), fi=u(0,1) or a(r)=1, u(t) =u(0,7)u(l,1), s(t)=s(0,1)s(l,1)
fi(x) = u(0, t) xu(1, t) for any xeV*. By 4.3, we obtain L(B(H)) = (V, S, R)
where R = {(5(0, 1), u(0, 1)); 1€ T, a(t) = 0} L {(s(0, 1), u(0, 1) s(1, ) u(1, 1)); teT,
a(t) = 1}. Thus, £(#(H)) is a linear grammar.

On the other hand, if G = (¥, S, R) is a linear grammar, then, by 4.5, &(G) =
= ((4,)ses> (f:)ier) has the property that a(f) = 0 or a(t) = 1 for any ¢ € T'and, hence,
#(s#(G)) is a labelled contextual grammar by 4.9. Thus

2. Proposition. (i) If H is a labelled contextual grammar, Z(%(H)) is a linear
grammar.
(ii) If G is a linear grammar, #(s£(G)) is a labelled contextual grammar. [

3. Proposition. (i) For any labelled contextual grammar H = (V, L, M, S, ¢, {)
and any s € S, the assertion L(H, s) = L(Z(%(H)), s) holds.

(ii) For any linear grammar G = (V, S, R) and any s € S, the assertion L(G, s) =
= L(#(2(G)), s) holds.

Proof. The first assertion follows by 4.14 and 4.4, the second by 4.7,4.12,4.14. O
By 2, we obtain

4. Corollary. A language is generated by a linear grammar iff it is generated
by a labelled contextual grammar. []

5. Definition. Let H = (V, L, M, S, ¢, {) be a labelled multicontextual grammar
with card S = 1. Then it is said to be a multicontextual grammar. By 1, we know
what a contextual grammar is.

It is easy to see that ¢,y mean no restrictions if card S = 1. Thus, thcy may be
omitted as well as S.

6. Agreement. A multicontextual grammar is denoted by (¥, L, M), a contextual
grammar by (V, L, C).
By 3, we obtain

7. Proposition. (i) A language is generated by a multicontextual grammar iff
it is generated by a context-free grammar having exactly one nonterminal symbol.

(ii) A language is generated by a contextual grammar iff it is generated by
a linear grammar having exactly one nonterminal symbol. [
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Hence, we have characterized the class of all context-free and of all linear lan-
guages L with the property Var L = 1 where Var is a complexity measure studied by
several authors (sce, for example, [7], [8], [17]).

8. Definition. A contextual grammar with choice is an ordered quadruple (V, L,
C, ¢) where (¥, L, C) is a contextual grammar and ¢ is a mapping of V* into 2°.
The language L(V, L, C, ¢) generated by (V, L, C, ¢) is defined to be the smallest
set K € V* such that

!/

1° L€ K;
2° xe K, (u, v) € ¢(x) imply uxv e K.

9. Definition. A linear grammar with choice is an ordered quadruple (V 1;} P, ¢)
where (V, {s}, P) is a linear grammar with exactly one nonterminal s and ¢ is a map-
ping of V* into 2¢, C = {(u, v); (s, usv) € P}.

Any s-derivation of w € V* with respect to (V, {s}, P) is of the form (z;)?-, where
p20,s=zpz,=wz;=u;...usv;...0, for 1 <i < p—1 with (s, u;sv;)€e P,
Zp = Up e Uy WU, ..o 0 With (s, w,) e P. Putting u; ... u, W,y ... 0; =
=w; for i=1,2,...,p—1, we obtain uw;, v;=w; for i=1.2....,p—1,
s=%w,fori=1,2,...,p.

An s-derivation (z;)l-, with respect to (¥, {s}, P) is said to be q-restricted if
(unv;)e @(wiyy) for i=1,2,...,p — 1. We define the language L(V, {s}, P, ¢)
generated by (V, {s}, P, ¢) to be the set {w;we V* and there exists at least one
@-restricted s-derivation of w with respect to (V, {s}, P)}.

Hence, a linear grammar with choice (¥, {s}, P, ¢) may be considered as a linear
grammar (V, {s}, P) whose derivations are regulated by means of the mapping ¢.
This regulation is different from that described in [22] Chapter V because the pro-
duction chosen at the i th step of the derivation depends — roughly speaking —
on the subsequent steps of the derivation.

We prove

10. Proposition. A language is generated by a contextual grammar with choice
iff it is generated by a linear grammar with choice.

Proof.Let H = (V, L, C, qo) be a contextual grammar with choice. We put T, = L,
fo=1 for every teT, o= {(x,y); xeV* y=uxv, (u,v)eq(x)}. For every
(u,v)e C, we put Dy, = {x; (u,v)€ @(x)}, fiu(x) = uxv for every x e Dy,
Clearly, Dy, = D, Where Dy is the domain of f,,, and () wmec 1
a o-presenting family of partial unary operations. By 8, the language B generated
by H is defined by means of the condition (i) of 2.5 which is equivalent with (iii)
of 2.5. Clearly, for any (u, v)e C and any x € V'*, the condition x € Dy is equi-
valent with (u, v) € ¢(x). Thus, (iii) of 2.5 is equivalent with the following condition.
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(iv) B is the set of all x € V* that are of the form x = u; ... u,x,v, ... v; where
xo€L, p=0, (u,v)eC for 1 <i=<p, (u,v,) e px), (unv;)eoluy, ...
e UXGU, v,.q) for LSi<p—1.

Cleartly, (iv) is equivalent to the following condition.

(v) B is the set of all x € V* having a ¢-restricted s-derivation with respect to
(V. {s}, P) where P = {(s,w); weL}u {(s,usv); (u,v)eC}. Clearly, the cor-
respondence of the class of all contextual grammars with choice to the class of all
linear grammars with choice we have constructed is a bijection. This implies the

assertion of 10. [

11. Definition (sce [14]). Let (¥, L, C, ¢) be a contextual grammar with choice,
Y a mapping of V* into 2 such that y(x) < ¢(x) for any x e V*, L(V, L, C, ¢)
the language generated by (¥, L, C, ¢). Then the ordered quintuple (V, L, C, ¢, ¥)
is said to be a contextual grammar with double choice. The language L(V, L, C, o, \p)
generated by (V, L, C, ¢, ¥) is defined to be {uxv; xe L(V, L, C, ¢), (u, v) € Y(x)}.

12. Definition. Let (V, {s}, P, (p) be a linear grammar with choice, iy a mapping
of V* into 2€ such that y(x) < ¢(x) for any x e V*, L(V, {s}, P, ¢) the language
generated by (V, {s}, P, ¢). Then the ordered quintuple (¥, {s}, P, @, {) is said to be
a linear grammar with double choice. The language L(V, {s}, P, ¢, {) generated
by (V, {s}, P, ¢, ¥) is defined to be {uxv; x e L(V, {s}, P, ¢), (u, v) € Y(x)}.

Hence, a linear grammar with double choice (V, {s}, P, ¢, ) may be considered
as a linear grammar (V, {s},P) whose derivations are regulated by means of the
mappings ¢, ¥, i.e., in a way different from the regulations described in [22] Chap-
ter V.

It is easy to prove (see [18])

13. Proposition. Any language over a finite vocabulary may be generated by
a contextual grammar with double choice and by a linear grammar with double
choice. [

We have dealt with contextual grammars with choice and with double choice that
are equivalent to linear grammars with choice and with double choice, respectively,
i.e., to linear grammars with restricted derivations. The restriction of derivations
increases the generative capacity of linear grammars; for linear grammars with choice,
this follows from [15] 2.12, for linear grammars with double choice from 13.

In the literature there are two other types of contextual grammars that are equi-
valent to linear grammars of spzcial kind: regular and programmed contextual
grammars.

14. Definition (see [15]). Let (V, L, C, ¢) be a contextual grammar with choice

such that ¢(x) = @(»), (u,v)e ¢(x) imply @(uxv) = @(uyv). Then (V. L, C, ¢) is
called regular.
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15. Definition. Let (V, L,C, <p) be a regular contextual grammar. We put

S = {plx): xe V¥,

A, = V* for any se S,

T, =L,

a(t) =0, f, =1, s(0, 1) = ¢(r) for any te Ty,

T, = {(s, (u, v)); se S, (u,v)es}.

If t = (s, (u,v))e Ty, we put a(t) =1, f(w) = uwv for any we V*, s(1,1) = s,
s(0, 1) = @(uxv) where x is an arbitrary string with ¢(x) = s.

Further, we set

T=Ty,vu Ty,

AV, L. C, ) = (A)ses> (fo)eer)-

Then the heterogencous algebra #(V, L, C, ¢) (which need not be disjoint) is
called regular.

Since ¢(x) = C for any x € V* and since C is finite, S is finite as well. This implies
that T, is also finite. Hence

|

16. Proposition. If (V, L, C, ¢) is a regular contextual grammar, then Z(V, L,
C, (p) is a context-free algebra. [

17. Proposition. Let R = (V, L, C, ¢) be a regular contextual grammar, Z(R) =
= ((Ay)sess (f\)ier)- Then L(R) = Us [0]7™.

Proof. Let U be a disjoint heterogeneous algebra equivalent with 2(R). For the
sake of simplicity, we denote object of 2 by the same symbols as corresponding
objects of #(R).

We put Z(A) = (V, S, P). By 4.3 and 15, we have P = {(s(0, ), u(0, 1)); t € T,} L
U {(s(0, 1), u(0,6) s(1, 1) u(L, 1)); te T,} = {(@(x), x); x € L} U {(p(uxv), u ¢(x) v);
x e V¥, (u,v) € o(x)}.

Then, for an arbitrary x € V*, the following assertions are equivalent.

(o) xe L.

(B) (¢(x), x) € P.

Let x, x’, u, v be in V*, x’ = uxv. Then the following assertions are equivalent.

(v) (u, v) € ().

(8) (¢(x"), u @(x) v) € P.

Let p = 0 be an integer, xo, X;, ..., X, strings in V*. By the above equivalence, it
follows that the following assertions (&), (1) are equivalent.

(¢) xo € L and there exist (u;, v;)e V* x V* such that x;,; = uxw, (u;v;)€e
eg(x;)fori=0,1,...,p — L.

(M) (¢(xo)s xo) € P and there exist (u;,v;)e V* x V* such that x;,; = ux;v;,
(¢(xi+1)s u; @(x;)v;)ePfori=0,1,....,p — 1.

Clearly, (¢) means that x, € L(V, L, C, ¢) and (n) means that there exists a ¢(x,)-
derivation of x, in P, ie., x,e [0]5{) by 44. O

@(xp)
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18. Definition. Let R = (V, L, C, ¢) be a regular contextual grammar, 2 a disjoint
heterogeneous. algebra equivalent to #(R). Then the linear grammar Z() is said
to te regular.

19. Corollary. Let R = (V, L, C, ¢) be a regular contextual grammar, N a dis-
joint heterogeneous algebra equivalent to #(R), £(A) = (V, S, P). Then L(R) =
= U L(Z(Y), s).

seS

Proof. This is a consequence of 17 and 4.4. []

Hence, we have proved that a language is generated by a regular contextual gram-
mar iff it is constructed by means of a regular linear grammar in the sense of 19.

20. Definition (see [18]). Let (¥, L, C) be a contextual grammar, ¢ a mapping
of L u Cinto 2€. Then the ordered quadruple (V; L, C, @) is said to be a programmed
contextual grammar. We define the language L(V, L, C, ¢) generated by (V, L, C, ¢)
to be the set {uu, ;...u;xvy...0, 40,5 p 20, xeL, (ug,v;)eo(x), (u;v;)e
e@(u;_y,v;—y) for i =2,..., p}.

21. Definition. Let (V, L, C, ¢) be a programmed contextual grammar. We put

S=LuC(,
T=Lu{(x,(u,v); xeL, (u,v) € o(x)} U {((uy, vy), (u, v)); (uy,0,)eC,

(u, v) € ¢(uy, vy)}-
For every te L, we put a(t) =0, f, = t, s(0,7) = t. For every xe L and every
(u, v) € @(x), we put t = (x, (u, v)), a(t) = 1, f(w) = uwo where w € V'* is arbitrary,
s(0, 1) = (u, v), s(1, 1) = x.

For every (uy,v,)e C and every (u,v)€ o(uy, vy), we put t = ((uy, v;), (u,v)),
a(t) = 1, f(w) = uwv where we V* is arbitrary, s(0, 1) = (u, v), s(1, 1) = (u. vy),
A, = V* for any se S,

Q(V, L, C, 90) = ((As)seS’ (fr)teT)'

Then the heterogencous algebra 2(V, L, C, (p) (which need not be disjoint) is
called a programmed heterogeneous algebra.

Since the sets L, C are finite, the sets S, T are finite as well. This implies

22. Proposition. If (V,L,C, ¢) is a programmed contextual grammar, then
2V, L, C, @) is a context-free algebra. [

23. Proposition. Let P = (V, L, C, ¢) be a programmed contextual grammar,
P(P) = ((As)ses> (fi)ier)- Then L(P) = US[O]SW) :
Proof. Let we V* be arbitrary. Then we U [O]7® iff w = f, (... (f,(f,,)) ---)

ssS

for some p = 0 where f,, is nullary and f,, is unary for i = 1, 2, ..., p. This means
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that f, e L, f,(w) = u(0, t;) wee(1, 1;), s(0,1,_,) = s(I,¢;) for i =1,2,..., p. This
implies that (u(0, t,), u(1, t;)) € ¢(f,,), (0, 1,), u(1, 1;)) € @(u(0, t;_,), u(1, t;_,)) for
i=12..,p Hence we L(V, L, C, 9).

On the other hand, if w e L(V, L, C, ¢), there exist x € L, (uy, v;) € ¢(x), ..., (u,, v,) €
€ @(u,—y, v,—y) such that w = u,...u;xv,...v,. We put x =f, =1, t; =
= (x, (ug, vy)), t; = ((w;—y, v;_1), (us, v;)) for i =2, ..., p. Then w =
= f’p(' o (fh(ffo)) o ) € L‘)g [O]f(P)' O

24. Definition. Let P = (V,{L, C, ¢) be a programmed contextual grammar,
2 a disjoint heterogeneous algebra equivalent to #(P). Then the linear grammar
£(N) is said to be programmed.

The term “programmed” expresses the fact that the linear grammar has been con-
structed starting with a programmed contextual grammar; our programmed linear
grammars have nothing to do with programmed grammars in the sense of [22]
Chapter V.

25. Corollary. Let P = (V,L,C, ¢) be a programmed contextual grammar,
A a disjoint heterogeneous algebra equivalent to P(P), (W) = (V, S, P). Then

L(P) = U L(Z(%). 1)

Proof. This is a consequence of 23 and 4.4. []

Hence, we have proved that a language is generated by a programmed contextual
grammar iff it is constructed by means of a programmed linear grammar in the
sense of 25.

On the basis of 19, we may construct, to any regular contextual grammar, a linear
grammar that generates the same language; similarly, by 25, the construction of
a linear grammar is described that generates the same language as. a given pro-
grammed contextual grammar. Hence, regular and programmed contextual gram-
mars lzad to some spzcial types of linear grammars, and, hence, to subclasses of the
class of all linear languages.
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