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1. INTRODUCTION

Classical Chebyshev polynomials in one variable of the first and second kind have
many well-known important analytic and numerical properties, see e.g., Szegd [20],
Rivlin [18], but there are also arithmetic and algebraic properties of these poly-
nomials, perhaps not as well-known as the analytic ones, see e.g., Fried [6], Lausch
and Nobauer [12; Chapter 4], Rivlin [18; Chapter 4], Schur [19; pp. 422—453],
Bang [1] and Rankin [16].

Compared with orthogonal polynomials in one variable not very much is known
about orthogonal polynomials in several variables. A short summary of results on the
subject prior to 1953 is contained in [5], an excellent survey of more recent results
is given by Koornwinder [11].

In this paper we consider several generalizations of the onevariable case of
Chebyshev polynomials to polynomials in two variables and also give some of their
arithmetical properties. We shall not consider any analytic properties, such as dif-
ferential operators or orthogonality, for these polynomials. Section 2. gives a brief
summary of some properties of the Chebyshev polynomials in one variable and also
refers to a variation of these polynomials due to Dickson [3], see also Schur [19,
p. 446]. ,

Section 3 continues the investigation of a class of orthogonal polynomials in two
variables introduced by Koornwinder [IO]. Koornwinder defines polynomials
P (z.Z), with z = x + iy, Z = x — iy, as eigenfunctions of a second order dif-
ferential operator. For particular values of the parameters and with a suitable trans-
formation of variables this operator is the Laplace-Beltrami operator (see [11]) on
a compact Riemannian symmetric space. These polynomials provide an important
example of complete orthogonal systems of functions in 2 variables which cannot
be factorized as products of functions in one variable. They are orthogonal on
a region bounded by a closed three-cusped algebraic curve of fourth degree which is
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known as Steiner’s hypocycloid, given by pu(z,z) = —z?z> + 42> + 42° — 182z +
+ 27. The weight function is u(z, Z). The choice of variables as complex conjugates
and the method of orthogonalization in [10] are motivated by the special cases « =
= #+4, the “Chebyshev cases”, since in these cases the functions P, }/*(z, z) and
u(z, 2)2 P)/?, (2, Z) can be expressed as explicit trigonometric polynomials. For
details see §§ 2 and 3 in [IO]. These orthogonal systems are natural generalizations
of the two kinds of Chebyshev polynomials. We consider these polynomials from
the formal algebraic viewpoint as polynomials in the variables x, y (not necessarily
complex conjugates) over an arbitrary field K. The most important examples are of
course the cases K = C or R for analytic properties and K = GF (q), the finite field
of prime power order, for algebraic properties. We denote Chebyshev polynomials
of the first kind in two variables by P,;j,/z(x, y); m + n is the total degree of this
polynomial. In the case n = 0, these polynomials have been studied by Lidl [14],
[15], Kaiser-Lidl [8], by Lidl and Wells [13] and Lidl [15] also in the k-dimensional
case. The main results of section 3 are the proofs of a generating function, a recurrence

relation and an explicit expression for the polynomial P,, ,/%(x, y).

Chebyshev polynomials of the second kind in two variables, denoted by P)/2(x, ),
are studied in Section 4. These polynomials have been introduced by Koornwinder
[10] in the case K = C for complex conjugate variables. The definition given in this
paper is also similar to the definition of a general class of polynomials Z,, ,,, ,.(x.7,z)
in Koornwinder [11, p. 483]. Analytic properties of the polynomials P,/3(x, y)
have been studied by Lidl [15]. Here we construct generating function, recurrence
relation and explicit expressions for P,/2(x, y).

A different class of Chebyshev polynomials, some of them are orthogonal on the
unit disc, is given in Section 5. These polynomials D, }/*(x, y) have been mentioned
to the second author in a private communication [2]. A relation between D,, }/*(x, y)
and P, {/*(x, y) enables us to find properties for D, 1/?(x, ).

Section 5 also contains further generalizations of the types of Chebyshev poly-
nomials mentioned above, the approach is similar to the one-dimensional case due
to Schur. We also mention some other approaches to generalize the Chebyshev
polynomials, namely Hays [7] and Ricci [17]. Some of the results in [17] are also
contained in [15]. Koornwinder [11] considers generalized Jacobi polynomials and
thus also generates the Chebyshev polynomials as special cases. He studies poly-
nomials which are orthogonal on a region bounded by two straightlines1 — x + y =
=0,1+ x 4+ y = 0 and a parabola x* — 4y = 0 touching these lines. These poly-
nomials result from orthogonalisation of the sequence 1, x,y, x%, xy, y%, ....
Koornwinder in [11] includes altogether seven different classes of orthogonal poly-
nomials in two variables, which contain “Chebyshev cases”.

In a forthcoming paper we will consider non-trivial generalizations of Chebyshev
polynomials in k-dimensions (see [21] and [23]).
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2. THE POLYNOMIALS IN ONE VARIABLE

We summarize some of the properties of classical Chebyshev polynomials in one
variable and present the polynomials in a form which is suitable for generalizations
to two dimensions. The polynomial T,(x) over C of degree n defined by

(2.1) T,(x) = cosnf, x =cos0,

where n is a nonnegative integer, is called the Chebyshev polynomial of degree n
of the first kind. The polynomial U,(x) over C of degree n defined by

(2.2) U,(x) = (sin(n + 1) 0)/sin 0, x = cos0,

is called the Chebyshev polynomzal of degree n of the second kmd Now we define
polynomials P, "/?(x) and P,/*(x) over a field K:

(2.3) PI'Px)y=u"4+u", x=u+u', nez,
(2.4) P;/Z(x)z(u—u_l)'l(u"“ —u ") x=u+4+ut, nez,

where u is an element of a suitable extension field of K. These polynomials have been
studied in [4], [12, p. 209], [15], [19], they are closely related to the classical
Chebyshev polynomials in the case K = C, n = 0, because

P;'*(2cos 0) = 2T,(cos ) and P,’(2cos 0) = U,(cos 0)
by setting u = ¢'’. Therefore we have
(2:5) P;'%(2x) = 2T,(x) and P)*(2x) = U,(x).

We list a few well-known properties for the Chebyshev polynomials in the form (2.3)
and (2.4), see [15]. Generating functions for P, '/*(x), and P,/?(x), respectively are

i 2 — xz
2.6 3 P"_I/2 x)z" = —
( ) . néo ( ) 1"—xZ+ZZ
o 1
2.7 P (x) "= e
@7) ngo (x) 2 1 —xz+ z2

Recurrence relations for these polynomials are given by

(2:8) Py (x) = x P, *(x) — P;23%(x) for neZ — {—1,0,1},
P21 (x) = x, Pg "7 (x) = 2, Pfl/z(xj =x,

(2.9) P,2(x) =xP)%(x) — Py%(x) for neZ —{-1,0,1},
P2(x) =xPY(x)=1, PI*x)=x.
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Explicit expressions for these polynomials can be obtained from (2.3) and (2.4)
by using Waring’s formula, which gives the connection between the n-th power sums
and the elementary symmetric polynomials, see [13, p. 109]. We have

[n/21 _ ) )
(2.10) Py (x) = Y —- (n ; l) (=)
i=0 1

n—i

» [n/2] n—i . .
(2.11) PIP() = Y, ( ) e
i=0
Generalizations of these polynomials to so called Dickson polynomials will be
described in Section 5. Ordinary differential operators of order 2 for which these
polynomials are eigenfunctions are given in [15].

3. THE POLYNOMIALS P, 1/%(x, »)

In this section we will define the polynomials P, ,/*(x, y) over a field K as general-
izations of the classical Chebyshev polynomials of the first kind. Let u, v, w be ele-
ments in a suitable extension field Lof the field K. (If K = C, then L= C).

Definitien 3.1.
P';’L/Z(x’ ,V) — (um + o™ Wm) (u—n I w—n) _ (um-n N L wm—n) ,

where x =u + v+ w, y = uv + uw + vw and uow = 1 e K.

In the case K = C Koornwinder [10] defines these polynomials for u = e'°,
v=-e¢ ' and w = e'"°*? as polynomials in the complex conjugates z = ¢ +
+e "+ and z =7 + e + &', More generally, in [11] he gives
the equivalent definition

(3.1

( " )(‘1/3)(ny+n2+n3) p-1/2 Uy + u; + ug Uty + Uy + ujlz)

Uyl ny—ny,ny—n3 13 23 |
(uyuus) (uyuyus)

= const. . ujluful,

where the sum is taken over all permutations (iy, iy, i3) of (1,2, 3) and the u; are
elements of L= C. The special case n = 0 in Definition 3.1 gives P, §/*(x, y) =
= 2g,(x, y), where the polynomials g,, are Chebyshev polynomials of the first kind
introduced by Lidl and Wells [13] and studied in [14], [15]. It is shown in [10] that
the polynomials P,,,/*(x, y) over C are eigenfunctions of certain partial differential
operators of orders 2 and 3, and that they are orthogonal on Steiner’s hypocycloid.

The next theorem gives a generating function for the polynomials P,, )/ *(x, y).

From Definition 3.1 follows immediately
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Lemma 3.2. P, }/%(x, y) = 4P, ¢/*(x, y) P2./0(x, y) — $P.20%(x, ») .
Theorem 3.3 (Generating Function)

0 0 N
P 12(x, y) s =
mgo .x;o o (e 3) (1 = xs+ ys* = s°) (1 — yt + xt*> — 1%)

where N = 6 — 4xs + 2ys> — 4yt + 2xt> + (3xy — 3)st + (2y — 2x?) st +
+ (2x — 2y?) 5%t + (xy — 3)s%2

Proof. We know from Eier and Lidl [4, p. 22] that P,, ¢/*(x, y) (which is equal
to 2g,,(x, y) in [4]) has the following generating function

. @ 6 — 4xs + 2ys?
3.2 me/z X, y)s™
( ) mgo ( ) 1 — XS + y52 - S3
and
— 4yt + 2xt?
3.3 P 3 (x, y) ™ for m=>=0.
( ) mz 0( }) 1 —_ yt -+ xtz _ t3 -

Using Lemma 3.2 and (3.2) and (3.3) gives the result. []
If we multiply the equation in Theorem 3.3 by the denominator of the right hand
side and compare coefficients of s™", we obtain the following

Theorem 3.4 (Recurrence Relations)
Pn_l:l 7(x y) VP; 1/2 (xsy)_.me 2n(x y)+Pm 3n(x ))
mu (Y y)—ypmn l(x y)_xP 122(x })+Pm1lz3(x y)

for m > 2 and n > 2 respectively, where Pyy'* = 6, P{s/* = 2x, P{{* = xy — 3,
P72 =02x2 — 4y, P3NP =x%y — 2y —x, P =x%y? — 2y — 2x° +
+ 4xy — 3.

From Definition 3.1 the following Lemma is an immediate consequence.

Lemma 3.5 (i) P, )/ *(x,») = P, 2/ *(y, x)
(i) Ppa?(x.y) = P222(x, »)
If we correct a misprint in the exponent of — 1 in the explicit formula for the poly-

nomials g,,(x, ) in Eier and Lidl [4] and notice that P, {/*(x, y) = 2g,,(x, y), then
we obtain an explicit expression for P,, ¢/*(x, ).

Theorem 3.6 (Explicit Expression)

[m/2] [m/3] 1)\ T . .
)=y 3 D ("7 21) ( “) wn-2imy

i=0 j=o m — i —2j i+j i
for m > 0.
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By Lemma 3.5 (i) and (ii) we find PZ,/3(x, y) = P, ¢*(y, x), so we have an
explicit expression for P, ¢/*(x, ) for arbitrary integer m. This also gives an eplicit
expression for general polynomials P, }/*(x, y) by using Lemma 3.2. The more
complicated k-dimensional case of these polynomials will be considered in a forth-

coming paper.

4. THE POLYNOMIALS P}/%(x, y)

We consider a generalization of the Chebyshev polynomials P,/?(x) of the second
kind over a field K to two dimensions. Let Lbe a suitable extension field of the field K
with elements u, v, w such that uow = 1 € K. Again, if K = C then L= C. We
introduce the following matrices. For m, n 2 0, (m, n) =% (0, 0) let

Um,n — um+2 Um-'rZ wm+2 , U._m,_" — (_1) . u—(m+2) v—(m+2) W"(m+2)
u v w u! vt w!
u -n U -n ‘v -n u" vn M«’"
Also define
Ugo = [u? v* w?\ and Ug,=(-1)/u"? v 2 w?
u w u oyt oyt
1 11 1 1 1

Then clearly det Uy, = detUg,, since uvw = 1. We denote this determinant
by det Uy .

We choose this particular arrangement for the rows of U, , in view of later gener-
alization to the k-dimensional case. The cases m >0, n <0 and m <0, n > 0
are excluded.

Definition 4.1 P,/2(x, y) = (detU,,,)(det Uy o)~", where x =u + v +w, y =
= uv + uw + vw and uvw = 1 e K.

This definition is equivalent to Koornwinder’s definition of polynomials

P2 maoni(x, ¥)in [11, p. 484]:
Py (%, ¥) = (det U) (det Uq )",
for integers n, = n, = ny; = 0, where the matrix U is given by
BRI SR P IE S

+1 +1
na vnz wnz+l

n3 n3 ny

u v w

In the case K = C and for u = ¢'°, v = ¢, w = ¢'(""%? we obtain the spzcial
definition given by Koornwinder [10]. There it is shown that the polynomials
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P)/%(z,Z) in the complex conjugate variables z = e’ + e " + ¢'"7"? and Z are

eigenfunctions of partial differential operators of orders 2 and 3 and are orthogonal
on Steiner’s hypocycloid with respect to the weight function p(z, Z)'’? mentioned in
the introduction. The polynomials PL/3(x, y), denoted by £,(x, y), over a field K,
have been introduced by Lidl [15] as Chebyshev polynomials of the second kind.
Definition 4.1 give‘s a more general class of polynomials of this type. The paper [15]
also contains generating function, recurrence equation and partial differential equa-
tion for P,/3(x, y). More generally, we have

!
Theorem 4.2 (Generating Function).

Z Z PI/Z(X V) S = 1 —st

m=0 n=0 (l——xs-l—ysz—s"’)(l—yt+xt2—t3).

This can be shown by using Definition 4.1 for the polynomials PY/ ,,(x )) in terms
of u,v and w, where uow = 1. We leave out the rather lengthy but elementary
calculations and note that in a forthcoming paper, we will study the k-dimensional
case in more detail. In the case n = 0 we find

et 1
4.1 PY2(x, y) s" = — —
(1) m;() o) 1 — xs + ys? — 3
st 1
4.2 PL2(x, y) " _ for m>0.
(42) mg ol ) —yt 4+ xt* = ¢

Compare with Lidl [15, p. 186].

Lemma 4.3 (i) P,/2(x, y) = P)/o(v. x),
(i) P2 _.(x,v) = Py/3(x, »),
(iif) Py/2(x, v) = Po/o(x, ») P2 o(x, v) — P2y o, y)P n—1y.0(%, ¥)
for m,n > Q.
The proofs are simple, using Theorem 4.2 and the definition of these polynomials.

Equating coefficients of ™" in Theorem 4.2 gives the following recurrence relations,
we omit the variable x, y in writing down the polynomials.

Theorem 4.4 (Recurrence Relation)

PU2 _ xpl2 yP”z + pl/2

m,n m—1,n m—3,n:
1/2 _ 1/2 1/2
Pmn'— Pmn 1 xP 2+Pmn 3

for m > 2 and n > 2 respectively, with
P1/2 -1, P1/2 =x, Pl/l =xy—1, P1/2 = x2 -y,

Pt =xy —y* —x, P =x??—x =yt
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Theorem 4.5 (Explicit Expression)

[m/27 [m/3] . . .
P,:,{S(x. '\) Z Z (—1) ( Pt ] 2]) (I +]> m-2i— 31‘71 for m g 0.

1

Proof.
ZP”O(x y)st=(1 —xs + ys* — 57 Z(’“‘)‘ + ) =
m= p=
< u g j +q+i
- 1) Py igprati
DRApACY (><J>x )

Forp=m — i — 2j,q =i+ j we obtain the given explicit expression. []

Using Lemma 4.3 we have PY7 (x, y) = P,/3(», x), so we are able to calculate
explicit expressions for P2 o(x, y), m > 0, and also for P,/2(x, y) by property (iii)
of Lemma 4.3. We close this section by establishing a simple relationship between
our Chebyshev polynomials of the first and second kind in two variables, which follow
from (4.1).

Lemma 4.6.

[6 P)la(x, ) if m=0,
”2(35 y) = GP;/(Z)(x y) — 4x P2 olx,y) if m=1,
1 Pl/(z)(x )) 4x Pm—l,()(x’ y) + 2.} Pm—Z,O(X" y) lf m g 2 .

5. FURTHER GENERALIZATIONS

Dankovi¢ [2] defines a class of polynomials, in 2 variables over the complex
numbers (see also [5]), by giving a generating function for these polynomials. This
is a Chebyshev type class of polynomials with weight function (I — x* — y?)~'/2

Definition 5.1. The polynomials D,, 1/z(x y) are given by the generating function

(5.1)
T T RN £ G BES L T

m,n

m=0 n=0 1 —2xs — 2pt + 2xyst — (p? — 1)s* — (x> = 1) 12

The form of the generating function is such that the polynomials can be easily gener-
alized to k-dimensional polynomials; this will be done elsewhere. Comparing the

coefficients of s"" in (5.1) we can find a recurrence relation. Note that D, }/*(x, y) =

= Dy (v ).
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Theorem 5.2 (Recurrence Relation)

D,3* =2x D12, + 2y D32 — 2xy D2,y + (v — 1) D17

m—1,n m,n—1 1,n—1 m—2,n
+ (x*=1)D,}% for m>2, n>2

where Dy'? = 1, Dig/? = 2x, Di}'? = 6xy, D;g/* = 4x* + 2y* — 2, D;\'? =
= 16x%y + 6y — 6y, D;,;/* = 16x* + 16y* + 56x2y? — 20x2 — 20y° + 4.

Theorem 5.3 (Explicit Expression)
(/2] /2] ) )
D;j'/Z(x’ y) Z Z am Mom— 2|(y xynv2_](x2 _\1)_}
where
_2pzjz (m+n—r)(p—;—1)'
o (=2yrtitjl(n—2j —r) (n1—21—r)'

with p=m +n —i—j.

Proof. We denote the r.h.s. of (5.1) by N/D and let (0[0s)" =: d'. Then
7 0Y(N|D)|0,0) = m! n! D, /*(x, y). Using Leibniz’s formula we have

(5.2) oy O}(NID) = N(oy ;D™ ') + m o,N(oy~"' /D™ ") +
FnonN@a Dty + M0 sy grpy 4

M) 2‘ D O2N(ar 312D .

We use 02D = 0 and induction on n to obtain

[n/2] e . o .
(5.3) a:DAk = Z ( J)n i k +n—i 1). D—(k+n—-ll(asD)n—21 (GSZD)‘
i= 201 (n = 2i)!
and
(54) 50, D) = K (8, Dy~ (0,0,D)* for k=0.

(k —n)t
Now using (5.3) and (5.4) and Leibniz’s formula we have

m An 1 _[,"/2] nzr e n+k—i—j pmn (n—j+tk—i+1)
(5.5) aroy(p™t) Z Z“ZZ( 1) BID™
i=0 j i
(atD)n—21—m+k(aSD)k—21(5SZD)1 (6,2D)" (asa,D)m‘
where
m!n!(n —j+ k —i)!
270 j (m — k) (k — 2i)!(n — 2j — m + k)!

B =
Substituting (5.5) in (5.2) and evaluating at s = 0 and ¢ = 0 gives the result. []
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We note that we could define polynomials D,/2(x, y) by a generating function
which is similar to (5.1), but where the numerator is just 1. The polynomials P, '/*(x)
and P,"*(x) over a field K, given in (2.3) and (2.4), respectively, can be generallzed
in the following way (see Schur [19, pp. 446 —447]. Let u and v be roots of z* — xz +
+ b = 0 over K then we define

(5.5 Py (x;b) = u" + v",
(5-6) P)*(x; b)

Il

(u—v) '@t =Y, if nez,

where x = u + v and uv = be K. In other words, the polynomials P, '?(x; b)
are power sums of the roots of z> — xz + b = 0. The polynomials (5.5) and (5.6)
are called Dickson polynomials, they have several interesting algebraic and arithmetic
properties, see e.g. [12; pp. 209]. The results of section 2 can alo be obtained for the
Dickson polynomials. As an example we state the generating functions

(5.7) 27X and !

1 — xs + bs? 1 — xs + bs?

for P, '*(x; b) and P,’*(x; b), respectively. The definitions of the polynomials in
sections 3 and 4 can also be given in this more general form. Instead of the condition
uvw = 1 in Definitions 3.1 and 4.1 the condition uvw = b € K is used. Details for the
polynomials in this generalized form will be given for the k-dimensional case in a con-
tinuation of this paper.

We can derive in the next theorem an algebraic property for the polynomials

D,, ¢*(x, y). By comparing the explicit expressions for D,, ¢/*(x, y) and P, "/?(x; b),
see, e.g. [12; p. 209], we obtain

Lemma 5.4.
llz(x’ y) "'1/2(2x; 1- y2) , m> 0,
Dy M(x, y) = Py 22y 1 = x%), n > 0.

Let GF(q) be a finite field with g = 2 elements, then a polynomial f(x) over GF(q)
is called a permutation polynomial, if f(x) = a has exactly one solution in GF(q)
for each a € GF(g). A polynomial f(x, y) over GF(q) is called a permutation poly-
nomial, if f(x, y) = a has exactly ¢ solutions in GF(g)* for each a € GF(q). Permu-
tation polynomials for finite fields have been studied extensively (see, e.g. [12;
Chapter 4] and [14]. One particular result for the Dickson polynomials P, '/?(x; b)
over GF(q) given there is

Lemma 5.5. P, '%(x; b) € GF(q) [x] is a permutation polynomial for GF(q), iff
(n, q* — 1) = 1 for be GF(q).
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Theorem 5.6. D, \/*(x, y) is a permutation polynomial for GF(q), char GF(q) # 2,
iff either n = 0 and (m, q> — 1) =1, 0r m = 0 and (n, ¢* — 1) = 1.

Proof. Let m and n be nonzero.

Case 1: m odd. Then Theorem 5.3 shows that D,;}/*(0, y) = 0 and D, \/*(1,0) =

= 0, thus the number of solutions of D,, \/*(x, y) = 0in GF(g)*is =zq + land D, 172
cannot be a permutation polynomial.

Case 2: nodd, is treated simjlarly.

Case 3: m and n are even. Then D, }/%(x, y) = D, /*(~x, —y) and for a +
+ D, 1/%0,0), D, )*(x,y)=a has an even number of solutions. Therefore
D,/ *(x, y) is not a-permutation polynomial.

Case 4: n =0, (m,q> — 1) % 1. Then D, J*(x,y) =P, "*(2x;1 — y?) by
Lemma 5.4. But P,,",”Z(Zx; 1) is not a permutation polynomial by Lemma 5.5,
therefore P, '/*(2x; 1) % a for some a € GF(q). Since —y = y for y # 0, the equa-
tion ;‘”2(2)« 1 - vz) = a has an even number of solutions, consequently

D, 3 (x. v) is not a permutation polynomial.

Case 5: m = 0, (n, ¢* — 1) = 1 is treated similarly.

Conversely, assume n = 0 and (m,q*> — 1) =1 or m =0 and (n,¢* — 1) = 1,
then P,;”Z(2x I — %) and P;'*(2y; 1 — x?) are permutation polynomials, and
so are D, *(x, y) and Dg,/*(x, p). O

A different type of generalized Chebyshev polynomials was introduced by Hays
[7]. We mention here one of his two-dimensional generalizations. Let T,(x) be as
in (2.1) and replace x by x — (y + y~')/2 in the original generating function

2 0
) 2 S T
S n=1
then two-dimensional Chebyshev polynomials over C are defined by

(58) T(x—(+y 2= Z ONE

where

n 2 1yt (p — m — 1) B K(2x)TH
T, () - 25 0 Ly )

2 m=0 m! k=0 q'

1, Too(x) =

with [ = (n — [r] —2m)[2, K = 1]k! =n— |r| —2m — 2k and H,
=0ifg <0Oand H, = 1if g = 0. The polynomlals U,(x) of (2.2) are gvnerallzed in
a similar way.

We conclude by mentioning an approach by Ricci [17] to define the polynomials
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P,/%(x. y) over C from section 4. The paper [17] also includes the definition of the
polynomials P, ¢/*(x, y) from section 3 and the results given in [15] for these poly-
nomials. Let 4 be a complex 3 x 3 matrix and let J; denote the trace of 4, J, be
the sum of the principal minors of order 2 and J; be the det A, +0. We define

x=JJ3'0, y =057
and a polynomial U,(x, y) by

(5.9) Un(x,9) = x U, y(%, ) = ¥ Upa(x, ¥) + Upy—s(x, »)
with
Uy=0, U =1, U,=x.
Then
Am = JIB U, (x ) A+ ISRy Uy o(x, p) +

+ U, -s(x, y))A + Jy3 Up-a(x, 01,

where 1 is the identity matrix. The polynomials U,,(x, ) are equal to the polynomials
P,/2, o(x, y) as given in Definition 4.1, or equivalent to 2 f,,_,(x, y) in the notation
of [15].
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