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In this note, our goal is to classify a class of abelian p-groups that includes the
totally projective p-groups and the separable p”*"-projective p-groups. As is well
known (see e.g. [5] or [2]), for the totally projective p-groups the Uim invariants yield
a complete system of invariants; and recently, it has been shown [3], [4] that the p=*-
projective p-groups A are fully characterized by their p"-socles A[p"] = {a € A| p"a = 0}
as valuated abelian groups. The p®*"-projective p-gioups A4 can be defined by the
property of containing a p"-bounded (necessarily nice) subgroup P with A/P a direct
sum of cyclic groups, so it is natural to investigate the class of those p-groups 4
that contain a p’-bounded nice subgroup P such that A|P 1s totally projective. We
could establish a structure theorem only on the subclass 4, consisting of those A4 for
which P can be chosen so as to have no elements of infinite height, by showing
that — like the p“*"-projective p-groups — the groups in %, can also be classified
in terms of their p"-socles, if viewed as valuated abelian groups.

Any group A in 9, is an extension of a totally projective p-group p“A by a separable
p®*-projective p-group A[p®A. Hence, in the sense of [6], A is an w-elongation of
a totally projective p-group by a separable p®*"-projective p-group (but not every

such elongation is a member of &,).

1. By a group we shall mean throughout an abelian p-group A where p is a fixed
prime. For unexplained terminology and basic facts we refer to [2] As usual, p’4 is
defined for every ordinal ¢ by setting p”*'4 = p(p°A4) and p?A = () p°Aif ¢ is a limit

c<go

ordinal. We may and shall assume that A4 is reduced, i.e. p°A = 0 for some ordinal .
For a # 0 in A, the height h(a) is ¢ if a e p"A~\p"*'A, whils h(0) = co. Then
p”A is the set of all elements of infinite height in 4; A4 is separable if p°4 = 0.

A subgroup P of A is nice if p°(4|P) = (p"4 + P)|P for every ordinal o, i.e. if
every coset of 4 mod P contains an element of the same height in 4 as the coset
has in 4/P. A subgroup P is necessarily nice if A/P is separable.
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A valuation of A is a function v: A —» I' U {0} (where I stands for the class of
ordinals and clearly, 0 < oo for every o € F) such that

(i) v(a) = oo if and only if a = 0;
(i1) v(ma) = v(a) or >v(a) according as the integer m is or is not prime to p;
(iii) vo(a + b) = min\v(a), v(b)), for all a, b e A.
Two valuated groups are isometric if there is a value-preserving isomorphism
between them.

2. We start our discussion with the following two simple lemmas.

Lemma 1. If A is a p-group and P is a subgroup of A with P n p°A = 0, then P
is nice in A if and only if G = P @ p®A is nice in A.

Suppose P is nice in A4; to show G is nice in A, it suffices to show that 4/G is sepa-
rable. If a + G (a € A)is of infinite height in A/G, then there exists a sequence g, € G
such that h(a + g,) 2 n for every integer n = 1. Write g, = x, + b, with x, &P,
b, € p°A; then h(a + x,) = n, so the coset a + P has infinite height in A4/P. By
hypothesis, some x € P satisfies h(a + x) = @ whence a = —x + (a + x)e P +
+ p®A = G, indeed. Conversely, if G is nice in 4, then because of p”4 < G, A/G has
to be separable. It follows as before that a coset a + P can have height @ in A/P
only if it can be represented by an element of p®A. This completes the proof.

Lemma 2. If P is a p"-bounded nice subgroup of A such that P n p°A = 0 and
AP is totally projective, then

(a) A/(P @ p®A) is a direct sum of cyclics;

(b) A[p°A is a p®*"-projective p-group.

As P is nice in A, we have p°(4/P) = (p°A + P)[P. Hence A/(P + p“A) =
= (A[P)/p“(A[P) satisfies (a), as A/P is totally projective. Therefore (P @ p“A)[p°A
is a p"-bounded subgroup of 4/pA modulo which the group is a direct sum of cyclics,
so (b) follows.

The next result is a useful tool in recognizing the members of the class to be
considered.

Lemma 3. Let A be a p-group and P a p"-bounded subgroup of A such that
P p°A = 0. 1f p°A is totally projective and if A|(P @ p“A) is a direct sum of
cyclic groups, then A/P is a totally projective p-group.

Hypothesis implies that P @ p®A is nice in 4, so by Lemma 1, P is a nice subgroup
of A. Hence p®(4/P) = (P + p“A)[P which is, because of P n p°A = 0, isomorphic
to p“A. Furthermore, (4/P)[p°(4/P) = (A/P)|(P ® p°A)|P = A|(P @ p“A) is
a direct sum of cyclics. It follows that A/P has to be totally projective.

Finally, we shall make use of two technical lemmas.
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Lemma 4. Let A be a p-group, P a p"-bounded subgroup such that P n p°A = 0.
Then the relative invariants of G = P @ p“A can be computed by using A[p"]
only. ’

The o-th relative invariant of G in 4 is the dimension of p° A[p]/((p"*'4 + G) N
N p° A[p]) as a vector space over the prime field of characteristic p; cf. [2]. 1f
o = m is an integer, then p"*'4 + G = p"*'4 4+ P. If p(a + x) = 0 where ae
ep""'4, xeP, then p"a = —p"x = 0,50 ae p"*! A[p"] and (p"*'4 + G)[p] =
= (p"*' A[p"] + P)[p] follows. If ¢ = w, then p°4 < G and the o-th relative
invariant is 0.

Recall that a p-group S with valuation is said to be distinctive (see [3]) if there is
a monomorphism of S into a direct sum of cyclic p-groups that does not decrease
valuation. We shall need the following result (see [3]) which is essentially a reformula-
tion of a theorem by Dieudonné [1]:

Lemma 5. Let G be a p-group and S a subgroup of G such that G/S is a direct
sum of cyclic p-groups. If S is distinctive (equipped with the valuation given by
the height function of G), then G is likewise a direct sum of cyclic groups.

3. We now introduce the class of p-groups to be discussed.

Let %, denote the class of p-groups A4 such that there is a p"-bounded nice sub-
group P of A, containing no elements of infinite height in A4, with A/P totally pro-
Jjective.

It is evident that all totally projective p-groups and all separable p®*"-projective
p-groups as well as their direct sums belong to class ¢,. We have been unable to
decide whether or not these are the only members of %,,.

From the definition it is also clear that each class ¥, is closed under arbitrary
direct sums. We wish to show that the same holds under the formation of direct
summands.

Theorem 1. A direct summand of a group in %, is again in 9,,.

Suppose A = B @ C belongs to 4,, and P is a p"-bounded nice subgroup of A
such that P p®4 = 0 and A[P is totally projective. Set G; = B n (P + p“°A)
and G, = Cn (P + p°A). Then B|G, = (B + P + p°A)[(P + p®A) is a direct
sum of cyclic groups, since 4/(P + p“®A) is by Lemma 2 (a) a direct sum of cyclics.
Now G = G, ® G, satisfies p?4 < G < P + p°4, so G =P @ p®A for P' =
= P n G. Furthermore, p®4 = p®B @ p“C, whence G, = P, @ p®B with P, =
= G; n (P' @ p°C). The subgroup P; of B is obviously p"-bounded and has no
elements of infinite height. As p®B is a summand of the totally projective group p“A4,
we can apply Lemma 3 to B and P, to conclude that B € %,, indeed.

4. Our main result states that the groups in class ¥, are determined, up to iso-
morphisms, by their p"-socles as valuated abelian groups.
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Theorem 2. Let A, A" € 4,. Then A = A’ if and only if there is a height-preserving
isomorphism ¢ : A[p"] - A'[p"].

It is enough to establish the sufficiency of the condition. So, let ¢ be as stated.
By hypothesis, there are p"-bounded nice subgroups P and P’ in 4 and A’, respecti-
tively, such that P n p®4 = 0 and P' n p®A’ = 0, and A/P, A’|P’ are totally pro-
jective. From Lemma 2 we know that 4/G, 4'[/G’ are direct sums of cyclic groups
where G = P ® p®4, G' = P’ @ p®A’.

We consider the exact sequence

0-'G[H —» A|H — A|G - 0

where H = (P @ p“A) n (¢~ 'P' @ p°A), and show that G[H is distinctive (valua-
~ tion induced by the height function in A/H). Let x + ¢ + H = x + H be a coset
(x e P, 1€ p°A) of height Zm in A[H, i.e. there is some a € A satisfying p"a — x €
€ H. Thus p"a — xe ¢ 'P' @ p°A, so p"a* = x + ¢~ 'y’ for suitable a* e 4,
y' € P'. We sce that ¢(x) + y" has height Zm in 4’, and therefore the coset ¢(x) +
+ ' 4+ G = ¢(x) + G’ has height =m in A’'/G’. The map x + H |> ¢(x) + G’
of G/H into A’[G" is easily seen to be monic, and since it does not decrease heights,
G/H is distinctive, in fact. By Lemma 5, A/H is then a direct sum of cyclics.

Similarly, A'/H" with H' = (¢P @ p°A’) n (P’ @ p°A’) is a direct sum of cyclic
groups.

As ¢ preserves heights, it is clear that ¢ carries H[p"| = (P @ p” A[p"]) n
A (¢7'P @ p” A[p"]) onto H'[p"]. If we set Q = Pn (¢~ 'P' @ p° A[p"]), Q' =
=P n(¢P @ p° A[p"]) then H = Q @ p°A, H = Q' @ p“A’. From Lemma 3
we conclude that A/Q, A'/Q’ are totally projective. Thus we see that P, P’ can be
replaced by Q, Q' which in addition satisfy: ¢Q @ p°4A’ = Q' @ p“A’. It follows
that ¢ induces a height-preserving isomorphism ¢, : @ — Q'.

The Ulm invariants of p®4 and p“A’ are the same, since these can be computed
in their socles and ¢ guarantees that the results of computation are the same in p®A
and p°A’. These groups are totally projective, thus there is an isomorphism v, :
p®A - p®A’. Manifestly, y, has to preserve heights computed in 4 and A’, respec-
tively.

The isomorphisms ¢, and V¥, give rise to an isomorphism  : H - H' where H
and H' are nice in 4 and A’, respectively. Since Q, Q' have elements of finite heights
only and p“A, p®A’ have elements of heights =w only, i has to be height-preserving.
By Lemma 4, the relative invariants of H in 4 can be computed in A4[ p"], and since ¢
carries H[p"] into H'[p"], the relative invariants of H in A are equal to those of H'
in A'. It suffices to appeal to Hill’s Theorem (see e.g. [2]) to conclude that A =~ A,
in fact.
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