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AND DIFFERENTIAL EQUATIONS WITH SEVERAL DEVIATIONS

FRANTISEK NEUMAN, Brno

(Received September 11, 1981)

I. In this paper we give necessary and sufficient conditions under which a trans-
formation of the independent variable exists that changes a differential equation
(single or system, linear or nonlinear) with several deviating arguments, f;, i = 1, ...
..., k, into a differential equation with constant deviations.

The problem leads to finding a simultaneous solution of a system of Abel equation
(Problem 195, [6, p. 308]), and the method is based on 0. Bortivka’s result concerning
one-parameter continuous groups of transformations on line [1].

Let A, (fy. ..., fx) denote a differential equation of the n-th order with k deviating
arguments f(x), f; :I >°™°I = (a, b) an open real interval (the cases a = —o0
and b = co are not excluded), let f;€ C*(I), n 2 1, df(x)/dx > 0onl,i=1.... k.
Here C™(S) is the set of all continuous functions on S continuously differentiable
up to and including the m-th order, m = 0 means continuity.

Consider a transformation of the equation A,(fy,...,f;) into B,(hy, ..., )
consisting in a change x — ¢>(x) = t of the independent variable, ¢ being a bijection
of the interval I onto J, ¢ € C*(I), d¢(x)[dx > 0 on I. Hence, if y : x > y(x) denotes
a solution of 4,(fy, ..., fy) onI, then z = y¢~' : J — Ris a solution of B,(hy, ..., Ir)
on J.

In accordance with M. Kuczma [4, p. 13], we use the following notation: upper
indices at the sign of a function denote iterations,

ie. Fix) =), fox)=x, f(x)=/(/"(x)),
7 (x) = ST (/"(x)), f~! denoting the inverse to [ ;
SIS f™ are the derivatives of f .

In [5] it was shown that yU)(f,(x)) can always be expressed in terms of {z)(h,()),
s < j}, where h; satisfies

D fdx) = h; ¢(x), xel.

Moreover, if A,(fy, ..., f) i linear, then B,(hy, ..., b) is also linear.
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The existence of a transformation ¢ that converts a given equation A,(f1» ..., f;)
into an equation B,,(hl. ..., I) with constant deviations, i.e.,

h{t) =t + ¢;, ¢; being constants ,

is therefore equivalent to the existence of a common solution ¢ of the following system
of functional equations

(J) ¢fi(x)=¢(x)+c,-, i=1,...,k, xel.

With respect to (1) we are looking for conditions under which k functions f; can
be embedded into a one-parameter group of transformations ¢~ *(¢(x) + ¢), ce R.

II. Throughout this section we will suppose that the system (1) has a solution
¢:1->R,¢eC'(I),n = 1,dd(x)/dx > 0on I
Proposition 1. All functions f; and f; commute, i.e.,
fifi(x) = fifdx) onl for all pairs (i, ).
Proof. Under our supposition,
Ji(x) = ¢7H(¢(x) + ¢;) and fi(x) = ¢ ((x) + ¢;)-
Since f(I) = I and f(I) = I, both f,f; and f,/f; are defined and
[ifi(x) = ¢~ Hd(x) + ¢i + ¢;) = [ fi(x)

holds on I foreach iandj, 1 £ i,j £ k, q.e.d.
Denote by F the set of all finite compositions of f; and their inverses 7!, i =
= 1, ..., k. The following corollary is a direct consequence of Proposition 1.

Corollary. The set F can be expressed as
(2 F = {fDf3>...fi; s; integers} ,
and any two g1, g, € F commute.
Proposition 2. Let g,, g, € F. If there exists an x4 €1, such that

91(x0) = gz(xo) B
then
9:(x) = g5(x) forall xel.

Proof. For 91,9, € F we have
k
gl(x) = fi'f3" ... lfk(x) = gb_l(d)(x) + Z sici)
i=1
and

92(x) = f1f32 .. fio(x) = o~ (9(x) + glr,.c,.),
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k k
Sgseees Sp» T1s ... Ty being integers. If gy(xo) = g,(x,), then ) sic; =) ric,, or
g,(x) = g,(x) forall xe I, q.e.d. =1 =t

Define the set D as the union of graphs of all functions g € F, i.e.,
(3) D := {(x, y); there exists g € F such that g(x) = y} .
Evidently D < I%

Proposition 3. The set D is dense in I* if and only if there exists at least one pair
(i, j), 1 <i,j £k, such that the quotient ci/cj is irrational.

Proof. Ifall ¢; = 0, then f; = id on I for all i, and D = {(x, x); x € I'} is not dense
in I,

Let ¢; + 0 for ani, 1 < i < k. Since f]" is defined for all integers m, ¢ f7'(x,) =
= ¢(x,) + mc; for x, € R. Then ¢(I) = R, because ¢ is continuous and

lim ¢(f7"(x,)) = £ 0.
m- %o

The transformation T: (x, y) = (¢(x), ¢(»)), (x, y) € I%, is a diffeomorphism of /?
k

onto R?, because d¢(x)/dx > 0 on I. Moreover, T(D) = {(t,t + Y myc;); R,
i=1

m; € Z}, and it is dense in R* if and only if at least one quotient ¢;/c; is irrational.
Since T is a diffeomorphism, T(D) is dense in R? exactly when D is dense in I?,
q.e.d.

Proposition 4. If D is not dense in I, then there exists a pe C'(I) such that
du(x)/dx > 0, u(x) > x on I and
Ji=pm
holds for each i, 1 < i £ k, and suitable m; e Z.

Proof. If D is not dense in I2, then, due to Proposition 3, all quotients ¢;[c; (c; #* 0)
are rational. Hence there exists d > 0, such that ¢; = m,d for all i and for suitable
integers m;. If u is defined by

w(x):= ¢ N p(x) + d), xel,

then peC'(I), dufdx > 0, u(x) > x, and f{x) = ¢ (¢(x) + ¢;) = ¢~ (p(x) +
md) = p"(x), q.e.d.
Define the function H: D — R by

4 H(x,y) = g'(x), where géF and g(x) =y.
Proposition 5. The function H is well defined by (4) and it satisfies
(5) H(x,y)>0 forall (x,y)eD, and

H(x, y)H(y,z) = H(x,z) if (x,y)u(y,z)<=D.
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Proof. By Proposition 2, for each (x, y) € D there exists just one function g € F
satisfying g{(x) = y (even if g can be written in different ways as a composition
of f;’s). Hence H is well defined. The positivity of H follows from (2) and from
df{x)dx > 0 on I for all i.

Finally, if (x,y) U (y, z) = D, then there exist g, g, € F such that g,(x) = y,
g,(y) = z. Then g, g,(x) = z, g, g; € F, and (x, =) € D. Since

(9291)1 = g/Z(gl) 971,

we have H(x, z) = H(x, y). H(y, z), g.e.d.
The definition of H yields the following property.

Proposition 6. Each g e F (in particular, each f;) is a solution of the differential
equation
v =H(x,y), (x.y)eD.

The next property is a direct consequence of O. Bortivka’s result [2].
Proposition 7. There exists an extension H* of H to 1* (H = H* on D) such that
H*e C""Y(I?), and
(5%) H*(x, y) > 0 on I* and H*(x,y).H*(y,z) = H*(x,z) on I*
holds.

Proof. We suppose the existence. of a solution ¢ of (1) satisfying ¢ e c'(I).
d¢(x)/dx > 0 on I. In accordance with [2], define

H*(x,y) = ¢'(x)[¢'(y) on I*.
Evidently H* € C"~!(I?), and (5*) hold. For (x, y) € D, there exists g € F such that
g(x) = y. In view of (2), we have
#(g(x)) = ¢(x) + const.
Then H*(x, y) = ¢'(x)[¢'(y) = ¢'(x)[¢'(9(x)) = g'(x) = H(x, y) on D, q.e.d.

Remark. If D is dense on I?, then H* is uniquely determined by H, because H*
is continuous.

III. We may summarize the results of Section II in the following way.

Theorem 1. Let I = (a, b) be an open interval of reals, f;:1 >°"°1I, f;e C"(I)
for some n 2 1, and df;/dx > 0 on I, i =1, ..., k. Suppose that the system (1) of
Abel functional equations has a solution ¢, ¢ € C'(I), dp(x)[dx > 0 on I.

Then the sets F, D and the function H : D — R are well defined by (2), (3), and (4).

If D is not dense in I*, then there exists a function pe C'(I), du(x)/dx > 0,
u(x) > x on I such that

fi=p"
for each i and suitable m; e Z.
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If D is dense in I?, then H can be uniquely extended to a continuous H* on I?.
This H* is in C"~'(I?) and satisfies (5*).

Now, we shall prove the following

Theorem 2. If f; = u™ for i = 1, ..., k, where m; are iniegers, and p : 1 -°"°I =
= (a,b) = R, pe C'(I), du(x)/dx > 0 on I, then there exists a solution ¢ of (1),
¢ € C'(I), dg(x)[dx > 0 on I.

Proof. In [3] it was shown that under our assumptions on y, there exists a solu-
tion ¢ of

¢ u(x) = ¢(x) + sign (u(x) — x)

satisfying ¢ € C"(I), d¢(x)[dx > O on I (even solutions depending on an arbitrary
function). At the same time this ¢ is a solution of the system (1), since ¢ fi(x) =
= ¢ p"(x) = ¢(x) + m;sign (u(x) — x), i = 1,..., k, q.ed.

For the case when D is dense in I and H* € C"~'(I*), we may utilize O.Boriivka’s

result [2]. For the sake of completeness we recall it here.
If H* e C"~*(I?) and (5*) is satisfied, define

d(x) := kf H*(o, yo)do, xq,yo,x€l, k>0.

xp

Then
peC¥(l). d(/)(x)/dx >0,
and

def; (1) = KH*(f; 67'(2), yo) - fi(¢71(1) - [KH*(6™"(1), »o)] ™" =
= H*(f; $7'(1), o) - H($™ (1), f(7(1)) - H*(yo, ¢7'(1)) = 1,
or ¢f; ¢ (1) = t + const. Hence ¢ is the required solution of the system (1).
IV. Example 1. Consider the differential equation y'(x) = y({/x) + y(x*), x €

e (1, o0), with two deviating arguments, fy(x) = x'/2, f,(x) = x*. The set F of all
finite compositions of f;, f2, f1 % and f5 ' is '

F = {x*'; s an integer, x e (1, )} .

The set D = {(x, x**); s€ Z, x € (1, )} is not dense in (1, ©)?. Any g € F satisfies
g = f{ for a suitable m € Z. Hence any solution ¢, ¢ e C'(1, ), d¢(x)[dx > 0
on (1, ) of

H%) = 96 + 1
transforms our differential equation into an equation with constant deviations, since

(x*) = ¢(x) — 2.

Example 2. Consider y'(x) = y(y/x) + y(x%), x € (1, 0), with f,(x) = x, f,(x) =
= x3. The set F is given by

F={x"x; xe(l, o), r,seZ},

492



and
D = {(x,x%); « = 2%, s,reZ} isdensein (1, 00).
We have
H(x, y) = H(x, x*) = dx*/dx = ax*"' on D.
Hence
H*(x, y) = H*(x,x’) = px*~* on I*> forall peR",

H*(x, y) = In y x(@nymn-n _ Y0 Y In y on (1, 00)*.
In x xInx

Now ¢(x) = k [}, H*(0, yo) do = K, InInx + K,, K, > 0, and
d(Jx) = ¢p(x) — K;In 2,
¢(x*) = ¢(x) + K;In3.
There are no integers r and s such that 2" = 3%
The solution ¢ transforms our differential equation with deviations \/x and x>

into an equation with constant deviations t — K;In2 and ¢ + K, In 3.
Let us note that this solution ¢ is also one of the solutions in the preceding example.

V. We have seen that, when f; e C"(I), fi(x) > 0 on I, f(I) = 1, f.f; = f,;/:, and
fit o fi(xo) = xo Implies fi'...fi¥(x) =x forall xel,

then H on D is well defined and satisfies (5). However, the following questions are
open. If F is not a group with one generator (as in Proposition 4), is it always possible
to extend H to a continuous H* on I? without supposing the existence of a solution ¢
of (1)? If such a continuous extension H* exists, then it is unique. Of what class is this
extension?

Let us make the following remarks to the problem.

If H* is at least from C°(I?), each g € F can be written as

g(x) = ¢ Y(o(x) + «) e C*(I), for suitable aeR,

where

6(x) = k f " H*o, yo) do .

X0
Define h,(x) := ¢~ (¢(x) + «), for all « € R. Evidently {(x > h,(x)); xR} > F.
If the system h, is considered as depending on «, & — h,(x) is of the class C'(R)
only. By introducing a new parametrization of «, o = ¢(B), we may improve the
smoothness of the dependence on a parameter even to the class C":

B> hy(x) = ¢ (@(x) + #(B) = ¢ '(#(B) + é(x))€ C'(J)
for fixed x = x,€R, ¢(J) = R.
Or, if we introduce o = ¢(B), where ¢ is a discontinuous solution of

c(By + B2) = c(By) + ¢(B,), see[l,p.35],
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then > hop(x) is not continuous, but ftees) is still an iteration group with respect
to f. ’

However, if we require both that g+ h,) be an iteration group and that 8 h,
remain at least continuous as o ~ h, was, then

p(B) = kB, k being a constant ,

(see [1, p. 34];, and the smoothness of B> h,y is exactly the same, as that of
ar>h,
Anyway, the smoothne$s of H* does not depend on parametrization of « in o > /.
1 thank Professor O. Boriivka for kindly informing me about his latest results on
continuous groups of transformations, and Professor J. Aczél for valuable remarks
-improving the final version of the paper.
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