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1. INTRODUCTION

This paper is devoted to a non-commutative extension of an assertion from the
classical theory of integration. It is well known that for a non-negative measure
and a measurable function f one has

1) 1.

on the assumption that for some g e {1, o) j"]fl‘f du is finite. In the non-com-
mutative case the role of the function f is taken over by a linear operator and the role
of the essential supremum of a function is played by the spectral norm of the operator.
The integral of a linear operator will be assumed in the sense [11].

In the commutative case the above mentioned assertion has little practical im-
portance since to find an approximate essential supremum for a given function by
means of evaluating the integral (J [f|7 du)"/” for a sufficiently large p is usually
a far more difficult problem. On the other hand, in the non-commutative case this
assertion acquires practical significance since for a given operator the calculation of
its spectral norm (and, therefore, of its spectral radius for a normal operator) is a well
known problem which is also approximately solvable by calculating the above
mentioned integral for p sufficiently large (i.e. the L,-norm of an operator).

The paper is organized as follows. In Section 2 the necessary basic notations,
concepts and results from the integration theory of linear operators are briefly
summarized. Section 3 contains the main results of this paper. We prove that, under
similar assumptions as in the case of functions, the L,norms of a linear operator
converge to its spectral norm. The rate of this convergence is estimated.

2. NON-COMMUTATIVE INTEGRATION

In this section only the basic facts, definitions and notations needed for the sub-
sequent treatment are briefly summarized. For a comprehensive exposition of the
integration theory of linear operators the reader is refered to the fundamental paper
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by Segal [11] and also to papers [4] and [13]. Further development of the theory
will be found e.g. in [1—3],[5—7], [9], [10], [14—16]. A presentation of the results
and of the directions of research in the field of abstract integration can be found in
the expository paper [12].

We start with the definition of a gage space that plays a central role in the de-
veloped theory. A gage space I = (H, o/, m) is a system composed of a Hilbert
space H, a von Neumann algebra &/ of operators on H and a non-negative valued
function m (called a gage) on the projections in o7, where m is completely additive,
unitarily invariant, and such that every projection in & is the Lu.b. of projections
on which m is finite. A gage space is called regular when the only projection of gage
zero is the zero projection.

An operator Tin H is called measurable with respect to o if Ty o, if T is closed,
and if there exists an increasing sequence of closed linear subspaces K,, in the domain
of T such that the corresponding projections P, belong to ./ and have finite ortho-
complements I — P, — 0. A sequence {T,} of measurable operators with respect
to & is said to converge almost everywhere to a measurable operator T provided for
every ¢ > 0 there exists a sequence of projections P, in 7 such that ”(T,, - T) P,,n <
<e¢ I — P,isfiniteand | Oasn T oo.

Further, the concept of the ring E of elementary operators in &/ is introduced,
consisting of those operatorsin & whose ranges are contained in the range of a projec-
tion of a finite gage. There exists a unique linear extension of m on the ring E. Finally,
in a regular gage space I' an operator T'is called integrable (symbolically Te L,(I))
if there exists a sequence {7,} of elementary operators converging to T almost every-
where which satisfies the additional condition that m(,T,, - n]) —0asn, k — oo. Its
integral (trace) m(T) is defined as lim m(T,), it exists and is unique.

For a measurable operator T let U|T| be the canonical polar decomposition of T
and let [ A dE, be the spectral resolution of |T|. Then U belongs to </ and |T|is
measurable and the identity

m(lTl) - J:o Adm(E,)

holds. For p e (1, c0) we introduce the spaces L,(I') of measurable operators T by
the condition

7], = (|7 = (j » dm(E;))‘“’ <o

Finally, for an operator T we set || T|,, equal to the bound of T'( sup | Tx|) if T'is
bounded and otherwise we put |T|,, = . lxll =1

Let M = [R, #, r] be a measure space which is o-finite (weaker assumption on M
is sufficient, see [11: Example 1.1]). Then M can be identified with the gage space
(Ly(M), L (M), r), an element of L,(M) being identified with the corresponding
multiplicative operator. Conversely, a regular commutative gage space is algebraically
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equivalent to a gage space built on a measure space. Here, then, the notions of measur-
able operator and convergence a.e. of measurable operators correspond exactly to
the classical definitions of measurable function and convergence a.e. of functions
(for details see [11: Th. 2 and Th. 7]).

As a non-commutative example take H to be finite dimensional and let o7 be the
set of all linear operators on H. Define m(P) = dimension (range P) for any projec-
tion P in /. It can be verified readily that‘(H, o, m) is a gage space and for any A
in o/ m(A) is then the ordinary trace of A. Further examples can be found in [8].

3. CONVERGENCE OF L,-NORMS OF OPERATORS

First we shall show that, under assumptions analogous to those in the commutative
case, we have |A], = |4, for p — oo with 4 being an operator.

Theorem 3.1. Let I’ = (H, &7, m) be a regular gage space and let there exists
q € <1, o0) such that A e L(T'). Then lim |4, = ||4
P>

o

Proof. Let A = WB be a canonical polar decomposition of an operator A and
B = [AdE, a spectral resolution of the operator B. The proof will be divided
into two parts.

Part 1. | 4|, = co. Since B e L,(I') we have for n integer
0 0
e J' dm(E,) < J 22 dm(E;) = |BJt < oo
n 0

and therefore [;? dm(E,) is finite. Moreover {;°> dm(E,)is nonzero, because we assume,
a regular gage space and ||B|,, = 4], = co. Let further p 2 g, then

m(B?) = J AP dm(E;) = an dm(E;)
0 n '
and therefore

n

@ 1/p
(m(B")H? = n (J. dm(El)> ,
whence we obtain

lim inf (m(B?))1/? = n

p—®

for every integer n and thus lim |4, = co.
-+ o0

Part2. |4, < co. Without loss of generality we can assume that 4 # 0. Denote
u=|4], = |B|, and R = ||B|[u’. Since Be L(I), B # 0, it follows that

o] (ot
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and R is finite and nonzero. Let further p = ¢, then

" /"_ P " /}' q
m(BF) = HPJ <~) dm(E,) < ,u”J- (—) dm(E,)
o \M o \H
and so we obtain

(1) (m(B?))!'? < uRM? .
Choose now ¢ € (0, ), then

m(B7) = J' 0 21dm(E,) = (1 — o) J' " am(E,).

n—e
Denote S, = [4_, dE,, then
" 1 23
m(S,) =J dm(E;) £ —— J 4dm(E;)
H—e = E)q n—e

and, consequently, m(S,) is finite and, since u € 6(B) (the spectrum of the operator B),
m(S,) is nonzero. For p = ¢ we therefore obtain

m(BF) = f” Ardm(E;) 2 (n — &) m(S,)

0

whence
@) (m(B"))'" = (1 — &) (m(S,))"” -
From the relations (1) and (2) we obtain for p — o

p — & < lim inf (m(B”))*/? < lim sup (m(B?))'? < u
p-r o

p—®

for every & € (0, p) so that, finally,
lim [ 4], = 4] -
po©
Corollary 3.2. Let I' = (H, o/, m) be a regular gage space. Let there exist q € {1, o)
such that A e L(I') and let A be a normal operator. Then
lim (m((4*4)*7"))* ™ = r(4)
k= o0

where r(A) is the spectral radius of the operator A.

If we are able, in a particular case, to calculate the operators A*A, (4*A4)%, (4*A)*. ..
etc. and their integrals, Corollary 3.2 can be looked upon as an assertion about the
approximation of the spectral radius of a normal operator A. It is therefore quite
natural to examine the error of this approximation.

Theorem 3.3. Let I’ = (H, <, m) be a regular gage space and let A be a nonzero
operator. Assume that there exists q € {1, ) such that Ae L(I') n o/ and 4]~ €
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€ P,(|4|) (the point spectrum of the operator |A]). Then for p = q
141, AL 5 QAL s (5, i .9

where S is the projection onto the eigenspace corresponding to the eigenvalue HA"00
of the operator |A| and R = || A|%]]| 4]|%,.

Proof. Let A = WB be a canonical polar decomposition of the operator 4 and
B = [ A dE; the spectral resolution of the operator B. In the same way as in the
proof of Theorem 3.1. we denote

_1BlE _ 1412 _ [
R = ”B”ﬁo = m and S, = J;_edE,WL

for ¢ € (0, u). First we shall prove an auxiliary

Lemma 3.4. Let I' = (H, o, m) be a regular gage space and let A be a nonzero
operator. Assume further that there exists qe {1, o) such that Ae L(I)n <.
Then, for sufficiently small ¢ > 0 and p = q,

4], = |4].] ¢+ i {| 4], - max (jln m(S,)|, |In R|).max (1, R*/", (m(S,))"/")}
Proof. From the relation (1) in the proof of Theorem 3.1 we obtain for p = ¢

Bl s w1+ 2 E ),

where &, lies between 0 and p~'1In R, so that

() 18], — = 1B max (1 R0
p
Further, from the relation (2) in the proof of Theorem 3.1 we obtain for ¢ € (0, u) and

P24 s)
In m(S,) ,
1B, = (n 8)<1+—p—“° )

where 7, lies between 0 and p~ ' In m(S,), so that
g 1, — w2 e~ 0 2N a1, (s .
’ D

From the relations (3) and (4) the assertion of Lemma 3.4. follows.

To finish the proof of Theorem 3.3 it is sufficient to show that m(S) is finite and
nonzero and that m(S) = hm m(S ). Clearly, m(S) > 0 because the gage space is

regular, m(S) is finite because m(S,) is finite and S < S,. Finally, using [11: Th. 10]
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we get _ .
_ m(l = E.-) =m(S);
lim m(S,) = lim m(I — E,rz) = m( . )

£=04 £=04
and since .
n q _ fH—¢&
R = “ dWI(E,a) = (”‘) m(S,) »
o \H K

it follows that R = m(S).

Corollary 3.5. Let I = (H, </, m) be a regular gage space and let A be a normal
nonzero operator. Assume further that there exists g€ {1, oo) such that Ae
e L(I') n o and 1{A) = ||A], e PG(IAD' Then for k = In gfIn 2,

[(m((4*A)P* )P — r(4)] < —21: {r(A) . max ([ln m(S)|, [In R). max (1, R*™)} .

Remark 3.6. The assumption [ 4], € P,(|A4]) which occurs in Theorem 3.3 and in
Corollary 3.5 is fulfilled e.g. when A is a compact operator.
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