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A CHAIN OF KUROSH MAY HAVE AN ARBITRARY FINITE LENGTH

K. I. BEIDAR, Moscow

(Received June 4, 1981)

Let M be any nonempty homomorphically closed class of associative rings.
The chain of Kurosh of the class M is the chain of classes M = M, =« M, < ...

. € M, < ... with 7 running over all ordinal numbers, where the class M, consists
of all associative rings whose every nonzero homomorphic image contains a nonzero
ideal which is in the class J M, [1, p. 113, Definition 2].

r<t

Sulinski, Anderson and Divinsky [5] have shown that this chain of classes ter-
minates at w,, the first infinite ordinal number, and also have constructed examples
of homomorphically closed classes of rings whose chains of Kurosh terminate at the
second or the third step. They posed the following problem: Is it possible, for every
natural number n, to construct a homomorphically closed class M™ whose chain
of Kurosh terminates precisely at the step n?

In the present note such classes will be constructed. Let C be the field of complex
numbers, Q — the subfield of rational numbers, Z — the subring of integers,
D = Q[i] — the subfield of the field C generated by Q, and i — the square root
from —1. Further, let p be a prime number of a form 4s + 3 and

A, =pZ +ip'Z

n

D, A, =2Z[{]]sD, n=12,...

It is clear that 4, 2 4, =2 ...
=0,1,....

U

A, =2 ...and A4, is an ideal of the ring 4,, n =

Lemma 1. Let L be a nonzero ideal of the ring A,, R — the subring of the field D
such that A, is an ideal of the ring R, let f: A, - D be a homomorphism of the
rings. Then: 1. A,[L is a finite ring. 2. Either R = A,_,, or R = A,, or R> 1.
3. Either f(4,) = 0, or f(A,) = A,. 4. If Ay,sn, is an ideal of the ring A,, then 0 <
=m<=1l.

Proof. 1. Let 0 &= m + in e L, where m, ne€ Z. Then
a=m?+ n*=(m+in)(m —in)e L.
It is clear that 4,/L is a module with two generators ip"+L and p + L over the finite

ring Z/aZ. Hence A,[L is a finite ring.
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2. Since A, 3 1, the case n = 0 is evident. Let n > 0. Then R = A,, because
RA, € A,. Hence all x € R have a form x = m + in, where m = m(x), n = n(x)e
€ Z. Now assume that n = 1. Then A, = pA4, and

R[A, < Ao[Ay = (Z[pZ) [i] .
The square root from —1 is not contained in the field Z/pZ, because the prime num-
ber p has a form 4s + 3 [3, p. 68]. Therefore (Z/pZ) [i] is a field. A nonzero subring
of a finite field must be a field. Hence either R[4, = 0 and R = A4, or R[4, 31 +
+ A;. Let R[A4;51 + A;. Then 1 + x = y for some xe€ A4,, ye R. Therefore
1 = y — x e R and our statement is proved. Let now n = 2. Since pe A4,, pxe A4,
for all x € R. By definition of A, it follows that n(x) = p"~' I(x), where I(x) € Z.
Hence x = m + ip" 'I. Let us suppose that pZ + m(x)Z = Z for some x € R.
Then up + vm = 1 for some u, ve Z. Define z = up + vx. It is clear that ze R
and z=1+1ip"!s, where s=uvl. Since n =2, 2n —3 >0 and p? 2% =
= p.p” %’ €eR (recall that pe 4, = R). Therefore 1 = 2z — z> — p*" s’ e R.
So we may assume that m(x) = p s(x), where s(x) e Z for all x e R. Since pe A4,
it follows that the additive group R is generated by the subgroup A, and the set
{ip" 1 I(x) = x — ps(x)/x e R}. If p divides I(x) for all xeR, then ip" ' I(x)e
€ pZ + ip"Z = A,and R = A,. Let us suppose that pZ + I(x) Z = Z for some x € R.
Then ap + bl = 1 for some a, b e Z. Since ip" € A4,, we have ip"™! = ip" '(ap +
+ bl) = ip"a + ip" " 'Ib € R and in this case R = 4,_;.

3. Since the field D does not contain a finite nonzero subring, it follows that
either f(4,) = 0, or f is a monomorphism. Let S = Z\ {0} and let S~ ' 4, be the ring
of fractions of the Z-algebra A, with respect to S [2, p. 49]. Itis clear that S™'4, = D
and the monomorphism f may be continued to the monomorphism of the ring
f:S7'A4, — D.Further, it is obvious that the field D has only two monomorphisms:
the identical one and the complex conjugation. Hence f(4,) = A4,.

4. It is clear that pe A,,, and ip"€ A,. Therefore ip"*' = p.ip"€ A4,,, =
=pZ +ip"*™Zand n + 1 2 n + m. Hence m < 1.

Lemma 2. Let M{"*" be the homomorphically closed class of rings, which
consists of all nilpotent rings, all finite commutative rings and all homomorphic
images of the ring A,. Then A,_, e M"ID< MY for all m = 1,2,...,n and
n> 0.

Proof. By Lemma 1, each homomorphic image of the ring 4,_,, with a nonzero

kernel is a finite commutative ring. Hence all such homomorphic images of the ring
A,_,, are contained in the class M{"+ 1),

Let m = 1.1tis clear that 4, € M{"*D gnd 4, is an ideal of the ring A, _ ;. It follows
that 4,_, € My""D. Suppose A,_, ¢ M{"* V., By the definition of the class M{+1)
it follows that the ring 4,_, is isomorphic to the ring A,. Let f: A,_; = 4, be an
isomorphism. Since A4, = D, we have f(4,-1) = A,_y + A, (see Lemma 1). We
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obtain a contradiction. Hence
Ao e MTTFD (MY

Now we proceed by induction on m. The case m = 1 has been proved. Assume that
the lemma is true for | < m. Then A4,_,,,, e My*". Since A, _, ,, is an ideal of the

ring A,_,, it follows that 4,_,, € MU+, Suppose now that A,_,,€ M*". Then
the ring 4,_,, contains a nonzero ideal B, from the class M"*D. The ring B, also

contains a nonzero ideal B, of the class M"*}?. Continuing this process we obtain

a chain of nonzero subrings B, € B,,_, < ... € B; € A,_,,, where B, _; is an
ideal of the ring B,,_;_, and B,,_;e M"*? for all i = 1,2, ..., m — 1. Since the

ring A4,_,, contains neither finite nor nilpotent nonzero subrings, the ring B,,_ is
isomorphic to the ring 4,. As above, we obtain that B,,_, = A4,.

Consider now the case B,,_;$1,i = 1,2,...,m — 1. By Lemma 1, our chain has
a form

An s An—l S...s An—-t = An-m!

where t < m — 2 and A,_, = By is an ideal of the ring 4,_,,. By Lemma 1 (as-
sertion 4), t = m — 1. We obtain a contradiction. So the ring B must contain
identity for some 1 £ i < m — 1.

m—i

Suppose now that the ring B,,—; contains an identity for some 1 < i < m — L.
Since B,,_; = A,3% 1, we have i > 1. Hence we can assume that the ring B,,_;.,
does not contain identity. It is clear that

B . =

m—i

=...= Bl = An—m > An—-m = AO

m—i—1

and m = n. By Lemma 1 our chain has the form 4, € 4,_; ... € 4,_, S A,,
where t<i—1<m-—-2=p-—2and 4,_;, = B,_;;+, is an ideal of the ring
B,_; = A,. By Lemma 1 (assertion 4), t = n — 1. But t < n — 2. We obtain
a contradiction. So A,_,, € MZFO\ MU for all 1 < m < n and n > 0. This
completes the proof of the lemma.

Corollary 3. Letn > 0, let A, = By < B, =... € B,, = D be a chain of subrings
of the field D. Assume that B, is an ideal of the ring B;, , foralli = 1,2,...,m — 1.
Then: 1. If B, $ 1, then our chain of subrings has a form A, < A, S ... € A,_,,

where t <m — 1 and A,_, = B,,. 2. If B;31 and B;,_;$ 1 for some i = 2, then
our chain of subrings has a form

A, €A, _,S..SA_,<B =B,, =..=B8

wheret £ i — 2 and A,_, = B,_, is an ideal of the ring B,.

Lemma 4. Let B, < B,_; < ... € By be a chain of rings such that B, is an ideal
of the ring B;_, for all 1 i<t P=B,+ ByB, + BB, + ByB,B,. Then:
1. PP" < B, for all m = 1,2,...,t. 2. If x€ B,, ye By, then x"y¢ B,, yx™e B,
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forallm = 1,2,...,t.3.If eis a central idempotent of the ring B,, then e is a central
idempotent of the ring B, and eB, = eB,,.

Proof. 1. We shall prove that P> < B BB, forall 1 < m < 1. Indeed, B, < B,
and B is an ideal of the ring B,. Hence P < B, and P < B,B,B,. We proceed by
induction on m. Assume that B,B,B, o P*". Since B,,., is an ideal of the ring B,,
and B, € B,,,, we have

P*" < B,B/B, < By, »

P3"'+1 = P3"'P3"'P3m = PsmBthBmP3m = Bm+ leBthBnH-l IS
= Bm+1Bth+l .

2. We proceed by induction on m. Since x € B, = B, and B, is an ideal of the ring
B,., xy € B;. Assume that x"y € B,. We have x€ B, < B,,., and B, is an ideal
of the ring B,,. Therefore x"*'y = x(x"y)e B, ;.

3. Since €' = e, ex € B, and xe e B, for all x € B,. But e is a central idempotent
of the ring B,. Hence ex = e(ex) = (ex) e = e(xe) = (xe) e = xe for all x € B,.
Therefore e is a central idempotent of the ring B,. It is clear that eB, < B, < B.
Hence eB, = e(eB,) < eB, < eB, and eB, = eB,.

Theorem 5. Let Z be the ring of integers, i the square root from —1, p
a prime number of the form p = 4s + 3, A, = pZ + ip"Z and M{"*" a homo-
morphically closed class of rings, which consists of all nilpotent rings, all homo-
morphic images of the ring A, and all finite commutative rings. Then the chain
of Kurosh of the class M"Y terminates precisely at the step n + 1.

Proof. By Lemma 2, M" " + M"*Y. Hence it suffices to prove that M}V =
= M5, Since M"Y is a homomorphically closed class of rings, it suffices to
prove that
(*) each nonzero ring of the class M®"," contains a nonzero ideal of the class M"* 1.
Let 0 + Be M{\h". Since M{"*1 < M* P all nilpotent rings are contained in the
class M{"* D, Therefore we can assume that B is a semiprime ring. The ring B contains
such a chain of nonzero subrings

BB, _,<..SB,=8B

that B,e M{"*" and B, is an ideal of the ring B,_, forall i = 1,2, ..., ¢ [5, p. 418,
Lemma 1]. An ideal of a semiprime ring is itself a semiprime ring. Hence B, is a semi-
prime ring. Thus there are only two possibilities: a) B, is a finite commutative ring;
b) the ring B, is isomorphic to the ring A,

Let us consider the first case. It is clear that B, is an artinian ring. Since B, is a semi-
prime ring, it has an identity e. By Lemma 4, Be = B.e = B,. Hence B, is an ideal
of the ring B. Since B,e M{"*") = M{"* ", the statement () is proved.

Now let us consider the second case. We can assume that B, = 4,. Let

P=B,+ BB, + BB + BBB, r(B;P)={beB[Pb=0}.
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By Lemma 4, P" < B, < P for some m. Hence we have
(+*) K = r(B; P") 2 r(B; B,) 2 r(B; P).

Further, (PK)" = PKPK ... PK = P"K = 0. Since B is a semiprime ring, PK = 0
and K < r(B; P). Hence K = r(B; B,) = r(B; P) (see (xx)). Therefore r(B; B,)
is an ideal of the ring B. Let L = {b e B/bK = 0}.1t is clear that L is an ideal of the
ring Band LN K =0. Let H, = B;n Lforalli=1,2,...,t Evidently, H, = B,,
H;is an ideal of the ring H;_, forall1 < i <tand H, = L is an ideal of the ring B.
Further, r(H,; B,) =K n L =0. Assume that na = 0 for some 0 & neZ and
0 # ae H,. Since B,a #+ 0and Ban = 0, T= {be P[bn = 0} + 0. Itis clear that T
is an ideal of the ring B and T™ < P™ < B,. Since xn & 0 for all 0 & xe B, = 4,
T™ = 0. But B is a semiprime ring. We obtain a contradiction. Therefore na % 0
forall0 %+ aeHy,and 0 £ neZ. Let S = Z\ {0} and let S™'H,, be a localization
of the ring H, (see [2]). By the above, H, = S™'H, and

HS™'Hy; S™'B) = S 'r(Hy; B,) = 0.
It is clear that S™'B, = S™'4, = D and the identity of the field D will be the

identity for all rings S™'H;, i = 0, 1, ..., t. Evidently, S™'H, is an ideal of the ring
S™'H;_,. Hence
D=S1'H,=S'H_,=..=S8'H,, HycD.

Assume now that the ring H, does not contain identity. By Corollary 3, H, = A4,_,
for some r < t. Since 4,31, n —r £ 0, r < n. Further, by Lemma 2, 4,_, €
e MWD < M®+D_ Therefore in this case the condition () holds.

Suppose now that the ring H, contains an identity e. By Corollary 3, the chain of
subrings 4, = H,c H,_; ... € Hyhasaformd4,c 4, ... 4,., S H; =
= H;_, =...= Hyand A,_, is an ideal of the ring H, and n — r % 0. By Lemma
4, eB = eH, = H,. Since A,_,e=A,_,, A,_,B=A,_,eB=A,_H, < A,_,.
Similarly BA,_, < A,-,. Hence A4, _, is an ideal of the ring B. It is clear that 4,_, <
S M"Y = M1 (see Lemma 2). Therefore the condition (x) holds in all cases.
This completes our proof.

References

[1] Anopynaruesuy B. A., Paoyxun FO. M.: Pamguxansl anrebp u CTpyKTypHas Teopusi, Mocksa,
Hayxa, 1974.

[2] Amba M., Maxoonaavo H.: BeeneHue B KOMMYTaTUBHYIO anrebpy, Mocksa, Mup, 1972.

[3] Bunozpacoe H. M.: OcHOBHI Teopuu 4ucen, Mocksa, Hayka, 1972.

[4] Szasz F.: Radicale der Ringe, Berlin, VEB Deutscher Verlag der Wisenschaften, 1975.

[5] Sulinski A., Anderson J., Divinsky N.: Lower radical properties for associative and alternative
rings, J. London Math. Soc., 41, 1966, 417—424.

Author’s address: Department of Mathematics and Mechanics, Moscow State University,
Moscow, 117 234, USSR.

422



		webmaster@dml.cz
	2020-07-03T03:18:04+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




