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1. INTRODUCTION

Let G = (V, E) be a graph without loops or multiple edges, with vertex set V =
= {vl, Vgy enos v,,}, and with edge set E. We regard the edges of G as two-element
subsets of V. The adjacency matrix A(G) afforded by G is an n by n matrix with zeros
on the main diagonal. When i = j, the (i, j) entry of A(G)is 1 if {v;, v;} € E and 0,
otherwise. Clearly, A(G) depends not only on G but on the ordering of V. It is easy
to see, however, that the effect of permuting the elements of V is to impose a (cor-
responding) permutation similarity on A(G). In fact, more is true, namely, G, and G,
are isomorphic graphs if and only if 4(G,) is permutation similar to 4(G,). Thus,
any function of A(G) which is preserved under permutation similarity is a function
of the underlying graph. The characteristic polynomial is such a function. Indeed,
the hope was briefly entertained that the characteristic polynomial of A(G) charac-
terizes G. We call two graphs adjacency cospectral if their adjacency matrices afford
the same characteristic polynomial. Numerous examples of nonisomorphic, adjacency
cospectral graphs are now known. Perhaps the most triumphant result along these
lines is due to A. J. Schwenk. He proved that if 1, is the number of (unlabeled) trees
on n vertices and if s, is the number of such trees which are not adjacency cospectral
with a nonisomorphic tree, then lim,_, (s,/,) = 0. One reason for the failure of the
characteristic polynomial to distinguish graphs may be that it is preserved under
arbitrary similarities. A function generally preserved only under permutation
similarities might be more suitable. The permanent of the characteristic matrix
(henceforth the permanental polynomial) of A(G) is such a function. However, it is
proved in [7] that, at least for trees, the permanental polynomial of 4(G) distinguishes
nothing which was not already distinguished by the characteristic polynomial. In
particular, Schwenk’s Theorem remains valid if “characteristic polynomial” is re-
placed with “permanental polynomial”.

Another suggestion is that A(G) is just the wrong matrix to look at. Consisting only
of zeros and ones, it is relatively easy to deal with. On the other hand, such a simple
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matrix may be expected to lead more easily to “‘algebraic accidents”. Following
W. N. Anderson and T. D. Morley, we are led to consider the Laplacian matrix
L(G) = D(G) — A(G), where D(G) is the diagonal matrix whose (i, i) entry is the
valence (or degree) of vertex v;, 1 < i < n. The Laplacian matrix (also called the
“matrix of admittance” [3, p. 27]) has some advantages over the Adjacency matrix,
in spite of presenting greater computational difficulties. (For example, L(G) is positive
semidefinite, a property exploited by M. Fiedler [5] in his work on algebraic con-
nectivity of graphs.) Moreover, it remains true that G, is isomorphic to G, if and
only if L(G,) is permutation similar to L(Gz). We wonder how well the permanental
polynomial of the Laplacian matrix distinguishes graphs. Following the success
of Schwenk, we might look for examples of nonisomorphic but “Laplacian coper-
manental” graphs among the trees. It is the purpose of this paper to present a graph
theoretical characterization of the coefficients of per (xI — L(T)) for trees T.

2. RESULT

For any graph G = (V, E) on n vertices, let

(1) det (xI — L(G)) = x" — dy(G) x" ™! + d,(G)x" "% — ... + (—=1)"d,(G),
and
®) per (xI — L(G)) = x" — py(G) x" ™" + po(G) x""2 — ... + (=1) p(G).

Denote by Q,, the set of strictly increasing functions from <k) = {1,2,..., k}
into {n). If o, B € Q,,, denote by L(G) [« ’ B] the k by k submatrix of L(G) lying
in the rows o and columns B, i.e., the k by k matrix whose (i, j) entry is the («(i), B(j))
entry of L(G). Then it is immediate from (1) and (2) that

o 4(0) = 3 4o (1) (2] )

and
(4) pG) = ZL per (L(G) [« [ ]) .
€L n

In particular, d,(G) = p,(G) = trace L(G) = ) vertex valencies = 2m, where m
is the number of edges of G. Moreover, d,(G) = det L(G) and p,(G) = per L(G).

A graph theoretical interpretation for d,(G) was given in [4] (also described in
[2, p. 44] and [3, p. 38]), namely dy(G) = Yg(F), k = 1, 2, ..., n, where the
summation is over all edge subgraphs F of G which have k edges and are fo-
rests, and g(F) is the product of the numbers of vertices in the connected com-
ponents of F. We are able to give a vaguely analogous interpretation of p,(G) in
case G is a tree. Before presenting this interpretation we are obliged to introduce
some notation.

Let [V, E] = {(v, ¢)e V xE : ve e}. It might be helpful to think of the elements
of [V, E] as “half-edges” or “marimba sticks”. Two ordered pairs (v,, ¢,) and (v,, e,)
of [V, E] will be said to overlap if v, = v, or e; = e,. A distinguished subset of
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[V, E] is one which consists of pairwise nonoverlapping elements. If z € E, let .
[VNz,E] ={(v,e)e[V,E] :v¢z}.

Finally, for 1t = 1,2,..., [k[2], where [k/2] is the greatest integer in k/2, define
¢ (G) to be the summation, over all collections zy, z,, ..., z, € E of t pairwise dis-
joint edges of G, of the total number of (k — 2t)-element distinguished subsets of

‘-1 [V~z, E]. (If t = k[2, then ¢, (G) is simply the number of collections of (k/2)
pairwise disjoint edges of G.)

Theorem. Let T be a tree. Then
[k/2]
() pdT) = d(T) + ¥ 2" ¢ (T).
=1

(Since L(T) is positive semidefinite symmetric, p,(T) = d,(T) by Schur’s Inequality.
Equation (5) shows what has been discarded to obtain the inequality.)

Example. Let G be the graph

(e,) v

(e;]

Ve

Ys

Then, abbreviating (v, ¢;) with ij, [V, E] = {11, 21, 22, 23, 32, 34, 44, 53, 55, 65}.
We calculate ps(G) = per L(G) using the Theorem. Since the rows of L(G) sum to
zero, dg(G) = det L(G) = 0. Observe

¢6.1(G) =Y. number of 4-element distinguished subsets of [V'\ z, E].

zeE

If e = {v;,v,}, [VNey, E] ={32,34,44,53,5565}. The only pairwise non-
overlapping (i.e., distinguished) 4-element subset of [V\ ey, E] is {32, 44, 53, 65}.
Each of the other four edges gives rise to exactly one 4-element distinguished subset:

ey = {13, 05} > {11, 44, 53, 65} ,

e; = {v,,vs} — {11, 32, 44, 65} ,

es = {0y, vg} - {11,22, 53,65} ,

es = {vs, ve} — {11,23, 32,44} .
Thus, ¢ ,(G) = 5. Letting t = 2,

¢6.2(G) = Y number of 2-element distinguished subsets of
soneknon=b [y 2 E] n [VNz,, E].



Consider the disjoint edges e, and es. Then [V'\ ey, E] = {11, 21, 22, 23, 53, 55, 65}
and [Vxes, E] = {11, 21, 22, 23, 32, 34, 44}. The intersection of these two sets is
{11, 21, 22, 23}. We are looking for all possible choices of 2 nonoverlapping elements
from this set. There are two, namely {11, 22} and {11, 23}. Each of the other pairs
of disjoint edges gives rise to one 2-element distinguished subset, explicitly,

e, and e, — {53,65},
e, and es5 — {32, 44} ,
e, and es— {11,44},
e; and e, — {11,65}.
These four, together with the two already obtained (for e, and es) yield ¢ ,(G) = 6.
Finally, letting t = 3,
s(G)= Y 1.

zy,22,23€E

pairwise disjoint

Since there is only one triple of pairwise disjoint edges in G, namely e,, e, and e,
¢6.3(G) = 1. Putting this information into (5) gives

Pe(G) = 0 + 2¢4 1(G), +4cs.2(G) + 8¢6.5(G) =
=0+ 2(5) + 4(6) + §(1) =
=42,

As an application of the Theorem, we affirm a conjecture made in [7]. The star
graph on n vertices is the tree with one vertex of valence n — 1 and the remaining
n — 1 vertices each of valence 1. We can now state the conjecture as a fact.

Corollary. If G is a connected graph on n vertices, then per L(G) = 2(n — 1)
with equality if and only if G is the star graph.

Proof. It was established in Theorem 3.2 of [7] that if G, is a proper subgraph
of the connected graph G, then per L(G) > per L(G,). Since the trees are the minimal-
ly connected graphs on n vertices, it suffices to prove the result for trees. We appeal
to Equation (5) with k = n. As we argued in the Example, d\(T) = det L(T) = 0.
Consider the case t = 1. Let z be an edge of T. We seek the number of (n — 2)-
element distinguished subsets of [ V'\ z, E]. After removing the edge z and the vertices
at either end from 7, we obtain a “pruned” tree with n — 2 vertices, some edges,
and some ‘“‘dangling half-edges”. Now, each of the n — 2 remaining vertices must
be represented (exactly once) as the first member of an ordered pair in any distin-
guished subset. Therefore, each of the end vertices in the pruned tree must appear
with its associated edge. Removing these ordered pairs (pears?) from the pruned
tree leaves new, pseudo end vertices. Continuing in this way, we find there to be
exactly one distinguished subset of [V z, E] for each edge z of T. Thus, ¢, (T) =
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= m = (n — 1) for any tree T. If T, is the star, there are no two disjoint edges,
much less t-tuples of disjoint edges for ¢ > 2. Thus, per L(T,) = 2(n — 1). If T is
a tree on n vertices which is not the star, then T has two vertices of valence at least 2,
say v, and v,. Let z; and z, be disjoint edges which adjoin v, and v,, respectively.
A slight modification of the argument above yields the existence of a distinguished
subset of [V\zy, E] n [V Nz, E]. Thus, ¢,,(T) > 0. It follows that per L(T) =
2 per L(T,) + 4 for any tree T+ T,. ®

3. PROOF OF THEOREM

In outline, our proof follows the corresponding one for the characteristic poly-
nomial to be found in [2]. The crucial step is an analog of a lemma of H. Poincaré.

Consider a graph G = (¥, E) with n vertices and m edges. For each edge ¢, =
= {v, vj} of G, choose (arbitrarily) one of v;, v; to be the positive end of e,, and the
other to be the negative end. The incidence matrix N(G), with respect to the resulting
directed graph, is an n by m matrix, the (i, j) entry of which is +1 if v; is the positive
and of e;, —1 if v; is the negative end of e;, and 0 otherwise. Each column of N(G)
contains exactly one +1 and exactly one —1. Moreover, N(G) N(G)' = L(G).

Next, we denote by G, ,, the set of nondecreasing functions from (k) into {(m).
For a € Q;, and y € Gy ,,, N(G) [a | 7] denotes the k by k matrix whose (i, j) entry
is the (a(i), y(j)) entry of N(G). Since y need not be one-to-one, N(G) [« | y] may
not be a submatrix of N(G). Some of the columns may be repeated. Regarding y
as a sequence of integers of length k chosen (with repetitions permitted) from {m),
let v(y) be the product of the factorials of the multiplicities of the distinct integers
appearing in the sequence y. (If, e.g, k = 6, m = 7,y = (1,1, 1,4, 5, 5), then w(y) =
= 6.2 = 12.) We are now ready to invoke the Binet-Cauchy Theorem for permanents
[6, p. 20]: If x € Q, . then

per (L) (2] ) = %~ per (V(O) [ 7] per (M) [1 | ).

Since N(G)' [y | «] = (N(G) [« | 7])", and since the permanent is invariant under the
transpose operation, we obtain

©) per (1() [x <)) = ¥ (iy) (per (N(G) [ | 7])? -

7€Gik,m

Lemma. Let T be a tree with n vertices and m (= n— 1) edges. If 1 < k < m,
then per (N(T) [« ] B]) = £det (N(T) [« ] B]), for all a € Qy, and € Q. In par-
ticular, any square submatrix of an incidence matrix of a tree has permanent equal
to 0, +1, or —1.

Proof. Let S be a k by k submatrix of N(T). Each column of S contains at most
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two nonzero entries. If each column of S were to contain exactly two nonzero entries,
then S would be an incidence matrix for an edge-subgraph of T. In particular, S would
be an incidence matrix of a forest. But this is impossible because S is square, yet
the number of edges of a forest is strictly less than the number of vertices. (Specifically,
edges = vertices-components.) We may assume, therefore, that there is a column
of S containing at most one nonzero entry. Of course, if there is a zero column of S,
then det S = per S = 0. Otherwise, suppose column j contains exactly one nonzero
entry in row i. Then per S = +per S(i | j) and det S = L det S(i | j), where S(i | j)
is the submatrix of S obtained by deleting row i and column j. Now, S(i 5]) is
a (k — 1) by (k — 1) submatrix of N(T). As before, either S(i lj) contains a coiumn
of zeros or a column with exactly one nonzero entry. Continue the process of reduction
of the size of the submatrix until a column of zeros appears or a 1 by | submatrix is
reached. In either case, the result follows. :

In [8], Poincaré proved that any square submatrix of an incidence matrix of a graph
has determinant equal to 0, +1, or —1. It is easy to construct examples which show
that the analogous result for permanent is false. It is for this reason that we have
been able to obtain a theorem only for trees.

We now return to Equation (6) It follows from our Lemma, the Binet-Cauchy
Theorem for determinants, Equations (3) and (4) that

™ P(T) = d(T) + 3 X - (per (N(T) [x] 1]
aclrn — ¥(p)

where the second summation is over those y € G, ,, with v(y) > 1. Denote by m,(y)
the multiplicity of the integer r in y. (Then v(y) = [ /2, (m,(y)!).) If there is an integer
s such that my(y) = 3, then N(T) [« l y] contains three equal columns. Since this
repeated column contains at most two nonzero entries, it follows that N(T) [« | y]
has a 3 by (k — 2) submatrix of zeros. By the Frobenius-K&nig Theorem, per (N(T) .
. [ec| ]) = O for such a y and any choice of o € Qy .. Thus, we may restrict the second
summation in (7) to those y € G, satisfying m,(y) <2, r = 1,2,..., m, with at
least one case of equality. If m(y) = 2, part of column [ of N(T) occurs twice in
N(T) [a | y]. If the nonzero entries in column [ of N(T) lie in rows i and j. then
N(T) [o| 7] contains a 2 by (k — 1) submatrix of zeros (and hence per (N(T).
.[o| 7]) = 0) unless both i and j are contained in (the sequence) a. If a(p) = i,

a(q) = j, y(r) = y(s) = 1, then
(8) per (N(T) [o | ]) = =2 per (N(T) [« | 7]) (P, q | 7, 9)) »

where (N(T) [« | 7]) (p, q | 7, s) is the (k — 2) by (k — 2) submatrix of N(T) [« 7]
obtained by deleting rows p and g, and columns r and s.

Consider the case that m,(y) = 2 for exactly t values of r. Then v(y) = 2'. Moreover,
there are 1 edges, z;, z,, ..., z, of T such that the corresponding columns of N(T)
each occur twice in N(T) [o | y]. If two of these edges share a vertex, then N(T) [« | 7]
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has 4 columns with nonzero entries confined to (at most) 3 rows, i.e., N(T) [« ] 7]
contains a 4 by (k — 3) submatrix of zeros, and the corresponding permanent is
zero. In case no two of zy, z,, ..., z, share a vertex, we may repeat the argument
which led to (8) t-times to obtain (—2) times the permanent of a (k — 21) by (k — 21)
submatrix of N(T). Appealing to the lemma, we obtain (per (N(T) [« | 7]))*/v(y) = 0
or 2". We summarize as follows: In the second summation in (7), from among those
7 € Gy, for which m,(y) = 2 for exactly t values of r (and m,(y) <2 for the remaining
values) we sum only over those y for which the repeated entries correspond to a col-
lection of ¢ pairwise disjoint edges of T. For such a y, (per (N(T) [a | 7]))*/v(y) = 2*
if and only if the corresponding (k — 2r) by (k — 2t) submatrix of N(T) has per-
manent +1 (i.e., not zero). This occurs if and only if 27 of the entries of « correspond
to the nonzero rows of the  repeated columns of y and the remaining (k — 21)
entries of « match up with the remaining (k — 21) entries of y to produce a (k — 2t)
by (k — 2t) submatrix of N(T) with a nonzero diagonal. In a 7 for which the ¢
repeated entries correspond to the pairwise disjoint edges z,, z,, ..., z,, these condi-
tions are equivalent to the existence of a distinguished subset of -, [V'\ z;, E].
That this is so may easily be seen by visualizing the matrix N(T) whose rows are
indexed by vertices and whose columns are indexed by edges. Thus, ¢, (T) counts
the number of occurrences of 2' in the double summation on the right-hand side
of (7). =
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