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1. Introduction. A general question in the theory of semigroups has been a charac-
terization of the minimum group congruence on a semigroup, where such a con-
gruence exists. Stoll, in [11], developed a basic theory in terms of neat, reflexive,
and left unitary subsets of the semigroup. For the class of regular semigroups, howe-
ver, an explicit determination was sought beginning with inverse, orthodox and
conventional semigroups.

After Section 2, which gives necessary preliminaries and definitions, Section 3
develops the property of reflexiveness and gives a result which characterizes, in terms of
necessary and sufficient conditions, the relationship of the minimum reflexive sub-
semigroup to the set of idempotents and to the minimum group kernel of a regular
semigroup. In particular, in a completely simple semigroup, the set idempotents is
shown to be the minimum reflexive subset of the semigroup.

Section 4 then ties together the work of Section 3 and that of R. R. Feigenbaum
in [4]. The main result characterizes the minimum group kernel of a regular semigroup
in terms of R, the reflexive subsemigroup generated by the set of idempotents, and in
terms of U, the minimum full self-conjugate subsemigroup. The relationship of R
and U to each other and to the minimum group kernel is also determined.

2. Preliminaries. The notation of Clifford and Preston, [1], [2], will be used
throughout the paper. If S is regular and there is no danger of ambiguity, E will
be used to denote Eg, the set of idempotents of S. The set of inverses of an element
¢ € S will be denoted by V(c).

If cEc’ < E for all ce S and ¢’ € V(c), S is called conventional; if E is also a sub-
semigroup, S is orthodox; if E is commutative, S is called an inverse semigroup.

When a congruence ¢ is such that S/g is the maximal homomorphic image of S
of type C, as in [2; p. 275] and [2; Theorem 11.25 (A), p. 276], then ¢ will be called
the minimum congruence on S of type C and S/g will be called the maximum
homomorphic image of S of type C. In other words, S/g is the maximum C-image
if and only if ¢ is of type C and ¢ < ¢ for each congruence o which is of type C.

1) This research was supported by Glassboro State College Release-Time grants.
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If ¢ is a group congruence on S, then H, the group identity of S/s, is a subsemi-
group of S and can be used to describe ¢. In particular, if we define the relation oy
on S by

(2.1) oy ={(a,b)e S x S: ax, bxe H for some x in S},

then ¢ = o4. The subsets which generate group images of S, relative to the relation
defined in equation (2.1), R. Stoll [11; p. 478] calls, after Dubriel, the normal and
unitary subsemigroups of S. They are also characterized by [11; Theorem 3, p. 477]:

(22) (i) H is a subsemigroup of S;
(ii) if @, be S and ab € H then ba € H;
(iii) if a, be S and a and ab € H then b e H;
(iv) H is a neat subset of S.

Recall from [2; p. 16] that a subset H is called neat if it is a right neat subset of S
and a left neat subset of S; i.e., if for each s € S, there exists an x € S and y € S such
that sx e H and yse H.

Clifford and Preston [2; pp. 55, 56] describe a subset H of S as being reflexive if
it satisfies (ii) of (2.2) and left unitary if it satisfies (iii) of (2.2). Henceforth, a sub-
semigroup of S satisfying (ii)—(iii) of (2.2) will be called a normal subsemigroup
of S. If S is a regular semigroup, then E is inherently neat. Note that the concept of
a neat normal subsemigroup coincides with what Levi [8; p. 142] called a complete
normal subsemigroup.

Since the kernel of a congruence on a regular semigroup is the union of all the con-
gruence classes containing an idempotent, the subsemigroup H of (2.1) must neces-
sarily contain E. In the following, the kernel of the maximum [minimum] group
homomorph [congruence] will be denoted by K.

For reference, we state the following theorem which gave a partial description
of the minimum neat normal subsemigroup generated by a neat subset; that is, the
"description contained in the following result was complete except for a precise
description of the reflexive subsemigroup generated by the neat subset being used.

Lemma 2.3. [9; Theorem 4.2, p. 400]. Let S be a semigroup containing a neat
subset D. Denote by R the reflexive subsemigroup of S generated by D. The subset
H = {seS:bseR for some beR} is the minimum neat normal subsemigroup
of S containing D. Thus oy of equation (2.1) is the minimum group congruence
on S generated by D. If S regular and D = E, then H = K.

3. The Relationship of E, R, and K. In this section for a regular semigroup S we
investigate the properties of R, the minimum reflexive subsemigroup of S generated
by E, and its relationship to K, the kernel of the minimum group congruence on S.
Since E is a neat subset of a regular semigroup, then Lemma 2.3, with D = E,
implies at least that E < R < K.

Some natural questions arise; viz, when is E reflexive or equal to K? The next
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result shows that the minimum reflexive subset containing E need not be a subsemi-
group of S, and, in fact, may equal E.

Theorem 3.1. If S is a completely simple semigroup, then E is a reflexive subset
of S.

Proof. If x, y € S with xy € E, then xy is a left identity for x. Thus, (yx)(yx) =
= y((xy) x) = y(x), and E is reflexive.

The converse of the preceding theorem is false. In particular, if S is any semigroup
in which E is a rectangular band, then by [9; Corollary 4.5, p. 401] E = R. Thus
while E is reflexive, S need not be completely simple. In fact, it is straight forward
to show that for such S, we actually have E = R = K.

It is also natural to ask whether or not R must equal one of E or K. The answer
is provided by the following:

Remark 3.2. There exists semigroups in which E & R ¢ K. For example, let S,
be the symmetric inverse semigroup on {1, 2}, and let S, be the full transformation
semigroup on {1,2,3}. Then E, = R, £ K,, E, & R, = K,, and the semigroup
S = S; x S, satisfies the remark with E=E, x E,, R=R; x R,, and K =
=K, x K,.

The next theorem now categorizes the possible relationships between E, R and K,
and gives necessary and sufficient conditions on E and R in order that these relation-
ships hold.

Theorem 3.3. Let S be a regular semigroup. Denote the idempotents of S by E,
the minimum reflexive subsemigroup generated by E by R, and the minimum
group kernel (neat normal subsemigroup) by K.

(i) E = R if and only if E is a reflexive subsemigroup of S.

(i) R = K if and only if R is a left unitary subsemigroup of S.

(i) E = R = K if and only if E is a left unitary subset of S.

Proof. Parts (i) and (i) are immediate from the definitions of R and K respectively.

For part (iii), E = K clearly implies that E is left unitary. Conversely, if E is left
unitary and ab = e€ E, then aba = ea and eaba = ea. It follows then that for
(ea) € V(ea), (ea) ea(ba) = (ea)’ eaba = (ea) ea. Since (ea)’ ea € E, then E being
left unitary implies that ba € E; i.e., E is reflexive. That E is a subsemigroup follows
from [7; Lemma 2.1, p. 149]. Thus by (i), E = R = K.

Some additional characteristics of R are contained in the following result. We will
denote the set of inverses of a set 4 by V(A4); that is V(4) = U V().

xeAd

Theorem 3.4. Let S be a regular semigroup with E, R, and K as in Theorem 3.3.
Then:

() V(E) = R, V(R) = K, V(K) =K.
(ii) For all ce S and ¢’ € V(c), cRc’ < R.
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Proof. If xe V(e), for e € E, then ex, xee E = R implies that x = xex = xeex €
€ R. The second and third parts of (i) follow from the left unitary property of K.

For (ii), let ce S, ¢’ € V(c) and b e R. Since ¢’cb € R, then cR¢’ < R.

Note that part (ii) of Theorem 3.4 is comparable to that for E and K; viz, if S
is conventional, [9; p. 396], then cEc’ < E for all ce S and ¢’ € ¥(c), and if S is
regular, then ¢cKc¢' = K for all ¢’ € V(c).

Remark 3.5. If S is an inverse [orthodox, conventional, regular | semigroup, then K
is an inverse [orthodox, conventional, regular] subsemigroup of S. The proofs are
all immediate from the definitions.

The next result is presented for the case of an inverse semigroup, and it motivates
the discussion to follow. Recall that for the natural partial order w on an inverse
semigroup S, Ew = U{ew :ee E} where ew = {ae S:ea = e}. For a subset A
of S, we define Aw as {xeS:axe A for some ae A}; A will be called closed if
Aw = A.

Theorem 3.6. Let S be an inverse semigroup. Denote the minimum group kernel
of S by K, and the natural partial order on S by w. Then,
(i) K = {aeS:ea = ae = e for some ee E}.
(ii) Ew = K.
(ili) K is a closed inverse subsemigroup of S.

Proof. For (i), K = {ae S:ea = e for some ee E} by [2; p. 193]. Let ae S,
ec E and ea = e. Then we have ae(e) ae = ae, e(ae)e = e, and ae e V(e). Thus,
since S is inverse, ae = e.

To show (ii), let x € Ew, say x € ew for some e € E. Since ex = e, it follows as in
the proof of (i) that ex = xe = e; i.e., x € K. Conversely, if x € K, then there exists

- e € E such that ex = xe = e and hence x € ew.

Lastly, by [2; Lemma 7.9, p. 43] part (iii) is true.

Theorem 3.6 suggests that the notion of left unitary closure may give rise to more
general considerations in a regular semigroup. That such is the case was shown in
Feigenbaum [4; Chapter 1V]. From Feigenbaum [4; pp. 5, 6, and 21] we have the
following definitions: a subset H of a regular semigroup S will be called full if E < H,
and self-conjugate if cHc'< H for all ce S and ¢’ € V(c); the closure of H will
be Ho = {se S : hse H for some he H}; H will be called closed if H = Ho.

We have immediately that any full subset is neat, and that R, by Theorem 3.4 (ii),
is a self-conjugate subsemigroup of S. Moreover, closure as defined above coincides
with the concept of left unitary as used in Lemma 2.3. Thus we see that Rw = K.

From [4; p. 19], we define ¥ = {C < S: C is a full, selfconjugate subsemigroup
of S}. Since Se¥,% + 0. If U = n¥; i.e., U is the smallest member of %, then by
[4; Theorem 4.2, p. 20] the minimum group congruence on a regular semigroup S
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can be characterized by:
(3.7) Bu = {(a,b)e S x S:ab' e Uw for some b’ € V(b)} .

We are thus lead to determining the relationships between the sets U, R, and K,
and the congruences o of (2.1) and By of (3.7).

4. The Relationship of E, U, R, and K. We begin with the following result.

Lemma 4.1. Let U be defined as in section 3. Then Uw is closed and self-conjugate.

Proof. Since Uw < (Uw) w, suppose x € (Uw) w. There exists y € Uw such that
yx € Uw, and therefore there exists u, v € U such that uy, vyx e U. Since (uy) u(y'vy) €
e U? = U, then (uyuy'vy) x = u(yuy’) vyx € U® = U implies that x € Uw.

Next, let ce S, ¢’ e V(c), and x € Uw. There exists u € U such that ux € U. Since
c(u.xux’)c'eU and ¢'ce E = U, then (c(u.xux’)c’)exc’ = ¢((ux) u(x'c’cx)) ¢’ e
ecU3 < cUc < U;ie., cxc' e Uw.

Theorem 4.2. Let S be a regular semigroup. Denote the set of idempotents of S
by E, the minimum full self-conjugate subsemigroup of S by U, the minimum
reflexive subsemigroup of S by R, and the minimum group kernel by K. Let By,
and oy be defined as in equations (3.7) and (2.1) respectively. Then:

(i) ESU<=RcK.

(i) Uw = Rw = K.

(iii) By = ox.

Proof. To establish (i), we need only show that U < R. By Theorem 3.4, R is
a full self-conjugate subsemigroup of S. Thus by the definition of U, U < R.

For (ii), let abe Uw where a, b e S. There exists u € U such that uab e U, and
therefore, a’(uab) a = (a'ua) ba e U. Thus ba € Uw and Uw is reflexive.

By the definition of R, R € Uw. By Lemma 4.1, (Uw)w = Uw, and therefore
K =Rw < (Uo)w =Uw < Rw =K.

Part (iii) follows from (ii) since a Byb iff 3b" € V(b) such that ab’ € Uwiff 3b" € V(b)
such that ab’ € K iff aogb.

In Remark 4.3 below, we show that U % R in general. Thus Theorem 4.2 says
that beginning with E, the minimum group kernel for a regular semigroup can be
found through either reflexiveness or self-conjugacy, with left unitary closure com-
pleting the process; i.e., both Stoll's and Feigenbaum’s theory yield the same result.
This is amplied in Theorem 4.4 where a description of K is given.

Remark 4.3. Let S = A U B where 4 = {a;;} and B = {b;;} for i, je {1, 2}. De-
fine multiplication in S by

a; if .] =k >
;i = PO

by if j+k;
b

ijbkl = aijbkl = bijakl =b;.
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Then S is an orthodox semigroup with E = U and R = K = S.

Theorem 4.4. If S is a reqular semigroup, then the minimum group congruence
on S may be written as either

{(a. b)e S x S:eae = eu'u,be for some ec E, u, and ue U, and u' e V(u)}

or as
{(a.b)eS x S:gag = gr'r,bg for some ge E, r, and reR, and r € V(r)} .

Proof. By Theorem 4.2, Uw = Rw = K implies thatif (a, b) € o5 = By, then there
exists r;, r€ R and there exists u;, u € U such that rab’ = r, and uab’ = u,. By
Howie and Lallement [8; Lemma 1.1, p. 146] there exists g, e € E such that gr'r =
= b'bg =g and eu'u = b'be = e. Thus we have eae = e(u'u;)be and gag =
= g(r'r,) bg. The converse is evident.

Note that if V(R) < R, or V(U) < U, then Theorem 4.4 could be simplified
further. It is an open question as to whether or not V(R) < R or V(U) = U in
general.

With the relationship between E, U, R, and K determined, the results of R. R.
Stoll and R. Feigenbaum have been pulled together. While a construction for R
has appeared in [10], a construction for U is yet unknown.

We conclude the paper with an overview table. Recall that R is the minimum
reflexive subsemigroup of S generated by E, and U is the minimum full self-conjugate
subsemigroup of S.

S Kernel of S

Inverse: {xe S: exe = e, some ee€ E} Munn
Orthodox: {x €S: ex = f, some e, fe E} Meakin
Conventional: {x €S: ex = f, some e, f€ E} Masat
Regular: {x €S: er'sx = f, some e, fe E and Masat

r,seR, r'eV(v)}

or
{x €S: eu'vx = f, some ¢,fe E and Feigenbaum
u,veU, u' e V(u)}
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