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TORSION RADICALS OF LATTICE ORDERED GROUPS

JAN Jakusik, KoSice

(Received April 24, 1979)

The notion of torsion radical of lattice ordered groups has been introduced by
J. Martinez [12]. Several concrete types of torsion radicals have been investigated
by P. Conrad [3]. To each torsion radical ¢ there corresponds a torsion class A4,
consisting of all lattice ordered groups G having the property that ¢(G) = G; the
torsion radical g is uniquely determined by A4,. Let 4 be the class of all lattice ordered
groups and let # be the class of all torsion radicals. Let ¢y, 0, € Z. We put ¢; < 0,
if 0,(G) < 0,(G) for each G e 4. The relation < is a partial order on the class Z.
In [12] it has been proven that the partially ordered class (#; <) is a complete
lattice.

The least and the greatest element of 2 will be denoted by 0 or g, respectively. For
0 € # we denote by A(g) the class of all elements of £ covering g; the torsion radicals
belonging to A(g) are said to be atoms over o. The class of all principal torsion
radicals will be denoted by £. The symbols Ab and Repr denote the torsion class
consisting of all abelian or representable lattice ordered groups, respectively. The
one-element torsion class (containing the zero group {0} oniy) is said to be trivial.

The content of this paper is as follows. In § 1 there are given the basic definitions.
Torsion classes generated by linearly ordered groups are investigated in § 2. Principal
torsion classes are dealt with in § 3. Covering relations in the partially ordered class
(92; é) will be examined in § 4 and § 5.

Sample results: If 4 is a torsion class generated by linearly ordered groups, then 4
cannot be represented as a product BC of nontrivial torsion classes B, C. The class 2
is an ideal of Z. A torsion class A is principal if and only if there exists a cardinal «
such that for each G € A and each 0 < x € G we have card [0, x] < «. If ¢ is a prin-
cipal torsion radical, then the class A(g) is infinite and each ¢’ € A(p) is principal.
If A€ {Ab, Rep} and if ¢ is the torsion radical corresponding to A, then the class
A(e) is infinite. For each ¢ € # there exists ¢’ € # with ¢ < ¢’ such that (i) A(¢") = 0,
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and (i) if ¢ 01 € Z and A(e;) = 0, then ¢' = €1 There exists a torsion radical ¢
with ¢ < @ such that (i) A(c) = 0, and (ii) if ¢1 € # and A(ey) = 0, then ¢ < p,.
There exists no dual atom in Z.

1. PRELIMINARIES

The standard denotations for lattices and lattice ordered groups will be used (cf.
Conrad [2] and Fuchs [4]). The symbols = and < will be applied for denoting the
containment or proper containment of classes, respectively.

Let ¢ be the class of all lattice ordered groups and let ¢ be a mapping of 4 into %

such that the following conditions are fulfilled for each G € 4:
(i) o(G) is a convex [-subgroup of G.

(i) If G, is a convex I-subgroup of G, then o(G,) = ¢(G) n G;.

(iii) If ¢ is a homomorphism of G onto a lattice ordered group G, then ¢(o(G)) =
= o(¢(G))-

Under these assumptions g is said to be a torsion radical.

The system of all convex /-subgroups of a lattice ordered group G will be denoted
by ¢(G); this system is partially ordered by inclusion. It is well-known that ¢(G) is
a complete lattice; we denote the lattice operation in ¢(G) by A, v.If G, € C(G),
{G}ia € ¢(G), then

Gy A (Vi Gi) =Via (G1 A G.’) .

A nonempty class C of lattice ordered groups is called a torsion class if it has the
following properties:

(a) If Ge C and if G, € ¢(G), then G, € C.

(b) If Ge 9 and if {G,},, is a system of convex I-subgroups of G such that G;e C
for each i € I, then V; G, belongs to C.

(c) The class C is closed with respect to homomorphisms.

There is a one-to-one correspondence between torsion radicals and torsion classes.
Namely, if ¢ is a torsion radical, then the class C%(g) of all G € ¢ with o(G) = G is
a torsion class. Let C be a torsion class. For each G € 4 we denote by ¢°(C) (G) the
join of all convex I-subgroups of G belonging to C. Then ¢°(C) is a torsion radical.
For each torsion radical ¢ and each torsion class C we have

C°%(C) = C, °(C°e) =e-

Let Z be the class of all torsion radicals. We consider £ with the partial order <
defined in the introduction. Then for 04,0, € # we have ¢; < ¢, if and only if
C%o,) € C%go,). Let 2, be a nonempty subclass of . For each G € 4 we put

QI(G) = Vea, Q(G) s 92(6) = Aceat, Q(G) :
Then g, is the least upper bound of £, in %, and g, is the greatest lower bound of %,
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in Z. We denote ¢; = Vae-ﬂx 2,02 = /\@E"”l ¢- If % € 7, then

FANAN (VQeﬂ, Q) = Vge.ﬁ’, (% A Q)
(cf. [12]).

The notions of torsion class and torsion radical can be generalized in such a way
that in the conditions (ii) and (c) above we replace homomorphisms by isomorphisms.
The corresponding generalized notions are called radical class and radical mapping,
respectively. The class Z of all radical mappings is partially ordered analogously to 2.
The partially ordered class Z has been investigated in [9].

2. TORSION CLASSES GENERATED BY LINEARLY ORDERED GROUPS

Let A be a nonempty class of lattice ordered groups. Let us denote by

S.(A4) — the class of all lattice ordered groups H’ such that H' is a convex I-sub-
group of a lattice ordered group H € 4;

H(A) — the class of all lattice ordered groups H’ such that H' is a homomorphic
image of some H € A4;

I(A) — the class of all lattice ordered groups H' that can be expressed as H' =
= Ujer H;, where H; are convex Il-subgroups of H', H;€ A for each i€, and the
system {H,},.; (partially ordered by inclusion) is a chain;

u(A) — the class of all lattice ordered groups H’ that can be written as H' =
= Ve H;, where H; are convex l-subgroups of H and H, € 4 for each i e I.

2.1. Lemma. Let ¢ be a homomorphism of a lattice ordered group G onto a lattice
ordered group H. Let H' be a convex l-subgroup of H. Then ¢~ *(H') is a convex
l-subgroup of G.

Proof. ¢7!(H’) is clearly an I-subgroup of G. Let g, € G, g, € ¢ '(H'),0 £ g, <
< g,. Then 0 £ ¢(g,) < ¢(g,), hence ¢(g,) € H' and thus g, € ¢~ '(H’). Therefore
@~ '(H') is a convex [-subgroup of G.

2.2. Lemma. Let A # 0 be a class of lattice ordered groups. Let C = H(S(A)).
Then C fulfils the conditions (a) and (c) from § 1.

Proof. The validity of (c) follows immediately from the definition of C. Let
H, e C and let H' be a convex I-subgroup of H,. There exist G € A, a convex [-sub-
group G, of G and a homomorphism ¢ of G, onto Hy. Put H; = ¢~ '(H’). According
to 2.1, H, is a convex I-subgroup of G,, hence H, is a convex l-subgroup of G.
Thus H' € C and therefore C fulfils (a).

2.3. Lemma. Let A & Q be a class of lattice ordered groups and let C' =
= u(H(S,(A))). Then C' is a torsion class.

Proof. We have to verify that C’ fulfils the conditions (a), (b) and (=) from § 1.
The validity of (b) follows immediately from the definition of C'. Let Ge C’' and
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let G, be a convex I-subgroup of G. Let C be as in 2.2. There exists a system {G,},.; <
< C such that each G; is a convex [-subgroup of G and G = V,; G;. Hence G, =
= V.a(Gy A G)), and all G; A G; are convex I-subgroups of G,. Moreover, ac-
cording to 2.2, each G; A G, (i €I) belongs to C. Hence G, € C’ and so C’ fulfils (a).
Let ¢ be a homomorphism of G onto a lattice ordered group H,. Denote G; = ¢(G,)
for each iel. Then Gj are convex [-subgroups of Hy and Hy, = V,; G;. From 2.2
we obtain G e C for each i e I. Hence H, € C’ and thus C’ fulfils (c) as well.

If A, is a torsion class with A = A, then clearly C' = A,. From this and from 2.3
we obtain:

2.4. Corollary. Let A + 0 be a class of lattice ordered groups. Then u(H(S(A)))
is the least torsion class having A as a subclass.

In view of 2.4, u(H(S,(A))) will be said to be the torsion class generated by 4;
it will be denoted by T(A). If A is a one-element class, then T(A) will be called a principal
torsion class, and the corresponding torsion radical will be said to be a principal
radical.

2.5. Lemma. (Cf. [10].) Let G be a lattice ordered group and let Hy, H, € ¢(G).
Assume that both H, and H, are linearly ordered and that H, n H, =% {0} Then
we have either H, < H, or H, < H,.

Let {G;} ;1 be a system of lattice ordered groups. The direct product and the direct
sum (= discrete direct product) will be denoted by [ [;; G; or by ) ;.; G, respectively.
Without loss of generality we can assume that if G = [],,; G, or G = ) ,;; G;, then
G;ec(G)foreachiel.

2.6. Theorem. Let A + 0 be a class of linearly ordered groups. Let Ge 4. Then
the following conditions are equivalent:
(x) Ge T(4).

(B) G can be expressed as G = Y ,.; G;, where each G, belongs to I(H(S(4))).

Proof. We obviously have I(H(S.A))) < u(H(S(4))). If G =73 ,,G;, then
Ve Gj = G and G; are convex [-subgroups of G. From this and from 2.4 we infer
that (B) = (o).

Assume that (o) is valid. According to 2.4 G can be expressed as G = V ey K»
where each K, is a convex l-subgroup of G and belongs to H(S,(4)). The case G = {0}
being trivial, we can assume without loss of generality that K, & {0} for each
me M. Let m be an arbitrary but fixed element of M. We denote by 4,, the set of
all K, (m; e M) with K,, n K,,, + {0}. From 2.5 it follows that the system A,
(partially ordered by inclusion) is a chain. Hence 4,, = UK,, (K,, € 4,,) is a convex
I-subgroup of G. Thus 4, € I(H(S.(A))) for each m e M. If m, m’ € M, then either
A, = A4, or A,n 4, = {0}. Let us denote by {G,},, the set of all 4, (me M).
Clearly G; € I(H(S,(A))) for each j e J.
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From G =V, Kn We obtain G = V., G;. Since G; n G;, = {0} for each pair
of distinct elements j, j; € J, we have G = Y ;.; G;, thus (B) holds.

For a nonempty class 4 of lattice ordered groups we denote by TO(A) the radical
class generated by 4. From 2.2, 2.6 and [10], Thm. 3.4 we obtain:

2.7. Cerollary. Let A = 0 be a class of linearly ordered groups. Then T(A) =
= TH(S4))

If A4 is a radical class, then ¢°(4) (G) has an analogous meaning as in the case of
torsion classes (i.e., 0°(4) (G) is the join of all convex I-subgroups of G belonging
to A). For each radical class A and each G € &, ¢°(4) (G) is an I-ideal of G. Let 4, B
be radical classes. We denote by 4B the class of all G € 4 having the property that
G[0°(4) (G) belongs to B. Then AB is a radical class; if, moreover, 4 and B are
torsion classes, then AB is a torsion class as well. Products of torsion classes have
been investigated in [12], [8]; for products of radical classes cf. [10]. A radical class A
is called complete if A4 = A.

The following results have been established in [10]:

(¥) Let A % 0 be a class of linearly ordered groups. Then Ty(A) cannot be repre-
sented as a product BC of radical classes B, C distinct from the zero class {0}.

(xx) Let A =& 0 be a class of linearly ordered groups. Let G e Ty(A). Then G
cannot be represented as a direct product of an infinite number of nonzero lattice
ordered groups.

From 2.7 and () we obtain:

2.8. Theorem. Let A & 0 be a class of linearly ordered groups. Then T(A)
cannot be represented as a product BC of nonzero torsion classes B, C.
From () and 2.7 we infer:

2.9. Theorem. Let A + 0 be a class of linearly ordered groups. Let G € T(A).
Then G cannot be represented as a direct product of an infinite number of nonzero
lattice ordered groups.

3. PRINCIPAL TORSION RADICALS

Let 4 = {G} be a one-element class of attice ordered groups. Then T(A4) will be
said to be the principal torsion class generated by G; we write also T(4) = T(G).
The corresponding principal torsion radical will be denoted by gg. From the defini-
tion of gg it follows that gg is the least element of the class {¢ € % : o(G) = G}.
Let 2 be the class of all principal torsion radicals.

The following assertion follows immediately from Corollary 2.4.

3.1. Lemma. ([13], Lemma 1.1.) Let G, H € 4. Then the following conditions are
equivalent:
(a) He T(G).
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(b) There are sets {H;},;; < c(H), {G;}ir < ¢(G), such that, for each iel, H; is
isomorphic with a factor lattice ordered group of G,, and H =\ ., H;.

3.2. Lemma. Let Ge %, ge &, 0 < g Let S = {(G;, G})};os be the set of all
pairs (G;, G) such that G; e ¢(G), G} is an l-ideal of G;, and G;|G}e C%(o). Let
G' = Y, G}, where G} is isomorphic with G;/G} for each jeJ. Then ¢ = o..

Proof. We have to verify that C°(¢) = T(G') is valid. According to the definition
of G', G' = V., G| and G € C°(p) for each j e J, hence G’ € C°(¢). Thus T(G') =
< C%o).

Let H e C%g). From ¢ < g we obtain H e C°(gs) = T(G). Hence the condition
(b) from 3.1 is valid. From H;e c¢(H) it follows that H;e C°(¢). Now from the
definition of G’ and from 3.1 we infer that H e T(G'). Therefore C°(0) = T(G").

3.3. Corollary. Let ¢, € P, 9, € R, 0, =< 0;- Then 9, € 2.

3.4. Lemma. Let A = {G;);.; be a set of lattice ordered groups. Then T(A) =
= T(G), where G = Y, G,.

Proof. Since 2.4 implies Ge T(A), hence T(G) < T(A). Let Ho e T(4), then
according to 2.4 there is a set {H,},; = ¢(Ho) n H(S(A)) such that H = V. H,.
From this and from 3.1 we obtain H e T(G). Hence T(G) = T(A).

3.5. Corollary. Let I be a set and let {¢;};; S 2. Then Vi 0i€ 2.

By summarizing, we infer from 3.3—3.5:

3.6. Theorem. The class P is an ideal of the lattice #. Moreover, 2 is closed
with respect to taking joins of sets of torsion radicals belonging to 2.

There are torsion radicals that fail to be principal (this follows, e.g., from Thm.
3.14 below); hence % + 2. Put §(G) = G for each Ge %. Then @ is the greatest
torsion radical. From 2 + £ and from 3.6 it follows that g cannot be principal.
Clearly ¢ = Vges 06- Thus £ fails to be closed with respect to arbitrary joins.

Let G e 9. A subset {a;},.; of G* is said to be disjoint if a; A a; = 0 whenever i, j e
el and a;, a; are distinct elements. Put

b(G) = sup {card {a;},; : {a;} ;s is a bounded disjoint subset of G},

bo(G) = sup {b(G,) : G; € H(S({G}))}

m(G) = sup {card [0, x] : 0 < x e G}.

Then b(G), bo(G) and m(G) are increasing cardinal properties on ¢ (in the sense
introduced in [7]).

Let G € % and let S(G) be the set of all subgroups of G; if S(G) is partially ordered
by inclusion, then S(G) is a complete lattice.

3.7. Lemma. (Cf. [11].) The lattice c(G) is a closed sublattice of S(G).
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3.8. Theorem. Let {0} + Ge ¥, He T(G). Then b(H) < max {by(G), No}, and
this estimate is the best possible.

Proof. Let {H,},; be as in 3.1 (b), and let {h;};, be a bounded disjoint subset
of H. Suppose that 0 < h; < h e H s valid for each j € J and that h;, % h;, whenever
J1, J» are distinct elements of J. From 3.7 it follows that there are indices iy, ..., i, €1
and elements g, € H;,...,g,€ H; with h =g, + ...+ g, Thus h < gy + ...
...+ g7 =k and hence h; £ I’ for each je J. Without loss of generality we can
suppose that 0 < g, for k = 1,2, ..., n. Let je J be fixed; if g7 A h; =0 for k =
= 1,..., n, then weshould have h" A h; = 0, which is a contradiction. Hence there
is ke{l,...,n} with g/ A h;>0. For ke{l,...,n} put J(k)={jeJ:g A
A h;>0}. Then J = J(1)u ... u J(n) and for each ke {1,...,n}, {95 A I}
is a disjoint subset of H;. Thus according to the definition of bo(G) we have
card J(k) < bo(G) for each ke {1, ..., n}. This implies card J < n bo(G). Therefore
b(H) < max {b,(G), X, }-

Let {Gg};x be an infinite set of lattice ordered groups such that

(@) {Gilrex = H(SL{G})),

(B) for each G, € H(S.{G})) there is k€ K such that G, is isomorphic with G,.
Put G’ = Y, G,. Clearly G'e T(G) and it is a routine to verify that b(G') =
= max {bo(G), Xo}-

3.9. Corollary. Let {0} & Ge 9. Then there is a cardinal « with b(H) < « for
each H e T(G).

3.10. Remark. If 4 is a torsion class and if there is a cardinal « such that b(H) <«
for each H € A4, then 4 need not be principal.

Example. Let 4, + 0 be a class of nonzero linearly ordered groups, A = T(4,).
From 2.6 it follows that we have b(H) < N, for each H € A. The class 4 need not
be principal (this can be verified by using Thm. 3.14 below and the fact that for each
cardinal « there exists a linearly ordered group G such that card [0, x] = o for each
0 <xeG)

3.11. Lemma. Let Ge 9,0 < ae G, 0 < be G and let « be an infinite cardinal.
If card [0, a] < a, card [0, b] < «, then card [0,a + b] < a.
For proving this the proof of Lemma 3.1 of [9] can be applied.

3.12. Lemma. Let {0} + Ge %, H e T(G). Then m(H) < m(G).

Proof. Let {H;},; be as in 3.1 (b) and let 0 < h € H. Further, let g, ..., g,, h’ be
as in the proof of 3.8. Since H; € H(S({G})), we have card [0, g,] < m(G) for k =
= 1....,n and hence according to 3.11, card [0, h] < card [0, k'] < m(G). There-
fore m(H) < m(G).

Since G € T(G), the estimate given in 3.12 is the best possible. Let us further remark
that if {0} + G e ¥, then m(G) = N,.
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Let Ge¥,0 < xeG. Then
G,=U[-nx,nx] (n=1,2,3,...)

is the least convex I-subgroup of G containing the element x. From 3.11 it follows
that if « is an infinite cardinal with card [0, x] < o, then card G, < a.

3.13. Lemma. Let « be an infinite cardinal. Let A, be the class of all laitice ordered
groups G with m(G) £ «. Then A, is a principal torsion class.

Proof. Consider the conditions (a), (b) and (c) from the definition of torsion
class (cf. § 1). The class A, obviously fulfils the conditions (a) and (c). Let H € % and
let H = {xeH :card [0,x] < «}. From 3.11 it follows that H, is a convex I-
subgroup of H. Hence H, is the largest convex I-subgroup of H belonging to 4,.
This implies that A, fulfils the condition (b) as well; hence 4, is a torsion class. We
have to verify that A4, is principal. )

Let us denote by A, the class of all lattice ordered groups G, with card G, < a.
There exists a set {G;},., such that

(a) G;e 4, for each i e1;

(b) for each G, € A4, there is i €I such that G, is isomorphic with G,.

Let G = Y ;; G;. Then we have m(G) < o, hence Ge A4,. Let H % {0} be an
arbitrary element of 4,. For each 0 < x € H let H, be the convex I-subgroup of H
generated by x. Then card H, < «, hence there is i € I such that H, is isomorphic
with G,. This together with 3.1 implies H € T(G). Thus 4, = T(G).

From 3.12, 3.13 and 3.3 we obtain:

3.14. Theorem. Let A be a torsion class. Then the following conditions are
equivalent:

(a) A is principal.

(b) There is a cardinal o« such that m(G) < o for each G € A.

4. COVERING RELATIONS

Let 04, 0, € Z, 01 < ¢,- The interval [oy, 0,] is defined to be the class {pe % :
10y < 0 < 0,). If card [o4, 0,] = 2, then g, is said to cover ¢; and in such a case
we write 0y < 0,; We also say that [g,, ¢,] is a prime interval or that g, is an atom
over ¢,. The class of all atoms over ¢, will be denoted by A(Ql). The relation ¢, < ¢,
is obviously equivalent with the fact that (o) C%(¢,) is a proper subclass of C%(e,),
and (B) if 4 is a torsion class with A = C°(g,) such that C°(g,) is a proper subclass
of 4, then A = C°%p,). The above situation will be denoted also by writing C°(¢;) <
< C%o,) (i-e., C%g,) covers C%(o,))-

Let Ab be the class of all abelian lattice ordered groups. Since each variety of lattice
ordered groups is a torsion class (Holland [5]), Ab is a torsion class. Let R be the
additive group of all reals with the natural linear order. Let R, be the set of all I-
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subgroups of R having more than one element. The trivial torsion class {{0}} will
be denoted by 0.

4.1. Proposition. Let A be a torsion class, A = Ab. Then the following conditions
are equivalent:

(a) 0c < A.

(b) There is G € Ry such that A = T(G).

Proof. Let 0o < A. Hence there exists He A with H # {0}. Let 0 # xe H.
From the Axiom of Choice it follows that there exists a convex [-subgroup G, of H
such that (i) x ¢ G,, and (ii) if G’ e ¢(H) and G, = G’, then x € G'. Let G, be the
convex I-subgroup of H generated by the element x. It is well-known that G,/G, € R,,.
Since A is a torsion class, we have G,/G, e A, whence T(G,/G,) = A. Because
T(G,/G,) # Oc and 0. < A, we obtain A = T(G,/G,); thus (b) holds.

Assume that (b) is valid. Let 4, be a torsion class with Oc + 4; = A. Choose
{0} = He A, and let x, G,, G, be as above. Then G,/G, € R, and G,/G, € A,,
hence G,[/G, € A. If G5 + {0} is a homomorphic image of a convex I-subgroup of G,
then G; = G. From this and from 2.6 it follows that each lattice ordered group
belonging to 4 and distinct from {0} can be written as ) ., G;, where each G; is iso-
morphic with G. Therefore G,[G, is isomorphic with G and thus T(G) = A,. Hence
Ay = A, and so (a) holds.

From the above proof we also obtain the following corollary:

4.2. Corollary. Let A be a torsion class, A # Oc, A n Ab % O¢. Then there exists
a torsion class Ay such that 0c < A, < A and A; n Ab + 0.

Let I be a linearly ordered set and for each i € I let G; be a lattice ordered group
such that G; is linearly ordered whenever i is not the greatest element of I. We denote
by G = I';; G, the lexicographic product of lattice ordered groups G; (i e I) (cf. e.g.,
[4], [9]). If I = {1, 2}, then we also write G = G, o G,. (For some basic properties
of lexicographic products cf. [9], p. 452—453.)

4.3. Proposition. Let G € 9. There exists a principal torsion class A such that
T(G) < A.

Proof. For each ordinal « and each linearly ordered group G, let G,(a) be the
lexicographic product I';., G4, where each G is isomorphic with G,. Let G, € R,.
From 3.14 it follows that there is an ordinal « such that G,(«) ¢ T(G);let o be the least
ordinal having the mentioned property. Put G’ = G x G,(x), 4 = T(G’). Then
G' € T(G), G € A, hence T(G) is a proper subclass of A.

Let A; be a torsion class such that T(G) is a proper subclass of 4; and 4; < A.
Then according to 3.3 there is G5 € 4 with A; = T(G;). We have G5 € A. Hence in
view of 2.4, G5 can be expressed as G; = V. H;, where {H,},.; < ¢(G3). and for
each i el there are G;, G; € ¢(G’) such that G, is an l-ideal of G, and H, is isomorphic
to G;/G;. We have G; = (G; n G) x (G} n G4(«)) and an analogous relation holds
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for G,. The factor lattice ordered group G;/G; is isomorphic to
(Gin G)/(G; n G) x (G} N Gy(2))/(G: N Gy(x)).

For each i el there is an ordinal «; < a such that G; n G,(2)/(G; 0 G(2)) is iso-
morphic to G,(«,;). If ieI and «; < «, then G,(«;) € T(G), hence G;e T(G). In the
case a; < o for each iel we would have G;e T(G), thus A4, = T(G), which is
a contradiction. Thus there is i € I with a; = «. Then G,(x) € A, hence G’ € 4, and
we conclude that 4; = A4, completing the proof.

4.4. Proposition. Let ¢ be a principal torsion radical. Then the class of all
atoms over ¢ is infinite.

Proof. There are infinitely many nonisomorphic types of lattice ordered groups
belonging to R,. Let G, and G, be elements of R, and suppose that G; and G,
are not isomorphic. Let « and 8 be the corresponding ordinals constructed as in the
proof of 4.3 and let G'(G,) = G x G,(a), G'(G;) = G x G,(p). In view of 4.3 it
suffices to verify that T(G'(G,)) + T(G'(G,)).

Assume that T(G'(G,)) = T(G'(G,)). Hence G,(B)e T(G'(G,))- Thus according
to 2.4 there are

{Hi}iel IS C(Gl(ﬁ» H {Gi}iel > {Gli}iel S C(G,(Gl))

such that G,(B) = Vi H; and for each i eI, G; is an l-ideal of G; and G{/G, is iso-
morphic to H;. Each H;is isomorphic to some G,(B;), B; < B. Similarly as in the proof
of 4.3, G{/G; is isomorphic to

(1) (G N GG G) x (Gy(a) 0 G)[(Gi(@) 0 G)).

Thus G,(B;) is isomorphic to (1). Since G,(f;) is linearly ordered, it is directly in-
decomposable and hence either

(a) G,(B;) is isomorphic to (G,(x) N G1)/(G4(x) N Gy);
or
(b) G,(B;) is isomorphic to (G N G})/(G N G)).
There is an ordinal &, such that (G,(«) n G})/(G((x) N G;) is isomorphic to G(x,);
since G, and G, fail to be isomorphic, G,(f;) cannot be isomorphic to G,(x,). Thus
(a) cannot hold. Therefore (b) is valid and hence H;e T(G) for each iel. Thus
G,(B) € T(G), which is a contradiction. We infer that T(G'(G,)) * T(G'(G,))-

The following proposition shows that all prime intervals in £ can be constructed
from prime intervals with principal endpoints.

4.5. Proposition. Let [¢, ¢'] be a prime interval in #. Then there exists a prime
interval [gy, 0,] in # such that (i) ¢,, ¢, are principal, and (i) ¢, < 0,0 vV ¢, = ¢

Proof. Put 4 = C%g), A’ = C°¢’). From ¢ < ¢’ it follows that A4 is a proper
subclass of 4’, hence there exists G € A'\ 4. Put g, = T(G). Then ¢, < ¢’ and 9, £ o.
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This together with ¢ < ¢’ implies ¢ v 0, = ¢'. Put 9, = 0 A 0,. Since Z is
distributive we infer that ¢; < ¢,. Moreover, in view of 3.3, g, is principal.
For any g € # let (¢] be the principal ideal of # generated by ¢, ie., (¢] =

= {0, € Z 10, < 0}. For any class X # 0 of torsion radicals we denote
H(X) = Uyrex A(x) .
6.6. Corollary. For each 9 € & we have
Ale) = {o v o terea((e] n 2)} N o] -

4.7. Corollary. Let ¢ € #. The following conditions are equivalent:

(a) A(e) = 0.

(b If 04, 0, are principal torsion radicals wiht o, < 0, and if ¢, < o, then
0 =@

From 4.6 and 3.5 we obtain:

4.8. Corollary. Let ¢ and o' be torsion radicals such that (i) ¢’ covers o, and (ii) ¢ is
principal. Then @' is principal as well.

4.9. Proposition. Lei ¢ € R. There exists ¢' € # such that the following conditions
are fulfilled:

(i) 0 < o and A(o') = 0.

(1) If 0" € & is such that ¢ < o” and A(¢") = 0, then ¢' < ¢".

Proof. Denote L, = (6] n 2, ¢, = 6 v sup a(L,). Let & > 1 be an ordinal and
suppose that we have defined the classes L; and torsion radicals g, for each ordinal
B < o. We define L, as follows. If ¢ is non-limit, & = ff; 4 1, then we put L =
= (gp,] n 2. In the case when « is a limit ordinal we denote L, = U<, (¢5] N 2.
In both cases we put ¢, = o v sup a(L,). Let ¢’ be the join of the class consisting of
all torsion radicals g,. From 4.7 it follows that (ii) is valid. Clearly ¢ < ¢

Let o be a principal torsion radical generated by a lattice ordered group G. Sup-
pose that ¢; < ¢'. Hence ¢'(G) = G and thus G = V, ¢,(G). Thus there is an ordinal
ao such that G = V, <4, 0,(G). Because g, < g,, holds for each « < a,, we obtain
G = 0,(G), whence o, < g,,, and thus for each o, € a(s,) we have 5, < 9,,+; < ¢
This together with 4.7 implies A(¢") = 0

The torsion radical o uniquely determines ¢'; let us put o’ = ¢'(¢). If 0, 5, € 2,
o, £ 0,, then from the construction given in the proof of 4.9 it follows that for
solving the question on the existence of ¢ € # with ¢ + ¢ and A(g) = 0 it suffices to
verify whether ¢'(0) * o.

4.9.1. Remark. It is an open question whether for each principal torsion radical ¢
the following condition (*) holds:

(*) There exists ¢’ € # such that (i) o' € A(0), and (ii) if ¢, € #, ¢, < ¢', then
0; < ¢, theng; < o.
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4.10. Proposition. Let ¢ be a principal torsion radical generated by a lattice

ordered group G. Let R, € Ry. Suppose that o is an ordinal such that
(i) Ry(2) - G ¢ T(G).

(i) Ry(B)o G e T(G)for each ordinal f with f < a.

(iii) Ry(«) - (G/G,) € T(G) for each I-ideal G, of G with G, * {0}.
Then (x) is valid.

Proof. a) Let ¢’ be the principal torsion radical generated by G’ = Ry(x). G.
First we have to verify that the torsion class T(G) is covered by T(G'). Since
G € ¢(G'), we have T(G) = T(G'); from (i) we obtain T(G) + T(G’'). Let A4 be a torsion
class such that T(G) = 4 = T(G’). According to 3.3, there exists H € 4 such that
A = T(H). We have H e T(G'), hence there are {H;},.; < ¢(H), {G} .o, {Gi}ier
< ¢(G') such that H = V,; H;, and for each i eI, G, is an Il-ideal of G; having the
property that G;/G; is isomorphic with H,. Let iel. If G} + G’ or G, + {0}, then
according to (ii) and (iii) we have H, e T(G). Hence there is i el with G; = {0},
G; = G'. Thus G’ € A4, implying A = T(G'). Therefore T(G) < T(G').

b) Let 4 be any torsion class with A = T(G’). Then A is principal; let 4 be
generated by a lattice ordered group H. Further let H;, G;, G; (i €I) be as in a). If
there exists i € I with G; = {0} or G; = G’, then A = T(G’), which is a contradiction.
Thus G; # {0} and G} # G’ for each i eI and hence H; e T(G) for each iel. We
infer that H € T(G) and thus 4 = T(G). Hence (*) is valid.

Let Ry € Ry. If we put G = R,, o = 1, we obtain:

4.11. Corollary. Let Ry € R,. Then T(R,) is the unique torsion class covered
by T(R, o R,).

Let us denote by N, the additive group of all integers with the natural linear order.
Let R, € R, and let n be a positive integer. Let f(Ry, n) be the set of all (n + 1)-
tuples x = (Xy, ..., X,, Xo) such that x;e R, for i=1,...,n, and xoe N, Let
x.yef(Ry, n). We put x + y = z, where

Zo =Xo + Yo, Zi=X;+ Vi—j»

jef{0,1,...,n — 1}, j = xo (mod n). Further we put x < y if either x, < y,, or
Xo = Yo and x; < y; (i = 1,..., n). Then f(Ry, n) is a lattice ordered group.

Lattice ordered groups f(N, n) have been used in [6]; f(N,, 2) is described in [1],
p. 311, Example 9.

4.12. Lemma. Let R, € R, and let n be a positive integer, n = 2. Then T(f(R, n))
covers T(R; x Ny).

Proof. Clearly R;, No,e T(f(Ry, n)), hence T(R; x No) = T(f(Ry, n)). Now
2.6 implies f(Ry, n)¢ T(R; x No) = T({Ry, No}), thus T(R; x No) = (f(Ry, n)).

Let G, be the set of all x € f(Ry, n) with xo = 0. Then G, is an l-ideal of f(R, n)
isomorphic with R}. Moreover, f(Ry, n) is a lexico extension of Gy; ie., if ye
€ f(Ry, n)\ Gy, then either y > x for each x e G, or y < x for each x € G,. Let 4
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be a torsion class with T(R, x No) = A = T(f(R,, n)). Then A is a principal torsion
class generated by a lattice ordered group H. There exist {H,};;; < ¢(H), {G;};cr
{Gi}iar S e(f(Ry. n)) such that H = V. H, and for each i € I, G, is an I-ideal of G;
and H; + {0} is isomorphic to G;j/G. If G; = G, for each i eI, then H, e T(R,)
for each iel, hence H e T(R; x Ny) and thus 4 = T(R; x N,), which is a con-
tradiction. Hence there is a nonempty subset I, of I such that, for each i eI, G; is
not a subset of G;. From this it follows that G; = f(Ry, n) for each i eI,. Hence
G; e {{0}, G} is valid for each i e I,. If G; = G, for each i € I, then (because in this
case G;/G; is isomorphic to N, and hence H;e T(R, x N,)) we should have H e
e T(R; x N,), a contradiction. Thus there is i €I, with G; = {0}, and hence H,
is isomorphic with f(R,, n). Therefore A = T(f(R,, n)), completing the proof.
By using similar consideration as in the proof of 4.12 we get:

4.13. Lemma. Let R, R, € R, and let ny, n, be positive integers. If f(Ry, n;) =
= f(R,. n,), then R, = R, and n; = n,.

Let us denote by Repr the class of all representable lattice ordered groups. If n is
a positive integer, n = 2, then clearly for each R, € Ry, f(R;, n) is non-abelian and
non-representable. On the other hand, R; x N, € Ab. Put

2ab = 0°(AD),  Ogepr = 0°(Repr).
From 4.12, 4.13 and 4.6 we obtain:

4.14. Proposition. Let ¢ € {gap, 0
radicals covering o.

repr)- Then there are infinitely many torsion

5. ON THE TORSION CLASSES X¢

Let G be a lattice ordered group. From the fact that £ is a complete lattice and from
the relations between torsion radicals and torsion classes it follows that there is
a largest torsion class X¢ such that ¢°(X¢) (G) = {0} (i.e., ¢°(X°) is the join of all
torsion radicals ¢ having the property that ¢(G) = {0}). The lattice ordered group G
is said to be homogeneous if for each ¢ € Z we have either o(G) = {0} or o(G) = G
(cf. [13]).

Martinez [ 13] proved several results concerning the relations between homogeneity
of G and properties of the torsion class X¢. Let us quote the following theorem:

5.1. Theorem. ([13], Thm. 4.1.) Let G be an Il-group. (i) If G is homogeneous,
then X is a complete, meet irreducible torsion class. (ii) If X¢ is meet irreducible,
G has a non-trivial homogeneous Il-ideal. (iii) If X is any complete, meet irreducible
torsion class, there is a homogeneous l-group H so that X = X",

5.1.1. Remark. In 5.1 (ii) we must also assume that G # {0}. (In fact, if G = {0},
then X% = 4, 4 is meet irreducible and G has no non-trivial l-ideal.)
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(Let us also remark that in [12] and [13] the denotations for a torsion class A4
and for the corresponding torsion radical ¢°(4) are not distinguished, i.e., ¢°(4) is
denoted by A; the universe of all torsion classes is denoted by 7~ )

Again, et G be any lattice ordered group. In [12], § 4, it is remarked that ‘it would
be convenient if X¢ were meet-irreducible in J, but in general it is not clear what
happens with classes that contain X properly’.

The condition

() X¢ is meet-irreducible in 7
can be expressed, in our terminology, by the equivalent condition

(o) €°(X€) is meet-irreducible in Z.
In the example 5.1.2 below it will be shown that there exist lattice ordered groups G
such that the condition («,) fails to hold.

5.1.2. Example. Let R;, R, e Ry, Ry £ R,, G = R; x R,. Then for He 4 we
have H e X if and only if 0,(G) = {0}. From

Ok, A 0g, =0, o0p, A 0°(X%) =0 (i=1,2)
we obtain
or, v °(X%) > 0°(X°) (i=1,2),
(0, v °(X%)) A (er, v 0%(X€)) = 0%(X°),
hence ¢°(X€) is finitely meet-reducible.
From 5.1 (i) we obtain immediately:

5.2. Corollary. Let G be a homogeneous lattice ordered group, G = {0}. Let
= 0°%(X®). Then card A(g,) < 1.

5.3. Lemma. Let G be a lattice ordered group, ¢; = 0°(X°), 0, € A(g,), H =
= 0,(G). Then H is a nontrivial homogeneous I-ideal of G.

Proof. H is an I-ideal of G. From g, > ¢, and from the definition of X¢ it follows
that H + {0}. Let ¢ € # and suppose that o(H) = H, + {0}. Denote ¢’ = ¢ A 02
Then ¢,(H) = {0}, ¢'(H) = Hy, hence ¢’ £ ¢, and so ¢; < ¢’ v ¢;. On the other
hand, ¢’ £ 0,; thus ¢’ v ¢; = 9,. Since ¢, < ¢,, We obtain ¢’ v ¢; = g,. Thus

H = o;(H) = (¢ v 01) (H) = ¢'(H) v es(H) = H, .

Therefore H is homogeneous.

5.4. Lemma. Let G and ¢, be as in 5.3. Let ¢,, 05 € A(Ql), 0, * 03- Then QZ(G) N
N 03(G) = {0}.

Proof. We have o, A 03 = ¢;, whence 0,(G) N 05(G) = (0, A 05) (G) = ¢4(G) =
= {0}.

From 5.3 and 5.4 we obtain immediately:
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5.5. Theorem. Let G be a lattice ordered group, ¢, = ¢°(X®). Then A(o,) cannot
be a proper class (i.e., A(e,) is a set).

5.6. Theorem. There exists a torsion class A + 9 such that there are no atoms
over 0°(A).

Proof. There are linearly ordered groups G; € Ry (i eI = {1,2,3,...})such that G,
is not isomorphic to G; whenever i and j are distinct positive integers. Let G =
= I'i.; G; be the lexicographic product of the system {G,},,, where I is linearly
ordered in the natural way. Let H = {0} be a convex I-subgroup of G, H + G. Then
there is a positive integer n > 1 such that H is isomorphic with I';;, G;, where I; =
= {iel:i=n}. Choose mel, m > nand let H,, be the set of all g € G with g(i) =
= 0 for each i€, i < m. Put ¢ = gy. From Thm. 2.6 it follows that Q(H) = H,.
Hence there does not exist any homogeneous I-ideal of G distinct from {0}. This
together with 5.3 implies A(g;) = 0, where ¢; = ¢°(X®). Clearly X¢ + 4.

From 5.6 and 4.9 we obtain:

5.6.1. Corollary. There exists a torsion radical ¢ < g such that (i) A(g) = 0;
(i) if ¢y € # and A(o,) = 0, then ¢ < ¢,.

5.7. Proposition. Let {G,} (i €I) be a nonempty set of linearly ordered groups.
There exists a linearly ordered group G such that G is homogeneous and g5, £ 0
is valid for each iel.

Proof. In view of the Axiom of Choice we can suppose that I is well-ordered (any
linear ordering of I would suffice for our purposes). Put H = T'y; G;, G = T,y H,,
where N is the set of all positive integers with the natural linear order and H, = H
for each n e N. Let g € #, ¢(G) = K =+ {0}. Hence K € C°(g). There exists K, € ¢(K)
such that K, is isomorphic to G. Thus G € C%)) and so ¢(G) = G; therefore G is
homogeneous. According to 2.4, g, < ¢ foreachiel.

5.8. Corollary. Let o be cardinal. There exists a homogeneous linearly ordered
group & with card G = «a.

Let 0 € #. We denote by ¢° the join of all torsion radicals ¢; with g; A ¢ = 0.
Then we have also ¢ A ¢° = 0.

5.9. Lemma. Let 0 € #. Then g is principal if and only if the class [0, ¢] is a set.

Proof. Assume that ¢ is principal, ¢ = ¢%(T(G)), G € 4. Then each ¢, € [0, o] is
principal as well, i.e., ¢; = 0%(T(G,)) for some G, € 4. Let S = {(G}, Gj)},.; be the
set of all pairs G;, G € ¢(G) such that G, is an l-ideal of G}. According to 3.1 there
exists a subset I = J and a system {H,},.; < ¢(G,) such that G; = Vg H; and H,
is isomorphic to G;/G; for each i e I. Consider the mapping f : [0, ¢] = S defined
by f(e1) = {(Gi» G})}ier- If 01,02 €[0, @] and f(e;) = f(e3), then ¢; = @,. Hence
[0, ¢] is a set.
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Conversely, assume that [0, ¢] is a set. Put [0, o], = [0, ¢] n 2. Then [0, ¢],
is a set as well and clearly ¢ =sup [0, ¢]; holds in #. From this and from 3.5 it follows
that ¢ is principal.

5.10. Theorem. Let ¢ be a principal torsion radical. Then A(¢°) is a set and
card A(¢°) = card ([0, ¢] n 4(0)).

Proof. Put 4, = [0, o] n A(0). For each g, € A, we set f(g,) = ¢, v ¢°. From
the definition of ¢? and from the distributivity of 2 it follows that f is a one-to-one
mapping of 4, onto A(¢’). Since ¢ is a principal torsion radical according to 5.9,
A, must be a set. Hence A(¢’) is a set and card A(¢°) = card 4,.

We put (¢°)’ = 0. Clearly ¢ < ¢* for each g € #.

5.11. Proposition. Let G # {0} be an abelian lattice ordered group and let ¢ be
the principal torsion radical corresponding to G. Then o < o*.

Proof. Let 4 be the principal torsion class generated by G and let o be a cardinal
with & > card G. Let I be a linearly ordered set with card [ = «. According to 4.2
there is A; € # with A, 0 Ab £ 0, 0. < 4; < A. Let {0} & G, € 4; n Ab. Put
H =T,,; G, where G; = G, for each iel, G' = HoG. Let ¢’ be the principal
torsion radical corresponding to G'. Then ¢ < ¢’. We have card G’ = «, hence in
view of 3.12, G’ cannot belong to A. Thus ¢ < ¢'. From the definition of ¢’ we obtain
0" A ¢° = 0. Hence o' < 0%. Therefore o < ¢%.

Remark. The question whether the assumption of the commutativity can be
cancelled in 5.11 remains open.

5.12. Proposition. There exists no any dual atom in R.

Proof. By way of contradiction, suppose that ¢ is a dual atom in #. Then ac-
cording to 4.5 there exist ¢, 0, € Z such that ¢, < 9, 0, <0, and ¢ Vv ¢, = 0.
There is G € 4 with ¢, = g5. Let G’ be as in the proof of 5.11. If ¢, = o, then in
view of 4.8 we should have g € 2, whence # = £, which is a contradiction. Thus
0, < ¢, and thus ¢, £ ¢. Therefore ¢(G) = G. This implies ¢(G') = G'. From 3.12
we obtain 0,(G') = G'. Further, we have

G =3(6") = (02 v 0) (¢") = 2a(G) v o(G").

If both ¢(G’) and ¢,(G’) are subsets of G, then G’ = G, which is impossible. Each
l-ideal of G’ is comparable with G; if either ¢,(G') 2 G or ¢(G’) 2 G, then g,(G")
and ¢(G’) are comparable, whence ¢(G') = G, a contradiction.

# By analogous reasoning we can verify the validity of the following proposition:

IS

5.13. Proposition. Let ¢ € {¢°(Ab), 0°(Repr)}. Then no torsion radical is covered
by o.
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