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REMARKS ON THE INTERPOLATION OF ANISOTROPIC
SPACES OF BESOV-HARDY-SOBOLEV TYPE

BERND STOCKERT, Jena

(Received February 22, 1980)

This paper deals with the interpolation of anisotropic spaces B, , and F;, , of Besov-
Hardy-Sobolev type, which are introduced in [11], [9] (cf. also [12]). These spaces
generalize the classical anisotropic Besov spaces, Sobolev spaces and Hardy spaces
(cf. [2]), as we shall show in Section 3. The fundamental ideas are the same as those
used when approaching the interpolation of the corresponding isotropic spaces of
Besov-Hardy-Sobolev type, which are due to J. Peetre (cf. [5]) and H. Triebel

(cf. [11], [13]).

1. DEFINITIONS AND BASIC PROPERTIES OF THE SPACES

The definition of the anisotropic spaces of Besov-Hardy-Sobolev type is based
on an anisotropic decomposition in the Fourier image of the distributions con-
sidered with the aid of decomposition-functions. For these functions we need an
anisotropic decomposition of R" (Euclidean n-space).

Let a:= (ay, ..., a,) be a fixed n-tuple of positive numbers. Then we subdivide
the corridors -
(1) Kpi={x||x}] €2, j=1,..,n} = {x| |x;] <2%7%, j=1,..,n},

k=1,2,3,..., x:=(x4,....,x,)eR",
in a natural way by the hyperplanes {x| x; = 0}, {x| x; = 2*7"%} and {x| x; =
= —2®"Dal j=1,.., n into closed rectangles P, ,, t =1,..., T(T = 4" — 2).
Furthermore, we set
Ko:i={x]|x] =1, j=1,..,n}
and for simplicity, P, ,:= K, fort =1,..., T.
In addition to the P, , we consider a little larger rectangle Py, with the same centre

as P, , and sides parallel to the corresponding sides of P, ,, which are all x-times
larger, 1 < x <1 4 217 maai o4 that

Pl c (K UK UKy, t=1,...,T
(modification for k = 0).
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The decomposition
) P:={Py}, M= U P,
1 .

is a regular covering of R" in the sense of [9].

Remark 1. If we take in (1) corridors K, for k = 0, +1, +2, ... then we get by
the same construction the so-called anisotropic homogeneous decomposition

3 ? :={P,,}, R —{0} = U P
S

Remark 2. In addition to the decomposition Z of R" we shall later consider the
so-called “local modification” 2~ of this decomposition. This means: 2~ := {P, ,},
Fk,, are rectangles with sides parallel to the co-ordinate axes, k = 0,1,2,..., t =
=1, ..., T(T a fixed natural number),

R = U ﬁk,t’ F0,1:=K0

k=0,1,1,...
t=1,..,T

and there is a fixed natural number N such that

N
P e © U Kesn
h=—N
for an arbitrary k and r = 1, ..., T(K, := 0 for [ < 0).

Now we come to the system of decomposition-functions. S = S(R") denotes the
Schwartz space of all complex-valued infinitely differentiable rapidly decreasing func-
tions on R", and S” = S'(R") the corresponding dual space of tempered distributions.
& and & ! denote the Fourier transform and its inverse transform on S'(R").

If Lis a natural number then &) = o/7[#] is the set of all systems ¢ := {@;.,},

such that

(4) (pk,tesa Supp¢k,tCP:,t’ k=0,192’---, t=1:-~-9 Ts
and )
(5) sup sup [ (1 + x})!/24]*” ID“ (pk,,(x), =c, <00,
1::;),1,2,... xeR™® j=1
la£L

where

n
a.o:=Y apo;, o:=(x,...,0,), o =0 integer,

j=1
]
Digy, = O Prr
oxi' ... 0x"

Furthermore, let
(6) Y @ux)=1 forall xeR".

k=?,1,27:...

t=1,...,

It is easy to see that </ is not empty.
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After these preliminaries we are able to define the anisotropic spaces B; , and Fj ..
We use the following abbreviations: For measurable functions f on R"

ey s= ([ o ax)” it 0<p <o,
[l = ess sup |7(x)

and for sequences {g,, ,(x)}k 0.1,2,.. of measurable functions,
T

”gk.t”lqup) = (kZO lelgk,rlll,,)""’ if 0<g<ow, 0<psoo,
=0 t=

”gk,t“lm(L,,) := sup ||gk,t”Lp , 0<p=s oo,
k=0,1,2,.
t=1,..., T
o T
loxlzsan == (X Xlondx)[) s, if 0<g<e, 0<p=sw,
lg.elair = | _051“12? |960)| [, O<p=o0.
t=1,...T

Definition. Let a := (ay, ..., a,) be the n-tuple of positive numbers which charac-
terizes the decomposition 2 and s := (s/ay, ..., s[a,), —00 < s < 0.

(i) If0 < p<=<o0,0< g =< oo andif Lis a fixed natural number, L > L*(s, p, q) *),

then
={f|fes, “f”B,, = 127 ~ o1 o Z S| 1,y < 0 forall p eo/7}.
(ii) If0 < p < 0,0 < g £ oo and if Lis a fixed natural number, L > L(s, p, q) ),
then

={f| fes, ”f”Zf,,q = |27 04 F S|, < o forall pe}}.
(iii) If 0 < p < oo, then
. Hy:=F,,

Remark 3. In our definition we have used the sets S(R") and S'(R) instead of
Z(R") and Z'(R"), respectively, which were used in the paper [9]. Both definitions
coincide, cf. [13], p. 27. It is easy to see that the definition of B} , and F; , depends
only on the quotients s/ay, ..., s/a,; this justifies our notation.

We recall the basic properties of B} , and F; , which are proved in [9]. B; , equipped
with the quasi-norm “ f “Z,’;,,, is a quasi-Banach space (Banach space if 1 < p <

1) The numbers If and L? can be chosen (cf. [12], p. 82) so that

LB(s,p,q):=ls|+§E+n+4, L(s,p,q):=|s| + *-~1—+n+4.
p
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and 1 £ g £ ). All the quasi-norms “f“Bs with ¢ € U JJL are mutually equi-
valent; so we omit the symbol ¢ in ||+ 3s L>

The corresponding assertions hold for thc spaces F; , (p < o). For all admissible
values of parameters we have
@) ScBy,,=S8, ScF,,=¥§,
®) By minto.a) < Fpa < By

p,max(p,q) >
where the sign = means a topological embedding.
Remark 4. If we replace the nonhomogeneous decomposition Z of R" by the

homogeneous decomposition 2 of R" — {0}), take the system of decomposition-
functions from D(R" — {0}) instead from S(R") and replace the condition (5) by

sup sup [Z Ix l”"’ @ | p* (pk’,(x)l =, <0,

,+2,... xeR* j=
T

u/\_-' °

—
R

then we get in the same way as above the homogeneous anisotropic spaces

Bs

@

Fs

P2

TS « __ S
H,:=F,,

consisting of distributions from Z'(R" — {0}) instead of S’(R"). Here Z'(R" — {0})
is the strong topological dual of the Fourier image Z(R" — {0}) of the space
D(R" — {0}) (complex-valued infinitely differentiable functions with compact sup-
ports in R” — {0} equipped in the usual way with a locally convex topology). For
these spaces we also have the corresponding basic properties as above, cf. [9].

Remark 5. Let B} ,, F5 , be the spaces which are analogously defined as B} , F} ,,
based on a local modlﬁed decomposmon 2~ of 2 (cf. Definition 4 in [9]). Then it
is easy to see that also in the anisotropic case the identities

Fs,=F

p,q

By, = B;

p,q°
hold for all admissible values of s, p, g (for the isotropic case cf. [13], p. 43).

Finally, we remark that the definitions for a, = a, = ... = a, > 0 yield the
corresponding isotropic spaces. If the above relation is not fulfiled, then the result
are anisotropic spaces even for s = 0. It is nontrivial to get isotropic spaces in the
same cases, for instance: Hj', =L, 1<p<oo.

2. INTERPOLATION THEOREMS

The symbol (-, +),,, denotes the K-method of interpolation (cf. [11], Sec. 1.3.2
or [1], Sec. 3.1, and for the extension to the quasi-Banach spaces [1], Sec. 3.11).

For general (anisotropic) H” spaces (including the usual Hardy spaces), A. P.
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Calderon and A. Torchinsky proved in [2, II] the following interpolation theorem:
©) (™ 17, = 1,

where

1=1-0+_0., O<po,<p<w, O0<fO<l1.

p Do D1

H. Triebel showed in [14] that in a special case these general H” spaces coincide
with the anisotropic spaces HY from our definition (cf. Remark 4). So (9) yields the
result for 0 < py < p; <0, 0<0 <1, :
(10) (Hpo’ gl)l?.P = Hg’ l = 1 — 9 + ~6- ’

p Do by

where all the spaces have the same underlying decomposition of R" — {0}

This result for homogeneous spaces implies the corresponding result for non-

homogeneous spaces.

Proposition 1. If 0 < p, < p; < o0 and 0 < 6 < 1, then

(1) (Bl Hy oy = Hy, =2t
p Do )21

where all the spaces have the same underlying decomposition of R".

Proof. Let ¥ be a function belonging to S with the properties:

suppy < K, :={x| [x| £ 2} and y(x) = 1 forall xe {x| |x;| < 1,j =1,...,n}.
Then we split the functions f e HY into

f=F WF+ F (1~ ) Ff = O + D,

where /9 e HY and /" € H) N HS.

For the A -functional of the interpolation method

H (8, f, Hpos Hp,) = _i“f {”f0”H2. +t)filut}, 0<t<oo,
we have by this splitting of f = f, +f1 e (HY, + HY),
F=f0 + f80 4 £ 4 D = (fO + £10) + (f0 + f{D) = £ 4 g0
(12) A (1, f, Hpo, Hy,) ~ A (1,1, Hp,, Hy,) + H(1, f, Hp,, Hy,) .

Consider the term on the right-hand side. It is clear that

(13) H(t, fO, Hyy, Hy,) = (1, /D, Hp,, Hy,)
and -.
(14) A (1,1, Hyy, Hy,) ~ A (1,19, L, L),

where L) := {g |ge S, supp Fg = Q, |[g|1,2:= 9] < }.
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Further, for an appropriate h € R" we have

FO(x) 1= fO(x) e e (12, + 12) with @K, =0,
and :

1) U, ~ Ly, ~ [Flat, ~ 17at, i =0.1.

So we have
(16)  H(LfO, Hy, Hy,) ~ K (], I3, I,
From (12), (13), (14) and (10), (15) we finally get

5) ~ H (L], Hyy, Hy,) -

an(Hg!anx)B,p ~ Ili(O)H(H ng)e P + “f(l)"(Hpo pr)ﬂ P

~ [FOLa + 1O ~ 11l + 1708
~ s S04 0
p Po P1

The construction of a retraction from the space B , into the vector-valued sequence
space I(4) 2), the known interpolation theorems for I(4) and the proposition above
yield the following interpolation theorem for the spaces B} , and F P

Theorem 1. Let a := (ay, ..., a,) be a fixed n-tuple of positive numbers which

characterizes the anisotropic decomposition for all considered spaces, §;:=
= (sifay, ..., sifa,), —0 <s;< o0 (i=0,1)and 0 <6 < 1.

(i)If0<P§°O,O<‘I0a‘I1aCI§°0,So=F51athen
(17) (B
and for p < oo,

(18) (Frao> FrraJoa = (F3

p,90° pqx)Oq pq’ .

P,90° p'n)ﬂq pq’

where s := (1 — 0) s, + 0s,.

(i) If 0 < po < py < o0, 0 < go < g, < o0, then

(19) (Bao B ooy = B
where
- 1 -0 0
s:=(1—0)s, + 0s, and 1;=1 9+ﬂ= + 0
p Po p do q;

Proof. Step 1. First we recall a useful fact, given by H. Triebel in [15].

) Ea):={l¢= (fk =012 €]l

=) T
e = (X Y 259 & |4)'T < o} -
k=0 1t=1
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For 0 < p < o0, ¢ = {¢y,} € 3 (L large enough) and all fe ', the inequality
(20) 61“9—_1€0k,:=9"—f"LP =< ||ﬁ—1¢k,rffl’52 =< czuﬁ'l(pk',?f”,‘p s
k=0,12,..., t=1,...,T,

holds with constants ¢;, ¢, > 0 independent of k, .

Hence in the definition of B} , we can replace the space [,(L,) by the space I,(H),
0 < p < oo, which is very useful, because for Hg we have the Fourier transform and
multiplier theorems. )

Step 2. Now we establish that for 0 < p,, p; < 0, 0 < gg < g; < o0, the fol-
lowing relation holds:

(21) : "f”w;g,qo,n;i aea "f_I‘Pk,tg"f”a;g(Ao).z;;(An)o.q ’
where 4; := HY, if p; < 0 and 4; := L, if p; = o0 (i = 0, 1).

The equivalence of the quasi-norms in (21) follows from Theorem 1.2.4 in [11]
(which also holds for quasi-Banach spaces), if we have a retraction # from Bj ,
into I(HJ) or I5(L,,), respectively. Now we construct such an operator 2.

Let ¢ = {¢,} be a system of decomposition functions corresponding to the
decomposition 2, ¢ € dg[.@]. Then there is a local modification 2~ of £ and a cor-
responding system ¥ = {y ,} € #J[2~], cf. [9], Definition 2, such that

22 Vidx) =1 for xesupp oy,
and Vi dx) = y({27%(x; — %%")}) forall xeR"

(%%* is the centre of P, ,e€ 2~,y an appropriate function from S). With the aid of
these systems we define the linear operators

(23) Sf = {'0/-_1¢k,tﬁf}k=(l),1,21:,.. , fe B;,q s
t=1,...,
and
(24) Roi= T FLFo, (o) ).
n=1,T

i) & is a bounded linear operator from B; , into I5(HY). This follows immediately
from (20).

ii) # is a bounded linear operator from I§(HY) into B} ,. We get this from the esti-
mate

(25) 12{9:4}155.. < [{2*F P (R{G1.0} }rel 1y <

= c"{zs"f—l ‘Z ‘pk,rll’t,n-?’_gt,n}k,:“1,,(112) =
n

< ¢[{f*
h==T,...,

i=1,.., T

Nlpk,tll/k+h,t+i'g;gk+h,t+i”tlg}k,t"lq =

< . 1Y) »
i
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where (25) is established by the multiplier property of ¥y, (cf. [9], Theorem 5) for
the spaces F, = F° , (cf. Remark 5) with a constant which is independent of ;.

i) 2Ff= Y F W ,0.Ff=YF Yo, ,Ff=f forall feB,,.

b
This means # and & are a retraction and a coretraction for the spaces Bj , and I5(H3),
where 0 < p < 0,0 < g £ 0, —a0 < s < oo. In the case p = oo the operators #
and & are a retraction and a coretraction for the spaces B, , and [5(L,,). Instead of
estimating by a multiplier theorem in (25), we use now the estimate

l/_l(llfk,zl//k+h,r+ig'—gkﬂ,wi) (x)l =
— l[y—1(w({2—kaj,}) l//({z—(k-f-h)aj.})) * th'Hi] (x){ -
2 [ F O U (2= ) ronen ) cloioncol

Step 3. The concrete interpolation formula (17) follows now from (21) and the
known interpolation theorem (cf. [1], p. 122, extended to quasi-Banach spaces A)

(125(4), 15i(A))o,g = 1f(4) s s = (1 = 0)so + 05y,

with s, % 5,0 < go,q; < 0,0 <8 < landA:= Hifor0 < p < coand 4 := L,
for p = oo. Formula (18) is obtained from (17) and (8) by the reiteration theorem
(cf. [1], p. 50, extended to quasi-Banach spaces). Formula (19) follows from (21)
and the interpolation theorem (cf. [1], p. 123, extended to quasi-Banach spaces 4,)

) ) 1 1-6 0
(Fa(Ao), 15:(A1))o,g = (Ao, Ar)eq) s — = +=, s=(1-0)s +0s,,
q 9o 41 _
with 0 < gg, q; < 0, 0 <0 <1 and 4;:= H), (i =0, 1), and the interpolation
formula (11). ‘

3. CLASSICAL ANISOTROPIC FUNCTION SPACES

Now we compare the spaces B, , and F , with the classical anisotropic spaces.
If s:=(sy,...,8,), s; >0, then the well-known anisotropic Lebesgue spaces
(= Bessel-potential spaces) are defined by

Hyi= {f] S, g = 1#7H(Z 0 + )7 1), < o0},
l<p<ow. '

Denote as usual by D; := 9/dx;, D*:= D{* ... D", a 1= (ty, ..., %), @; = O integer,
the derivatives of functions or distributions on R". For m := (my, ..., m,), m; > 0
integer, we have the anisotropic Sobolev spaces

wri={f|fes, |flwyi= ¥ D], <o}, 1SPp<w,

0sSZay/mys1
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and the anisotropic Holder spaces

~U1reC floni=, T [P7lc < 0},

SXaj/m;<

where C is the set of all bounded uniformly continuous functions on R" and
[flle := sup [7(x)] -
xeR™

The following theorem shows the connection between the spaces F, , = Hj and
the anisotropic Lebesgue- and Sobolev spaces.

Theorem 2. ([9], p. 266). If 1 < p < o and s := (s, ..., 5,), s; > 0, then

(26 | Hy = 4,
and, provided s; (j = 1, ..., n) are integers,
@) = W,

where the corresponding norms are equivalent.

Before we give a classical interpretation for the spaces B; , (1 < p, g < o0, s > 0)
we need the following proposition.

Proposition 2. Let a:= (ay,...,a,), a; > 0, s := (s/a,, ..., s[a,), —o0 <s < o0,
be the numbers which characterize the anisotropic smoothness. Then

(28) B,cLcB,, 1spsw,
(29) B, ,cCcB ,,

and if sla; = m; (j = 1, ..., n) are integers,

(30) By, cWrcBy,, 1<p<w,
(1) B, cC"cB",.

Proof. The proof of the proposition is the same as in the isotropic case (cf. [13],
p- 68), if we use the following identity that holds for 0 < p < o0, 0 < ¢ < o0 and
sla; = m; (j = 1, ..., n) integers:

By, ={f|fes,

poim X [0, < )

0=Zaj/my=1

This statement follows from the lifting property for BS (analogous to Fp, (p < )
[9], p. 265) by standard arguments (cf [13], p. 67) usmg the anisotropic multiplier
theorems ([9], p. 264).

Theorem 3. Let a := (ay, ..., a,), a; > 0,5 > 0, s := (s/ay, ..., s/a,) = (sl, ceer Sp)
be the multiindices which characterize the anisotropic smoothness and & :=

=(04,..56,), 0<8; L0, Bi=(Bys-.s Bo)s Li= (L, .. 1), 0 £ B, I, integers
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(j =1,..., n), such that

0§ﬂ1<s1’ sj—ﬁj<lj (j=1,...,n),
then

(32 Bya=%,,,
holds for 1 £ p < 00, 1 £ q £ o0, where

Brai= 1L, |fl}anps < 0},
and the expressions

- % 1/q
@) W Bass= e + X (f 1 a0y, 95) ’

are equivalent norms in %, , and B, , for all admissible values of parameters.
For p = g = o0 we have
(34) By = B

where
B = {1€C, | flop.5 < }
and the expressions

(35) 715,085 := [fllc + X sup t#=*2|4y;D5f|c,
j=10<t<g;

are equivalent norms in %;, ., and B, , for all admissible values of parameters.

Proof. The theorem is based on interpolation theorems. for classical anisotropic

spaces and on Theorem 1.
For1=p<w,0<0<1,1=Zq = o, H-J. Schmeisser and H. Triebel have

proved in [6] (cf. also [7], [8]) the identities

(36) (Lys Woloa = Byey
and
(37) (C, CYoo = B .

We remark that the space C (completion of C7(R")) in [6], p. 120, can be replaced

by our space C.
Now we obtain the statements (32) and (34) from our Theorem 1, the formulas

(28)—(31), (36), (37) and the reiteration theorem (cf. [1], p. 50).

Remark 6. Theorem 3 shows that our anisotropic B,,, spaces forp,g=1,5s>0
coincide with the classical ones.
(i) If s; > 0 are arbitrary numbers and s; = [5;]” + {s;}* ([s;]™ integer, 0 <

) (eif) (%) 1= f(Risoos Xyt Xj + 1 X a1y om0 %) = F(X)
A f = 4,451, 1=2,3,....
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< {s;} £ 1),then (33)and (35)for B, := [s;] 7,5, — B;:={s;}*, [;:=2,0; 1=
(j = 1,..., n) give the well-known norms for the classical anisotropic Besov spaces
B; ,and Zygmund spaces %°, respectively (cf. [3], [4]) and we get from (34) and (36):

B,,= B,

pas Buow =,
(12£p<0,12g=0,5=(sg,...,8,) s; > 0).

(i) If s; > 0 is not an integer and s; = [s;] + {s;} ([s;] integer, 0 < {s;} < 1),
then (33) and (35) for B;:=[s;], s; — B;:={s;}, =1, 8;:=0 (j=1,...,n)
give the well-known norms for the classical anisotropic Slobodeckij spaces W,
(p = g) and Holder spaces C°, respectively, and (34), (36) imply

B,,=W;, B, .,=C,
1=p<oo,s=_(s,....5) 0 <s; =+ integer).

Remark 7. Together with the classical interpretations of the spaces B, , and F; ,,
Theorem 1 yields new interpolation formulas, e.g. for a:= (ay, ... a) a; > 0;
5;>0, 5;:=(s;/ay,....si/a,), i =0,1; 1 < p < p; <0, 1= qp; g, < 0 we get

B‘s’?”‘m’ P*"ll)”vp B,,, s= (- 9) s + Osy,
1 1-606 60 1-06 0
-_—=— t+ — = — + —
4 Po 21 90 q
and
s 1 1-90 0
(L Bliialh)ﬂ,p = B;,p , §=0s;, —= + —,
p Do ) 21

which complete the interpolation results on the classical anisotropic function spaces

in [11], [7].
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