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0. INTRODUCTION

The present Part 111 is a continuation of the papers [1] and [2]. Its aim is to prove
the following four theorems.

Theorem 1. For any type A, the set of one-based equational theories of type A
is definable in the lattice & ,.

Theorem 2. For any type A, the set of finitely based equational theories of type A
is definable in &£ ,.

Theorem 3. (i) If A is either the type {F} or the type {F, o} for some unary
symbol F and some nullary symbol o, then the automorphism group of &, is
isomorphic to the group of permutations of an infinite countable set.

(ii) If 4 is any other type then the lattice & 4 has no automorphisms besides the
obvious “syntactically defined” ones.

Theorem 4. For any type A, any finitely based equational theory of type A is
definable up to automorphisms in & ,.

These four theorems solve a problem formulated by A. Tarski in [9] and Problems
1 and 3 and Conjecture 1 formulated by R. McKenzie in [8]

For a more detailed formulation of these results see Section 13.

The terminology and notation remain the same as in [1] and [2]. If {ay, by), ...
... (a,, b,) is a finite sequence of equations then Cn((ay, b,), ..., (a,, b,)) denotes
the equational theory generated by (ay, b,), ..., (a,, b,). An equational theory T
is said to be one-based if T'= Cn(a, b) for some equation (a, b): it is said to be
finitely based if T = Cn((ay, by), ... (a,, b,)) for some finite sequence (ay, by), ...
..., (a,, b,) of equations. )

In order to be able to precise what we mean by the obvious “‘syntactically defined”
automorphisms of Z,, we introduce the following notation.

Let 4 be an arbitrary type. We denote by H, the group S,, x S{ where S,,
is the group of all permutations of 4, and S{" is the group of permutations f of 4"
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with the following two properties: if f(F, i) = (G, j) then n, = ng; if f(F, i) = (G, j)
and f(F, k) = (H, I) then G = H. Notice that if 4 is not a large unary type then H,
coincides with the group G defined in Section 7 of [2].

For every pair (c, f)e H, define a permutation P, , of W, as follows: if 1€V,
put P, (1) = t; if te 4q, put P, (t) = ¢(t); if t = F(t,. ..., t,) where Fe 4,, n = 1
and f(F, 1) = (G, i(1)), .... f(F. n) = (G, i(n)), put P, t) = G(P. [t;-11)), ---

o Peg(ti=gm)-

For every pair (¢,f)e H, and every Te &, put Q. (T) = {(P.(u), P. {(v));
(u, v) € T}. 1t is easy to see that Q. (T’ is an equational theory: for any (c. f) e H,,
Q..; is an automorphism of & ,. It is easy to verify that the mapping (c, f) > Q. ,
is a homomorphism of the group H , into the automorphism group of % 4; this homo-
morphism is injective if 4 is not the type consisting of two nullary symbols. The
automorphisms Q. , with (c,f)e H, are just the obvious “syntactically defined”
automorphisms of &Z,.

1. DEFINABILITY OF C4 AND Ej4

Let 4 be an arbitrary type. We define three equational theories C,, E 4, B, of type 4
as follows:

(u, v) € C, iff either u = v or u, v are not variables;

(u, v) € E iff var(u) = var(v);

(4, v) € B, iff either u = v or there are nullary symbols H, K € 4 such that H < u
and K £ o,

Evidently, C, and E, are coatoms of %, i.e. maximal elements of &, different
from W, x W,.

Similarly as in [2], we introduce abbrevations for some special formulas and explain
their meaning in the lattice & ,.

Definition. (i) y,(X,Y) = X < Y& 13Z(X < Z&Z < Y).

(i) ¥2(X) = 3Y(0(Y) & ¥r4(X, Y)).
(iii) Y3(X) = YA, BIC, D, E(A < B—>(C=Av X&D =C n B&E =
=X AB&D = A v E)).

1.1, Lemma. (i) y4(X, Y) in &, iff Y covers X in & ,.
(ii) ¥ao(X) in L4 iff X is a coatom of £ .
(i) Y3(X) in L, iff X is a modular element of % 4.

Definition. (i) Y, = VX, Y((y(X) & ¥o(Y)) » X = Y).
(i) ¥s = 3X, Y, ZWo(X) & Uo(Y) & Yo(Z) & X + Y& X + Z& Y + Z).

1.2. Lemma. (i) Y, in £, iff 4 contains only nullary symbols.
(i) ys in L, iff 4 is large.
Proof. It follows e.g. from [4].
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Definition. (i) /¢(X) = VY(X £ Yo VZ((VS, TIU((S < T& T < Z) >
- Y (TLU)&U £2)) > Z=<Y)).
(i) ¥2(X) = 3Y(Ye(Y) & (0,(Y) = 0p(X)) & (T0y(Y) = X = Y)).

1.3. Lemma. Let A be a small type containing a (single) unary symbol F. Then:
(i) If 4 = {F} then y¢(X) in L, iff X = W, x W,

(i) If 4 & {F} then y¢(X) in £, iff X = B,.

(i) y+(X) in £, iff X = B,.

Proof. Denote by M the set of equational theories Z € ¥, with the following
property: if Te £, and 1y, + T < Z then T is covered in &, by some U cZ.
Evidently, (X) in &, iff X is the join of M in Z,,. If either 4 = {F} or 4 = {F. H}
for some nullary symbol H, then we have a nice description of the lattice %, (see
Theorems 3 and 4 of [3]); from this description it follows that the join of M in £,
equals W, x W, in the case 4 = {F} and B, in the case 4 = {F, H}. It remains to
consider the case when 4 contains at least two different nullary symbols and to prove
that the join of M equals B, in this case.

Suppose that there exists a Ze M with Z & B,. Put T = Z n B, so that 1, #
% T < Z. Evidently, there is no cover U of T'in %, such that U < Z. We get a con-
tradiction with Z € M. This proves J < Bj,.

For every triple H, K, n such that H, K e 45, H # K and n = 0 denote by Ay  ,
the equational theory generated by (H, F'K). It is evident that Ay g , belongs to M.
Since 4 contains at least two nullary symbols, B, is generated by these theories
Ay x,nand so B, < J.

Definition. (i) Yg(X) = yo(X)& 3V, Z,, Z,, Z;(Y-(Y) & Y < Z, & Y\ (Z,, X) &
&YSZ, &Y (Z,, )& YS Z;&Y(Z3, X)& Z) £ 2, & Z, + Z3& Z, *+ Z3).

(i) ¢o(X) = Yo(X) & Tg(X).

1.4. Lemma. Let 4 be a small type containing a (single) unary symbol F. Then:

(i) ys(X) in £, iff X = E,.

(i) YolX) in &, iff X = Cy.

Proof. Evidently, if 4 is a small type containing a single unary symbol, then E,
and C, are the only two coatoms of %, and E, + C,. There are infinitely many
equational theories Z such that B, & Z and Z is covered by E ; for example, for any
prime number p the equational theory Z generated by B, U {(x, F?x)} (where x € V)
has the desired properties. On the other hand, there are exactly two equational
theories Z such that B, < Z and Z is covered by C,, namely the following ones:

E,nCy;

(Ux U)uly, where U= {F'x;nz22 xeV}U{F'c:mz2=0, ced,}.

Definition. (i) y/,o(X) = 2(X) & Y3(X) & 34, BYY(Y5(Y) > (Y < X VEL Y =
= AVELY = B)).
(ii) ‘//11(X) = y,(X) & Ys3(X) & W yo(X)-
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1.5. Lemma. Let 4 be a large type. Then:

(i) Y1o(X) in &, iff X = C,

(it) Y 4(X) in L4 iff X = E,.

Proof. As we know, C, and F, are coatoms of % . It fcllows from Theorem 5.1
of [1] that C,, E, are modular elements of %, and if Y is a modular element of £,
such that Y & C, then either Y= W, x W, or Y = E,. On the other hand, it is
evident that there are infinitely many modular elements of &, that are not contained
in E,.

Definition. (i) ¢,,(X) = ¥,(X) & (s & T5) > ‘ng(x))&(.,l,s = r0(X)).
(ii) 'pIJ(X) = '/IZ(X)&((—-“//At& ~1l/’s) - l//s(X))&(‘//s - ‘/711(‘)())-
(iii) J,s()() = EIY((//”(Y)&X < Y).

1.6. Lemma. Let A be any type. Then:
(i) u//lz(_x) in &, iff X =0Cy,
(ii) xgl}(x) in &, iff X = E,.
(iii) ¥,5(X) in L, iff X € E,.

In

2. DEFINABILITY OF THE SET OF EDZ-THEORIES

An equational theory T is said to be an EDZ-theory if at most one block of T is
of cardinality =2. The set of EDZ-theories of type 4 will be denoted by & ,.

Recall that &, denotes the lattice of full subsets of W,. For every U € %, put
Z(U) = (U x U) U ly,. Evidently, T'is an EDZ-theory of type 4 iff T = Z(U) for
some Ue Z,.

For every subset U of W, put Z(U) = Z(U*); for every term t put Z(1) = Z({1}).

2.1. Proposition. &, is a complete lattice with respect to inclusion. If A contains
not only nullary symbols then U~ Z(U) is an isomorphism of & , onto %, (and
consequently &, is distributive). If either A contains no nullary symbols or 4 is
strictly large then &, is a complete sublattice of & ,.

2.2. Lemma. Let A contain only nullary symbols and let Te ¥ ,. Then T is an
EDZ-theory iff T is a modular element of & ,.

Proof. It follows from Theorem 4.1 of [1].

Definition. /,,(X) = VY(Y £ X < VZ, U((ys(U) & y5(Z) & X <
<Z&Z<U)> YE Z))

2.3. Lemma. Let 4 be a small type containing a (single) unary symbol F. Then
Yi4(X) in L4 iff X is an EDZ-theory.

Proof. For every X € ¥, denote by My the set of modular elements Ze ¥,
such that X < Zand Z & E,. Evidently, Y, 4(X) in &, iff X is the intersection of M.
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It follows from Theorem 4.2 of [1] that if Z is a modular element of #,and Z & E,
then Z is an EDZ-theory. Since the intersection of any system of EDZ-theories is
an EDZ-theory, it follows that if X is the intersection of My then X is an EDZ-
theory. Conversely, let X be an EDZ-theory, X = Z(U). For every n = 0 put
U,=UuU{Fiy; i=n, yeVuU 4, so that Z(U,) e My. Evidently, X is the inter-
section of the equational theories Z(U,) (n = 0, 1,2, ...) and hence X is the inter-
section of M.

For every symbol F € 4 of arity n = | and every term ¢ define terms F°(t), F'(1),
F*(1), ... as follows: FO(t) = t; F**!(1) = F(FX1), ..., F¥(1)).

2.4. Lemma. Let F e A be a symbol of arity n = 1; let k = 1, xe V and let u, v
be two terms such that u # v, F¥(x) £ u, F¥(x) £ v. Then (u, v) is not a consequence

of (x, F¥(x)).

Proof. Denote by 4 the set of all the terms ¢ such that F¥(x) £ 1. For every symbol
G € 4 of an arbitrary arity m define an m-ary operation f; on A4 as follows:if G = F
and t; = ... = t, = F*"!(t) for some term ¢, put fg(ty, ..., 1,) = 1; in all other
cases put fo(ty, .o t) = G(ty, ..., 1,,) It is easy to see that the algebra with the
underlying set 4 and with the operations f;; satisfies (x, F*x) but does not satisfy

(u, v).

Definition. y,5(X) = y3(X) & 34, B, C(V;,(B) & /,0(C) & X < B& y5(4) &
&A<X&VY((Ys(Y)& Y < X) > Y < A)&VYLIM(M = X A L&
&(TLECo X = A v M)

2.5. Lemma. Let 4 be a large type. Then \;5(X) in &, iff there exists a term t
such that X = E, n Z(1).

Proof. Assume first that X = E, n Z(t) for some term 7. By Theorem 5.1 of [1],
X is a modular element of Z; evidently, X < E,. Define an equational theory A
as follows: (u, v) € A iff var (u) = var (v)and either u = voru,v >t 0r u ~v ~ t.
By Theorem 5.1 of [1], 4 is a modular element of #; evidently A = X. It follows
from Theorem 5.1 of [ 1] that if Yis a modular element of #,and Y = X then Y < A.
In order to prove ¥5(X), it remains to show that if Lis an equational theory and -
L& C, then X = A v (X L). Evidently, 4 v (Xn L)< X. Let (u,v)eX. It
remains to prove (u,v)e A v (X n L). This is evident if (u,v) e A. Let (u, v) ¢ A.
We have either u ~ t,v > toru > t, v ~ t; it is enough to consider the case u ~ t,
v > t. There is an automorphism p of W, such that p(f) = u. Since L & C,, there
exists an equation (x,a)e L such that xe V, a¢ V and var (a) = {x]. We have
(t, o¥(a)) e X n L. (p(1), poi(a))eX nL, (u,poi(a))eX nL; moreover,
(po7(a),v)e A and so (u,v)e 4 v (X N L). .

Now assume that y/,5(X) is satisfied. There exists a modular element 4 of &,
with the properties described in ¥ s.

Let us prove first that if (a, b) € X and a ¢ Uy (for the definition of Uy see Section 5
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of [1]), then (a, b) € A. Suppose, on the contrary, that (a, b) ¢ A. Take an arbitrary
symbol F € 4 of arity n = 1 and a variable x. Evidently, there exists an integer k = 1
such that F¥(x) £ a. Denote by L the equational theory generated by (x, F¥(x));
we have L ¢ C, and so X = 4 v (X n L). Since (a, b) e X, there exists an A4 U
U (X n L)-proof ay, ..., a,, from a to b. For every i € {0, ..., m} we have (a, a;)e X
and so a; ~ a. Hence if i e {1, ..., m} then it follows from 2.4 that either a;_ = q;
or (a,_y, a;) ¢ L; consequently, (a;_,, a;) € A. We get (a, b) = (ay, a,,) € A, a contra-
diction.

Suppose that there exists an equation (c, d)e X such that ¢ % d and c¢ Uy.
Define an equational theory Y as follows: (u, v)e Y iff (u, v) e X and either u = v
orufc v c It follows from Theorem 5.1 of [1] that Y is a modular element
of #,. Moreover, we have Y < X; since y,5(X) is satisfied, we get Y = A. Since
A < X, there exists an equation (a, b)e X \ A; as we have proved above, a e Uy
and be Uy. Hence a £ cand b £ ¢; we get (a, b) € Y by the definition of Y. However,
this is a contradiction, since Y = A and (a, b) ¢ A.

By Theorem 5.1 of [1], it follows that X = ((Uy x Uyx) U 1y,) n E,. Evidently,
Uy is non-empty. The set Uy contains a minimal element 7. It follows from
VY((Y3(Y)& Y < X) > Y= A) and 4 < X that X = E, ~ Z(1).

Definition Y (X) = 3Y, ZY (V)& Z =X A Y& Y,5(2) &
&VU(Z=U A Y= U £ X)).

2.6. Lemma. Let A be a large type. Then y,o(X) in £, iff X = Z(t) for some
term f.
Proof. It follows from 2.5; evidently, if ¢ is a term then Z() is just the greatest

equational theory X with the property X n E; = Z(t) n E,.

Definition. ¥ (;(X) = y3(X) & VA((5(4) & VB((16(B) & B < X) = B £ A)) —
- X £ A).

2.7. Lemma. Let 4 be a large type. Then y1,,(X) in &, iff X is an EDZ-theory.
Proof. It follows from 2.6 and from Theorem 5.1 of [1].

Definition. s(X) = (¢4 & 1,//3(X)) VEL ('11//4 & s & 1//14(X)) VEL (1//5 & 1//17(X4)).
As a consequence of 2.2, 2.3 and 2.7, we get:

2.8. Theorem. Let A be an arbitrary type. Then &(X) in &, iff X is an EDZ-
theory. Consequently, the set of EDZ-theories of type A is definable in & ,.

Recall that by a formula we mean a first-order formula in the language of lattice
theory. For every formula f define a formula f° by induction on the length of f
as follows:

(1) if f is a formula without quantifiers then f° is the same formula as f;
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(2) if f is the formula g (the formula g & h, g VEL h, g = h, g & h, resp.) then f°©
is the formula ~1g° (the formula g° & h°, g® VEL h°, g° — h°, g% & h°, resp.);
(3) if f is the formula VX g then f° is the formula VX(e(X) — ¢°);
(4) if f is the formula 3X g then f° is the formula 3X(e(X) & ¢°).
Now let (X1, ..., X,) be a formula where X, ..., X, are all the free variables in f.
Then the formula &(X,) & ... & &(X,) & f°(X 4, ..., X,) will be denoted by f(X, ...
. X,).

2.9. Lemma. Let 4 contain not only nullary symbols, so that U Z(U) is an
isomorphism of & 4 onto % 4. Let f(X4, ..., X,) be a formula and X, ..., X, be all
its free variables. Then (X, ....,X,) in &, iff there are sets U,,...,U, e &,
such that X, = Z(Uy), ..., X, = Z(U,) and f(U,, ..., U,) holds in & ,.

3. PARALLEL EQUATIONS

By a parallel equation we shall mean an equation (a, b) such that var (a) = var (b),
afxband b£a

3.1. Proposition. Let 4 contain not only nullary symbols. Let (a, b) be a parallel
equation and denote by A the least EDZ-theory containing (a,b). Let Te £,.
Then T = Cn(a, p(b)) for some permutation p of var(a) iff the following three
conditions are satisfied:

(1) T E;n 4;

(2) A is just the least EDZ-theory containing T;

(3) if Be £ and B < Tthen there exists an EDZ-theory C 2 B such that Z(a) ¢ C
and Z(b) & C.

Proof. First assume that T = Cn(a. p(b)). (1) and (2) are evident. Let Be £,
and B < T. Evidently, {a, p(b)} is a block of T. Hence if (a, u) € B for some u then
u = a; if (p(b), u) € B for some u then u = p(b). Denote by U the set of the terms u
such that v < u for some (v, w) € B with v & w. Evidently U is a full set, Z(U) is an
EDZ-theory, Z(U) 2 B, Z(a) ¢ Z(U) and Z(b) ¢ Z(U).

Conversely, let T satisfy (1), (2), (3). Denote by U the set of the terms u such that
v £ u for some (v, w) e T with v % w. Evidently, U is a full set and Z(U) is just the
least EDZ-theory containing T. By (2), Z(U) = A. Hence a € U; by (1) there is a term
¢ # a with (a,c)e T. Put B = Cn(a, ¢). We have B < T and by (3) we can not
have B = T. Hence B = T. By (2), 4 is just the least EDZ-theory containing (a, c).
Hence ¢ ~ b; since T< E,, ¢ = p(b) for some permutation p of var(b) = var(a).

3.2. Proposition. Let 4 be a large type. Let (a, b) be a parallel equation and put
C = Cn(a, b). Let T e #,. Then T = C iff the following two conditions are satisfied:
(1) there is a permutation p of var(a) such that T = Cn(a, p(b));

(2) whenever (c, d) is a parallel consequence of (a, b) then (c, g(d)) e T for some
permutation g of var(c).
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Proof. The direct implication is evident. Let (1), (2) be satisfied and let p be as
in (1). It is enough to derive a contradiction from the following assumption: There
exists a variable x € var(a) with p(x) # x.

Evidently, the set var(a) contains at least two elements. Consequently, 4 is a strictly
large type. The rest of the proof of 3.2 will be divided into several lemmas.

3.3. Lemma. Let (F,i)ed®, n=n, and ke{l,...,n}\{i}. Then at least
one of the following two conditions is satisfied:
(i a = F(vis--os Yie1s Qos Vitys .- ) fOr some term ao and pairwise different
variables yy, ..., y, such that if e {1, ..., n} \{i, k} then y, ¢ var(a,);
(i) b= F(yy - Yic1> bos ¥is1s - ¥u) for some term by and pairwise different
variables vy, ..., y, such that if 1e {1, ..., n} ~{i, k} then y, ¢ var(b,).

Proof. Suppose that neither (i) nor (ii) is satisfied. Put z, = xand let zy, ..., z;_,
Ziy1s--- Z, be pairwise different variables such that if le{l,...,n}\{i, k} then
zy¢var(a). Put ¢ = F(z,...,z;-4,a, 2,4y, ..., 2,) and d = F(zy, ..., z,_y, b.
Zi41s -+ 2,)- Evidently, (c, d) is a consequence of (a, b) and (c, d) is a parallel equa-
tion; by (2) there exists a permutation g of var(c) such that (c, g(d)) € T. Let u,, ..., u,,
be a minimal (a, p(b))-proof from ¢ to g(d). We have u, = ¢; since neither (i) nor (ii)
is satisfied, there is no other possibility than u; = F(zy, ..., z,= 1, P(b), Zig1s -0 Zn);
similarly, if m = 2 than there is no other possibility than u, = F(zy, ..., z;_y, a,
Zitgscees z,,) =c¢ = u, If m =2, we get a contradiction with the minimality of
Ugs ...y Uy hence m =1 and so g(d) = F(z, ..., z;_y, p(b), Zisy, -, 2,). Hence
q(z,) = z, and g(b) = p(b), so that g(x) = x and g{x) = p(x). We get p(x) = x,
a contradiction.

34. Lemma. Let F,Ged, F+ G, a=F(ay,...,a,.) and b= G(by,..., b

for some terms ay,...,a,., by, ..., b,,. Then ay, ..., a,.  are pairwise different
variables, by, ..., b, are pairwise different variables and np = ng = 2.

)

neG,
ng’

nG

Proof. Since 4 is strictly large, there exists an at least binary symbol H € 4.
By 3.3, either H = F or H = G. It is enough to consider the case H = F. Using the
fact that Card(var(a)) = 2, it follows easily from 3.3 that a,,...,a
different variables.

Suppose ng = 1. Then it follows from 3.3 that 4 = 4, U 4, U {F}. Moreover,
since a £ b, F does not occur in b. Hence b contains no symbols of arities =2 and
so Card(var(b)) < 1, a contradiction with var(a) = var(b) and Card(var(a)) = 2.

Since Card(var(b)) = 2, we can not have n; = 0. We have proved n; = 2. Simi-
larly as above, this implies that by, ..., b, are pairwise different variables. Since
var(a) = var(b), it follows that n, = ng.

are pairwise

ng

ng

3.5. Lemma. Let Fe A and a = F(ay, ..., a,.) for some terms ay, ..., a,,. Then
b = F(by, ..., b,,) for some terms by, ..., b,.
Proof. We have b = G(b,, e b,,G) for some G € 4 and some terms by, ..., b,.
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Suppose F & G. By 3.4, np = ng 2 2, ay, ..., a,,
and {ay,...,q,.} = {b,,....b,}. Put ¢ =0}, ,(a) and d = o},
(c, d) is a parallel consequence of (a, b); by (2) we have (c, §(d)) € T for some permuta-
tion g of var(c) = var(a). There exists an (a, p(b))-proof from ¢ to g(d); evidently,
every member of this proof belongs to {c, 0§ x.... o(a), 0F . o P(b), 65 . P(b)} and

SO ‘7(‘1) = 0;(x ..... x)ﬁ(b) BUt then qa;(x,...,x)(b) = a;(x ..... x)ﬁ(b)! q(F('\” MR X)) = p(x)’
a contradiction.

are pairwise different variables

3.6. Lemma. There exists exactly one at least binary symbol F e 4; we have
np = 2; there are two variables y, z and two terms ¢, d not belonging to V such
that either a = F(c, ), b = F(z,d) or a = F(y, ¢), b = F(d, z).

Proof. It follows easily from 3.3 and 3.5.

We shall denote by F the only binary symbol from 4 and sometimes we shall write
uv instead of F(u, v). By 3.6 it is enough to consider the case when ¢ = ¢y and b = zd
for some variables, y, z and terms ¢, d not belonging to V.

3.7. Lemma. Let x € var(a) and p(x) % x. Then:
(i) There exists a substitution f such that either f(a) = ax or f(a) = p(b) x.
(ii) There exists a substitution g such that either g(p(b)) = x p(b) or g(p(b)) = xa.

Proof. It is enough to prove (i), since (ii) is similar. Suppose that there is no such
a substitution f. Evidently, (ax, bx) is a parallel consequence of (a, b): by (2) there
exists an (a, p(b))-proof from ax to g(bx) for some permutation g of var(a). Since
(i) is not satisfied, evidently every member of this proof equals either ax or p(b) x.
Hence g(bx) = p(b) x. From this we get p(x) = x, a contradiction.

3.8. Lemma. Let x e var(a) and p(x) % x; let [ be a substitution such that f(a) =
= ax. Then a = ((y;y2-3)-.-) v for some k =3 and variables y,, ..., yi;
either y,, ..., y, are pairwise different or k = 3 and y, ¢ {y,, ys}-

Proof. It follows from f(a) = ax that a = ((y,y, . y3)-..) yx for some k = 3
and variables )i, ..., y,. There exists a variable y e var(a) such that y + x and
p(v) # ». By 3.7, there exists a substitution g such that either g(a) = ay or g(a) =
= p(b) y. If g(a) = p(b) y, then evidently k = 3 and y, ¢ {y,, y3}. Let g(a) = ay.
We have f(y,) = y1¥2, J(02) = yas s S(Vim1) = Vi S(0i) = x and g(y;) = y12s
9(v2) = 3. - 9(¥i-1) = Vi 9(yi) = y. From this it follows that y;, ¢ {yy, ..., ey}
Since y; = y; (where i,je{l,...,k — 1}) implies y,; = y;4+y, it follows that
Vis .- Vi are pairwise different.

3.9. Lemma. Let x € var(a) and p(x) # x; let f be a substitution such that f(a) =
= ax. Then a = y1y, - Y1 for some variables y, y, with y, % y,.

Proof. Suppose that this js not true. By 3.8 we have a = ((,V1J’z.)’3) ) Vi
for some k = 3 and pairwise different variables y;, ..., y;. By 3.7 there exists a sub-
stitution g such that either g(ﬁ(b)) = x p(b) or 9(p(b)) = xa.
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Consider first the case g(p(b)) = x p(b). By a lemma symmetrical to 3.8, we have
p(b) = z(... (z3 . z,2,)) for some [ = 3 and variables z,,...,z, such that either
zy, ..., z; are pairwise different or | = 3, z, ¢ {zy, z;}. Since var(a) = var(p(b)),
it follows that [ = k, zy, ..., z; are pairwise different and {y,, ..., ye} = {zy, ..., z}-

Now consider the case g(p(b)) = xa. Then evidently p(b) = z,(((z122 - 23) --.) z,-1)
for some [ and variables z,, ..., z;; we have 3 < | < k + 1 and z4, ..., z, are pair-
wise different. There exists a variable y € var(a) such that y # x and p(y) # y.
By 3.7, there exists a substitution h such that either h(p(b)) = y p(b) or h(p(b)) = ya.
In both these cases it is easy to see that z,, ..., z, are pairwise different. Since var(a) =
= var(p(b)), it follows that | = k.

We have proved: either p(b) = z,(... (z5 . z2z;)) or p(b) = z(((z425 - 23) -..) Z¢—y)
for some pairwise different variables z,, ..., z, with {zy, ..., z;} = {y, ..., y}.

Denote by h the substitution such that h(p(x)) = p(x) and h maps V~{p(x)}
onto {x}. Evidently, (h(a), h(b)) is a parallel consequence of (a, b); by (2) there
exists an (a, p(b))-proof from h(a) to g(h(b)) for some permutation g of var(h(a)) =
= {x, p(x)}. Evidently, every member of this proof equals either h(a) or h(p(b)).
Hence g h(b) = h p(b). There exists a variable y € var(a) \ {x, p(x)}; we get g h(x) =
= h p(x) and g h(y) = h p(y), i.e. q(x) = p(x) and ¢(x) = x, so that p(x) = x,
a contradiction.

3.10. Lemma. For every X € Va]'(a) such that p(X) + X there exist itwo substitutions
/. g such that f(a) = p(b) x and g(p(b)) = xa.

Proof. Suppose that this is not true. It follows easily from 3.7, 3.9 and a lemma
symmetrical to 3.9 that there are two different variables y,, y, such thata = y,y, . y;
and either b = y, . y,y, or b =y, . y,y,.

Let b = y; . y,p;- Then p(b) = yy. y1yy. Since (v1 - y212) v1, ¥1(v2ya - 1)) is
a parallel consequence of (a, b), by (2) either ((y; . y,y,) Vs ¥1(y2y2 - v1)) or
((.Vl S Va¥a) Vis J’Z(Y1)’1 . J’z)) is a consequence of (,Vl,Vz YV nyZ)' However,
this is impossible, since if ¢ is a term such that ((y, . y,¥,) ¥, t) is a consequence
of (y1¥2-Y1s ¥2-¥1yz) then evidently either ¢ = (y;.y,v,)y; or 1= (yyy,)-
. (."1 . ."2)’2)~

Let b = y,.y,;y,. Then ﬁ(b) = y;. ¥y, Since (a}fz, by,) is a parallel con-
sequence of (a, b), by (2) either ((y1y2-y1) ¥2r (¥2- ¥1¥2) ¥2) or (yiyz - 1) vas
(1 - y291) y1) is a consequence of (y;¥; - ¥y, ¥y - ¥,¥1); however, this is evidently
impossible.

3.11. Lemma. We have p(x) = x for all x € var(a).

Proof. Suppose p(x) + x for some xevar(a). By 3.10, there are two substitu-
tions f, g such that f(a) = p(b)x and g(p(b)) = xa. For every finite sequence
ty, - 1 of terms and every sequence ey, ..., ¢ of numbers from {1, —1} define
a term [1y, ey, ty, €5, ..., le—y, €, 1] by induction on k as follows: if k = 1 then
this term equals #; if k =2 2 and e; = 1 then this term equals ¢, . [1,, €5, ..., t,_1,
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1> ti]; if k = 2 and ¢, = —1 then this term equals [15, e, ..., ty_1, €15 1] - 1y
It is evident that a = [y, —1,y,, 1, y3, =1, ..o, vy, (= 1)1, 3] and p(b) =
= [z, 1,23 =1L z3, 1, ..z, (=1),, z,] for some k. and variables i, ..., y,
Zy, .., Z;; We have k >3, I =3 and k — 1 <1 £ k + 1. There exists a variable
y € var(a) such that y + x and p(y) # y. By 3.10, there are substitutions fo, g, such
that fo(a) = p(b) y and go(p(b)) = ya. Evidently,

Tr)=x, for) =y, g(z:)=x, go(z)) =y,

f()’z) :fo(yz) =Iy, g(Zz) = 90(22) =Vis

f(J’k—l) = fO(yk—l\) = Zk-2> 9(21—1) = 90(21—1) = Vi-2>

f(yk) = fo(Yk) = [zk—1- cees Zl] s g(zl) = gO(Zl) = [yi—la cees J"k] .
Since x # y, from these relations it follows that y,, ..., y, are pairwise different and
zy, ..., 2, are pairwise different. Now var(a) = var(p(b)) implies k = I and
{y1s - »} = {24, ..., 2;}. Now we can define a substitution / and finish the proof
in the same way as in the proof of 3.9.

This completes the proof of 3.2.

4. STRICTLY LARGE TYPES, NICE EQUATIONS

An equation (a, b) is said to be nice if var(a) = var(b), a¢ V, b¢ V and there

exists a pair (F, i)e 4" with ny = 2 such that a ¢ I[Fl i] and b ¢ t[Fl i] for any
term f. > >

4.1. Proposition. Let (a, b) be a nice equation. Put C = Cn(a, b). Then C is
Just the greatest element T of &£, with the following two properties:
(1) T< Eg
(2) if (u, v) is a parallel equation then (u, v)e T iff (u, v)e C.

Proof. Evidently, the theory C has both these properties. Now let T be any
element of %, with these two properties. Let (c, d)e T and ¢ # d; we must prove
(c,d)e C. Let (F,i) be as above. Put n = n; and m = 1 + Max ()»0(61), Ao(b),
4o(c), Zo(d)). Let us fix a number j € {1, ..., n} \{i}. Evidently, there exist an integer
k = 2 and a mapping (r, s) > z, , of the set {1, ..., km} x {1, ..., n} into V with the
following two properties:

(i) 2,5, = 2y, iff either (r.s,) = (rp,s;) or s, =5, =j and {r,r} =
= {(k = 1) m, km};

(ii) var(c) S {Zumj» Zamjo > Ze1ymj)-

We fix one such integer k and one such mapping (r, s) > z, .. For every term ¢ and

every re{0,1,..., km} define a term 1 as follows: /¥ = #; if r = 1 then 1 =

= F(z, 15 o0 Zpim 15 170, 2, 1445 o 2,,). Evidently. 26(t7) = 44(1) + 7.

Suppose ¢*™ < d*™. Then there is a substitution ; such that f(c*™) is a subterm
of d*™. Since Lo(c® ™) = km and Ao(d®) < m, we have f(c%™) = d® for some
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r> (k — 1) m; since zg_jym; = Zim o We get r = km, so that f(c*™) = d%*m.
Hence f(¢)=d and f(z,;) = zw;» [(Zom;) = Zamjs s S (Zims) = Zim3 by (ii)
we get ¢ = d, a contradiction.

Similarly, we can not have d*™ < ¢®*™. Thus (¢*™, d*™) is a parallel equation;
since it evidently belongs to T, by (2) it belongs to C. Let ug, ..., u, be an (a, b)-proof
from ¢*™ to d*™. Let us prove by induction on p e {0, ..., I} that u, = v5™ for some
term v, with (c, v,,)e C. For p = 0 it is evident. Let p > 1 and let u,_, = vﬁ,"i"l)
and (¢, v,-1) € C. Since either (u,_y, u,) or (u,, u,_) is an immediate consequence
of (a, b). it is enough to show that if f(a) is a subterm of u,_ for some substitution f
then f(a) is a subterm of v,_, and if f(b) is a subterm of u,_, then f(b) is a subterm
of v,_,. We shall consider only the case when f{a)is a subterm of u,_;; the other

case is quite analogous. Suppose that f{a) is not a subterm of v,_ ;. Then f(a) = v} ,

. 1 1
for some ref{l,..., km}. Since a ¢’[F i] for any term 1, we get v;,'ll ¢ tl:F i

for any term 7 and so r is divisible by ni; especially, r = m. It follows from f(a) =
= vy, and Zo(a) < m that

a=FW,p,ocoWo o FWey oo Wy o, F(oo FOWo— g gy -

b wr—q,n) b ')a Wr—- 1,i+1> =+ Wr‘ 1 .n)’ wr,i+ 15 =+ Wr,n)

for some g < m and some variables W, j, ..., W,y o1 W g is Weegiitts -0 Wem

- - , - - o — D =
such that f(w, ;) = z, 1, oo, S[(Wr—yics) = Zemgiicts S(Wemg i) = 05T f(Weeginn) =
Zeegutts - S (W) = z,,. However, the vaciables z, 1, ..., Z g im1s Zy—gings ---
... Z,,, are evidently pairwise different and different from o=, so that the variables

Wi s ooy Womgiicts Woeg s Weeglis1s --o» Wy, are pairwise different, too. This means

- . 1 . L

AEW,_y; Fq ,], a contradiction with a ¢ I[F | for any term 7. The induction is
’ 2 l b l

thus finished. Especially, for p = | we get (¢, d) e C.

4.2. Proposition. Let 4 be a strictly large type and (a, b) be an equation of type A
such that var(a) = var(b). Then exactly one of the following five cases takes place:
(1) (a, b) is nice;

(2) either aeV or beV;

(3) 4 =4y v 4, U {F} for some symbol F with np =2 and either a = F(x, c),
b =F(d,y) or a=F(d,y), b=F(x,c) for some variables x,y and terms
¢, d ¢ Vsuch that x ¢ var(c) and y ¢ var(d);

(4) 4 = 440 4, U {F} for some symbol F with np =2, a¢ V, b¢ V and either a
or b equals F(y,, ..., y,,) for some pairwise different variables y, ..., y,.;

(5) 4 = 4y U 4, U {F, G} for some different symbols F, G with np = ng 2 2,
a = F(yj, ..., v,) for some pairwise different variables y,, ..., y, (where n = n;)
and b = G(zy, ..., z,) for some zy, ..., z, with {y, ..., y,} = {zq, ..., 2,}-

Moreover, in the last case the equation (a, b) is parallel.

Proof. It is easy.
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5. STRICTLY LARGE TYPES, 1-SPECIAL EQUATIONS

An equation (a, b) is said to be 1-special if var(a) = var(b), a + b and either
aeVorbeV.

5.1. Proposition. Let A4 be strictly large and let (a, b) be a 1-special equation.
Then Cn(a, b) is just the least element T of &, with the following two properties:
(1) the least EDZ-theory containing T equals W, x W,

(2) if (u, v) is a nice equation then (u, v)e T iff (u, v) € Cn(a, b).

Proof. Evidently, the theory Cn(a, b) has both these properties. Let T be any
element of %, with these two properties. It is enough to consider the case when
aeV; put x = a. By (1) there exists a term ¢ such that var(c) = {x}, ¢ + x and
(x, ¢) € T. The equation {c, o;(c)) is nice and belongs to C, so that (¢, o3(c)) € T by (2).
Further, we have (o;(x), o5(c)) e T, i.c. (b, o3(c)) € Tand so (b, ¢) & T. Hence (x, b) e
€ Tand so Cn(a, b) = T.

6. STRICTLY LARGE TYPES, 2-SPECIAL EQUATIONS

An equation (a, b) of type 4 is said to be 2-special if 4 = 4, U 4, U {F} for some
binary symbol F (we shall write uv instead of F(u, v)) and there are terms a,, b,
and variables x, y such that a = xao, b = byy, ag¢V, a < b, x¢var(ay), y¢
¢ var(b,), var(a) = var(b).

A 2-special equation (a, b) of type 4 such that 4, is non-empty is said to be 21-
special.

A 2-special equation (a, b) = (xay, bey) such that x = y is said to be 22-special.

6.1. Proposition. Let (a, b) be a 21-special equation. Put C = Cn(a, b). Then C
is just the greatest element T of &, with the following two properties:
(]) T< Ey
(2) if (u, v) is a nice equation then (u,v)e T iff (u, v)e C.

Proof. Evidently, the theory C has these properties. Let T be any element of &,
with these properties and let (¢, d) € T, ¢ # d; we must prove (c, d) e C. There exists
a unary symbol G € 4. Evidently, the equation (Gc, Gd) 1s nice and belongs to T,
so that it belongs to C. But from (Ge, Gd) € C we get (c, d) € C quite easily.

6.2. Lemma. Let (a, b) = (xao, b,y) be a 2-special equation and let A, be empty.
Put C = Cn(a, b). Let there exist a substitution I such that (b,1(b))e C and the
terms b, I(b) are not similar. Let T be any element of & 4 such that whenever (u, v)
is either & parallel or a nice equation then (u,v)e T iff (u,v)e C. Then (a, b)e T.

Proof. Denote by M the free monoid over {1, 2}; the unit of M will be denoted
by 0.Ife = a, ... a,e M where a; € {1, 2} then n is called the length of e. If e, fe M
and f = eg (f = ge, resp.) for some g € M, then e is said to be a beginning (an end,
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resp.) of f. If f = g,eg, for some g;, g, € M then e is said to be a connected part of f.
By an irreducible element of M we mean any element e e M such that e £ 0 and
whenever e = f" for some fe M and n = 1 then n = 1. The following three assertions
can be proved easily:

(A1) Let e, fe M\ {0} and ef = fe. Then e = g" and f = g™ for some g € M and
some n, m = 1.

(A2) Every element of M \ {0} can be uniquely expressed in the form e" for some
irreducible element e of M and some n = 1.

(A3) Let e be an irreducible element of M and f, g € M be such that ee = feg.
Then either /' =0 or g = 0.

Ife=ry...r,e M (where r,e {1,2}) and if ¢, 1, ..., t, are terms, then we define
aterm [z, ry, 1y, ..., Iy, t,] as follows: if n = 0, this term equals 1; if r, = 1, it equals
Lt rs gy o Fyets taoq |5 i 7, = 2, it equals [1, 1y, 1y, ..o, Fuey, By ] £, For every
ie{0...,on} put [t,r, by, oo T )i = [6 71, By ooy Piu 1]

The depth 9(¢) of a term ¢ is defined as follows: if te VU 4, then () = 0; if
t = 1,1, then 9(t) = 1 + Max (d(t,), &(1,))-

Since (b, I(b)) e C, we have var(I*(a)) = var(a) for all positive integers k; since
b, I(b) are not similar, there is a z € var(a) with (I(z)) = 2. Hence A(a) < A(I(a)) <
< MI*a)) < ...; for some k = 1 we get A(I(a)) > i(b) and so I*(a) £ b. We shall
fix one positive integer k with this property and put a’ = [*(a). Evidently (a, a") e C
and a’' £ b.

By a I-term (2-term, resp.) we shall mean a term of the form zt (of the form ¢z,
resp.) where ¢ is a term and z € V'\ var(¢). If there exists a term ¢ such that (a, 1) e C
and 1 is neither a 1-term nor a 2-term then both (a, 7) and (1, b) are nice, so that
(a,1)e T and (1, b) e T, so that (a, b)e T and we are through. Hence it is enough
to assume that there is no such term 7. Especially, a’ is a 1-term.

There exists a substitution H such that H(a) is a subterm of b; we can write b =
= [H(a), ry, by, ..., 1, b,] forsome e = r; ... r,€ M\ {0} and some terms b,...
we have r, = 2.

If (a’, b) is parallel then (a’,b)e T, (a,a’)e T, (a,b)e T and we are through.
It remains to consider the case b < a’. Since a’ is a 1-term, there is a substitution K,
such that Ky(b) is a proper subterm of a’. We can write a’ = [Kq(b), 5y, ¢y, ...

<s Smg> Cmo) for some f =35, ... 5, e M\{0} and some terms ¢y, ..., ¢,,; we have
5o = 1. Put K = KoH, m = n + myg, sy ... s, = ef, ¢; = Ko(b;) for ie{l,..., n}
and ¢,4; =¢; forie{l,..., mo}. We have evidently a’ = [K(a), sy, ¢y. ..

ln

oy Sims Co |-

Now we shall prove two easy assertions.

(A4) If I = 1 then efe is not a connected part of e'. Suppose, on the contrary,
that e' = g,efeg, for some g,, g,. By (A2) we have e = h” for some irreducible
he M and some p = 1. By (A3) it follows easily from h?' = g, h"feg, that g, = h?
for some g = 0. Similarly, ¢, is a power of h. From this it follows that f = h’ for
some j. But e ends with 2 and f ends with 1, a contradiction.
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(AS) 1f I = L and if j = 1 is such that e’ is longer than efefe, then e/ is not a con-
nected part of (ef). Indeed, if e/ was a connected part of (ef)', then, since it is longer
than efefe, evidently efe would be a connected part of e/, a contradiction by (A4).

For every p = 1 and i€ {1, ..., pn} put

B®Y = [H¥a), ry, HP~(by), ..., 1 HP7N(b,), 1y, HP72(by), ...

ey Py H””z(b,,), R TR T b,l],- .
For every p = 1 and ie{l, ..., pm} put

CPD = [K"(a), s1, K27 (cy), ooy Sms KP7Y(e,)s 515 KP72(cy), -
wvs S K"‘Z(cm), veer $15 Choens Sy Con )i -
Put B = B®P and C» = C@rm_ Evidently B® are 2-terms and C® are 1-terms;
we have (a, B?”) e C and (a, C') e C.
Let us fix an integer L such that

L> m + Max (0(H(z)), d(K(z))) for all ze var(a).
It is easy to see that for any p > 1,

pn < 8B® < ¢BPtY < 9BW 4+ [,

pm £ 9C® < oCPtY) < aCc® 4 L.

It follows that there are positive integers p, g such that

(B1) pn > L+ A where 1 is the length of eefefe,

(B2) gm > L+ 4,

(B3) 0B® > Max (dcy, ..., dc,, eKcy, .., 0Ky, ...y OKE ¢y, o0, 0K T 2e,),

(B4) 0C® > Max (by, ..., 0b,, OHb,, ..., 6Hb,, ..., dH-**b,, ..., OHL**b,),
(BS) |0B® — oC?| < L.

Let us fix such a pair p, g.

Suppose B £ C?, so that N(B™) is a subterm of C'’ for some substitution N.
Since 8C? < dB® + L < dN(BW) + L, N(B'”) can not be a subterm of C4m~ 1),
Hence one of the following two cases takes place. ‘

Case 1. N(B") is a subterm of one of the terms ¢,
..o K* ey, .., K" tc,. This is a contradiction with (B3).

Case 2. N(B?) = C“" for some ie{gm — L + 1,...,gm}. Put € = ry ;...
ooty ypand (ef)! =7y, ...y, Denote by g the greatest common end of e” and
Fa.1 ... T3, denote by j the length of g. If it were j = A, then evidently a power
of e longer than efefe would be a connected part of (ef )%, a contradiction with (A5).
Hence j < A. Evidently N(B¥"~9) = C4i=) and N(BPP"~i~D) = J where
COi=d = [c@i=i=b s, J]; but Je {Cis vor Coy KCpy ooy KCpy ooy KEF 20y,
..., K¥*%¢,} and we get a contradiction by (B3).

v Cs Keqy ooy Kep, - -
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Similarly, we can not have C@ < B”. Thus (B?, C?) is a parallel equation;
since it belongs to C, it follows that it belongs to T. We have evidently (b, B?)e T
and (a, C¥) e T; hence (a, b) e T.

6.3. Proposition. Let (u, b) = (xay, box) be a 22-special equation and let A, be
empty. Put C = Cn(a, b). Then C is just the least element T of &, with the fol-
lowing three properties:

(1) Te E,:
(2) there is a term ¢ such that a < ¢ and (a,c)e T;
(3) if (u, v) is either parallel or nice then (u,v)e T iff (u, v)e C.

Proof. Evidently, C has these properties. Let T be any element of %, with these
three properties. We must prove (a, b)e T. Let z be any element of 4, u var(a,).
The equation (zay, o3(c)) is nice and belongs to T, so it belongs to C. Let ug, ..., u;
be an (a, b)-proof from za, to ¢3(c). It is easy to prove by induction on i € {0, ..., k}
that there exists a term f; such that x ¢ var(;) and either (a, xt;)€ C, u; = zt; or
(a, tx) € C, u; = t;z. Especially, for i = k we get: there is a term ¢ such that x ¢
¢ var(r) and ecither (a, xt)e C, o3(c) = zt or (a, tx) e C, o}(c) = 1z. From this it
follows that there are only two possibilities: either {a, ¢) is nice or ¢ = xt in the case
o3(c) = zt and ¢ = tx in the case 6}(c) = tz. In any case we get (a, c) e C. If there
is a substitution I such that (b, I(b)) € C and the terms b, I(b) are not similar, then
(a, b) e T follows from 6.2. Now let there be no such 7. Then it is easy to see that
¢ = ux for some term u, the equation (b, c) is nice and belongs to C, hence (b, ¢)e T
and so (a, b)e T.

6.4. Proposition. Let (a, b) = (xag, boy) be a 2-special equation and let A, be
empty. Put C = Cn(a, b). Then C is just the least element T of & , with the following
three properties:

(1) Te E
(2) there is a term c such that a < ¢ and (a, c)e T,
(3) if (u, v) is either parallel or nice or 22-special then (u, v) € T iff (u, v)e C.

Proof. Evidently, C has these properties. Let T be any element of ¥, with these
three properties. We must prove (a, b)e T. 1If x =y, then (a, b) is 22-special and
everything is clear. Let x = y. If there is a substitution I such that (b, I(b))e C
and the terms b, I(b) are not similar, then (a, b) e T follows from 6.2. Now let there
be no such I. Evidently, the equation (b, ¢) is nice. The equation (0%(a), aX(c)) is
nice and belongs to 7, so it belongs to C.

Let us prove that if (a, ) € C then either ¢ ~ 1 or ¢ = t,;y for some term ¢; with
y ¢ var(;). There exists a minimal (a, b)-proof v, ..., v, from a to t. If there is no
ie{l,.... 1} such that v;,_; = h(b) and v; = h(a) for some substitution h, then the
assertion is evident. Now let there be such an i and denote by i the least positive
integer with this property; since there is no substitution / as above, we have b ~ h(b)
and we can suppose that /1 is an automorphism of W,. Suppose i <t [. Then evidently
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viyy = h(b) = 1,_,, a contradiction with the minimality of vy, ..., v, Hence i = I,

= h(a) and we get a ~ 1.

Let uy, ..., u; be an (a, b)-proof from o%(a) to o3(c). Let us prove by induction on
ie{0,..., k} that u; = ai(t) for some term ¢ with (a, t)e C. For i = 0 it is evident.
Let i <k, u; = o)(1), (a,t)e C. If t ~ a, then t = p(a) for some automorphism p
of W,; we have u;,, = o} p(b) and (a, p(b))e C. As we have proved above, it
remains to consider the case ¢ = t;y for some term ¢, with y ¢ var(z;). We have
u; = t;x. There is a substitution g such that either g(a) or g(b) is a subterm of #;x
and u,, , is obtained from 7,x if this subterm is replaced by g(b) in the first case and
by g(a) in the second case. If the subterm of #;x is contained in ¢,, then everything is
evident. It remains the case when t;x = g(b)and u;,, = g(a). Define a substitution h
as follows: h(y) = y: h(z) = g(z) for all ze V\{y}. Then u;,, = o)(h(a)) and ¢ =
= h(b), so that (a, h(a)) e C.

Especially, }(c) = a(t) for some term ¢ with (a, t) € C. It follows that one of the
following three cases takes place (recall from the proof of 6.2 the notions of I-term
and 2-term and notice that evidently ¢ is not a 1-term):

(i) cis not a 2-term;
(ii) ¢ = 1
(iii) ¢ is obtained from ¢ by the transposition x — y > x.
In the first two cases we get (a, b) e T immediately. In case (iii) the equation (a, c)
is 22-special, so that (a, ¢) € C by (3): now we get (a, b) € T easily.

7. STRICTLY LARGE TYPES, 3-SPECIAL EQUATIONS

Recall that V = {x;, x,, X3, ...} is the set of variables. Throughout this section
let x be a fixed variable (e.g. put x = x,).

Let a type 4 be given. We denote by E the free monoid over 4‘"); the elements
of E can be identified with finite sequences of ele ments of 4" and the empty sequence
is the unit of E. If e, f€ E and f = eg for some g € E, then e is said to be a beginning
of f. Let ¢ be any term. In Section 6 of [2] we have defined a finite subset E(t) of E;
for every e € E(f) we have defined a subterm e} of t. For every e € E(f) and every
term s define a term o,,(t) as follows:

(i) if e is empty then o,,(1) = s;

(ii) if e = (F, i) f for some (F, i)e A and feE then t = F(t,, ..., t,.) for some
terms ty, ..., 1, and we put 6,.(t) = F(t;, ..., t;q, 0. (8)bi 415 o oos Tnp)-

Thus am(t) is the term obtained from ¢ if “the e-th subterm is replaced by s”.

For every F e A we denote by Eg(f) the set of all ee E() such that t{e) =
= F(ty, ..., t,,) for some terms t,, ..., t,,.

A finite sequence ey, ..., ¢ (k = 0) of elements of E(t) is said to be independent
if the following is true: whenever i, j € {1, ..., k} and e, is a beginning of ¢; then i = j.
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An equation (a, b) of type 4 is said to be 3-special if 4 = 4, U 4, U {F} for some
symbol F with n; = 2, a = F(x,, ..., x,,), var(a) = var(b) and a < b.

An equation (a, b) of type 4 is said to be 31-special if it is 3-special and b =
= o;(w) for some term w such that var(w) = {x}. An equation (a, b) is said to be
32-special if it is 3-special and satisfies some 31-special equation (a, b') with a + b'.
An equation (a, b) is said to be 33-special if it is 3-special but not 32-special.

7.1. Proposition. Let (a, b) be 31-special. Put C = Cn(a, b). Then C is just the
greatest element T of & 4 with the following two properties:
(1) T< Ey
(2) if (u,v) is either nice or 2-special then (u,v)e T iff (u, v) e C.

Proof. Evidently, the theory C has both these properties. Let T be any element
of Z, with these two properties. Let F and w be as above; put n = n. It is enough
to prove that if (a, ¢) e T for some term c then (a, ¢) € C. Let y,, ..., y, be pairwise
different variables different from x,, ..., x,. The equation (F(a, y,, ..., y,), F(c, yas - .-
..., ¥»)) is nice and belongs to T, so that it belongs to C. Let ug, ..., u; be an (a, b)-
proof from F(a, y,, ..., y,) to F(c, y, ..., y,)-

Let us prove by induction on i€ {0, ..., k} that if 7 is a term such that var(r) =
= {x,,...,x,} and F(t, y,, ..., y,) is a subterm of u; then (a, t)€ C. For i = 0 it is
evident. Let i > 1. There is a substitution h and an ee E(u;_,) such that either
u;_,<e) = h(a) and u; = 6,y)(u;—{) or u;_<e> = h(b) and u; = Gom(u;i—y)-
There is an f € E(u;) such that u,{f> = F(t, y,, ..., y,)- I either e, f are independent
or f is a proper beginning of e or F(t, y,, ..., y,) is a subterm of one of the terms
h(xl), e h(x,,), everything is evident from the induction assumption. If f = e and
u;(ey = h(a), then it is evident, too, since h(a) is a subterm of h(b); indeed, (a, b)
is 31-special and so a is a subterm of b. It remains to consider the case when u;_ (e} =
= h(a), uKe) = h(b) and e is a beginning of f and F(t, y,, ..., y,) = h(v) for some
subterm v ¢ V of b. We have v = F(v,, ..., v,) for some terms vy, ..., 0,. Since h(v,) =
= Yoy eun h(v,,) = Y, Vs, ..., U, are pairwise different variables. From this and from
b = o}(w) it follows easily that v = F(xy, ..., x,) = a. Now h(a) = F(t, y,, ..., y,)
and we can use the induction assumption.

Especially, for i = k we get (a, ¢) e C.

7.2. Proposition. Let (a, b) be 32-special. Put C = Cn(a, b). Then C is just the
least element T of £ 4 with the following two properties:
(1) T Eg;
(2) if (u, v) is either nice or 31-special then (u, v)e T iff (u, v)e C.

Proof. It is easy.

The rest of this section is devoted to the proof of the following proposition.

7.3. Proposition. Let (a, b) be a 33-special equation. Put C = Cn(a, b). Then C
is just the greatest element T of £, with the following two properties:
(1) T< Ey
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(2) if (u, v) is either nice or 31-special then (u, v)e T iff (u, v) € C.

Proof. Evidently, the theory C has both these properties. Let T be any element
of &, with these two properties. Let (¢, d)e T, ¢ # d. We must prove (c, d) e C.
Let F be as above and put n = n,. If t is a term and ey, ..., ¢, is an independent
sequence of elements of Eg(r), we put S, . (t) = 0, ) - Oepmm(!) Where
hy, ..., by are substitutions such that {e,> = hy(a), ..., Ke,> = hya).

7.4. Lemma. Let t be a term, e € E¢(t) and let e,, ..., e, be an independent sequence
of elements of Ei(t). Put u = St) and v =S, _,(t). Then there exist an in-
dependent sequence f, ..., f, of elements of Ep(u) and an independent sequence
91> - g, of elements of Ei(v) such that Sy, (u) =S, 4.(0)

Proof. Consider first the case e = ¢,(F, )/ for some ie{l,..., k}, some je
e{l,...,n} and some f. Denote by hy, ..., h, all the (pairwise different) elements
h e E(b) such that b<h) = x;. We can put (fi, ..., f,) = (e ..., ¢)and (¢, ..., g,) =
= (ehyf, ..., ehyf).

Now consider the case e = e; for some i € {1, ..., k}. Then we can put (fy, ..., f,) =
= (6‘1, e €15 €y s ek) and (gl’ cees gq) =0.

Finally, consider the remaining case. Then denote by fi, ..., f, all the (pairwise
different) elements f € E such that one of the following two cases takes place:

(i) fe{es, ..., &} and e is not a beginning of f;

(ii) there exist an i e {1,..., n}, an [ € E with e(F, i)l e {e,, ..., ¢,} and an h e E(b)
with b(h> = x, such that f = ehl.

Further, put (g5, -.., g,) = (e). It is easy to verify S, (u) = S, 4. (v)-

By a direct (a, b)-proof we mean an (a, b)-proof u,, ..., u; such that for every
ie{l,..,k}, (ui-y, u;) is an immediate consequence of (a, b); i.e. for every ie
e {1, ..., k} there exists an e € Eg(u;_,) such that u; = Sy(u;_y)-

7.5. Lemma. Let u, ..., u, be a direct (a, b)-proof; let u be a term such that
u = S, (o) for some independent sequence ey, ..., e, of elements of Eg(u,).

Then there exists an independent sequence fy, ..., f, of elements of EF(u,,,) such
that there is a direct (a, b)-proof from u to Sy, (u,,)- '

Proof. It follows from 7.4 by induction on m.

7.6. Lemma. Let (u,v)e C. Then there exist a term w,, a direct (a, b)-proof
from u to wy and a direct (a, b)-proof from v to wy.

Proof. It follows from 7.5 by induction on the length of an (a, b)-proof from u to v.

Let us fix pairwise different variables y,, ..., y, different from x,, ..., x, and not
belonging to var(c).

For every term ¢ define a set SU(t) of terms as follows: if ¢ = x, then u € SU(r)
iff (F(yy, .-, yu)su)e C; if te V\{x,} then SU(t) = {t}; if t = G(ty,...,1,,) for
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some G € 4 and some terms ¢y, ..., 1, then SU(1) = {G(uy, ..., u,,); uy € SU(ty), ...
oo Uy € SU(1,,)])-

7.7. Lemma. Let uq, ..., u, be a direct (a, b)-proof and let there exist a term u
such that x, € var(u), y,, ..., y, ¢ var(u) and uy € SU(u). Then there exists a term v
such that (u, v) e C and u;, € SU(v).

Proof. It is enough to consider the case k = 1, since the general case follows
from this one by induction. There is an e € Ex(u,) such that u; = S,(u,). If there is
anfe E(u) such that u{f) = x, and fis a beginning of e, we can evidently put v = u.
Consider the opposite case. Then e e EF(u) and it is not much difficult to see that
we can put v = S,(u).

Evidently, it is enough to assume that x € var(c) and the equation (0%, . (¢c),
0F:....om(d)) is nice. This equation belongs to T'and so it belongs to C. By 7.6 there
exist a term w,, a direct (a, b)-proof from o, ., (c) to w, and a direct (a, b)-
proof from c,,...y.m(d) to wo. By 7.7, there are terms wy, w, such that (¢, w,) € C,
wo € SU(w,), (d, ;) € C, wo € SU(w>).

7.8. Lemma. Let t,u be terms such that var(t) = var(u), y,, ..., y, ¢ var(t) and
SU(t) n SU(u) is non-empty. Then t = u.

Proof. By induction on A(¢) + A(u). First of all, let ¢ = x = x; and u # x. There
is a term p e SU(f) n SU(u). Since p e SU(u), we have (p, 63 ,,... (1)) € C. Since
peSU(7). we have (p, F(y,, ..., y,)) € C. Hence (0%, ., 1), F(yy. ..., v,)) e C.
From this (a, 6j(u)) € C; but var(u) = {x} and u + x, a contradiction with the fact
that (a, b) is 33-special. If u = x, the proof is quite analogous. If either ¢ or u belongs
to (V\{x}) U 4,, everything is evident. Now let t = G(t,. ..., 1,,) and u =
= H(uy, ..., u,,) for some G, He A and some terms t,, ..., f,., Uy, ..., U,,. Since
S(t) n S(u) is non-empty, we have G = H. Some term p belongs to S(t) n S(u).
We can write p = G(py, ..., p,,) for some py,....p,.; we have p; e SU(t;)n
N SU(uy), ..., pug € SU(t,,) 0 SU(u,.). By induction, #; = uy, ..., 1,, = u,, and
S0 t = u.

By 7.8 we get w, = w,. From this (¢, d) € C follows immediately. This ends the
proof of 7.3.

nG nG nG

8. STRICTLY LARGE TYPES, THE FORMULAS

Iff(X, ) is a formula and X is its free variable, then we define two new formulas
A f(X,...)] and x[f(X, ...)] as follows:

X, .. )] =X, .. ) &YX (f(X,...)» X' £ X),
X 0] = F(X ) &YX (X, ) » X £ X7).
Definition. ¢74(X, Y, 4. B) = (P75(X, Y, Y)& 3P, QP < Q& Pso(X, Y, P, A) &
& (PGO(X’ Y, 0; B))
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8.1. Lemma. Let 4 be a strictly large type. Then:

(i) ¢75(X, Y, Y) in F, iff there are (F,i)e 4® and terms a, b such that X =
= (F,i)* and Y = Hy (a. b).

(i) @76(X, Y, A, B) in F, iff there are (F,i)e A? and terms a, b such that
X = (F,i)*, Y= Hp (a, b), A =a* B=>b*

Definition. (i) ¢,,(X, Y) = 34, B(¢14(X, Y. A, B)& VU, C(¢3,(Y, U) -
- (((976(/\’, U, 4, C) - B = C)& (€076(X’ U, C, B) - A= C))))
(ii) @75(X, Y) = 079(X, Y) & 34, B(p16(X, Y. A, B)& 1A = B& 1B < A).
(iii) @7o(X, Y) = @44(X, Y) & 34, B(g4(X, Y, A, B) & (w(A) VEL w,(B))).
(iv) @so(X, Y) = ¢55(X, Y) & 34, B, C. D, U, X, X,(2,(U) & YP(o(P) —
- (o(P) VEL 2y (P)VELU = P)) & U < X, & U < X, & X, + X, &
& ¢,0(X 1, C, A) & ¢1o(X,, D, B) & T104(C) & T10,(D) & ¢14(X, Y, A, B)).
(v) 05:(X, Y) = ¢7(X, Y) & 34, B, U(p+(X. Y, A, B) & T0,(A) & T10,(B) &
& @,(U) & YP((P) — (oo(P) VEL o;(P) VELU = P))& (4 = U VEL B = U)).
(vi) @52(X, Y) = @o5(X, Y) & 34, B(14(X, Y. A, B) & @,(A4) & 5,(B)& A + B&
& YU(«(U) — (oo(U) VEL o (U) VELU = 4 VELU = B))).
(vil) @s3(X, Y) = 074(X, Y) & T19050(X, Y) & T10go(X, Y) & TT95,(X, V) &
& Tgy(X, Y). .
(viii) @sa(X, ¥) = @go(X, Y) & VZ, A, B((976(X, Z, 4. B) & ¢3:(Y, Z)) -
- (3C 0,+(C, A) <> 3D ¢,+(D, B))).
(ix) @ss(X, Y) = @g1(X, Y) & VA, Ay, A, A3, By, By, By, C((pes(X, A, 4y, 4;) &
& @gs(X, B, By, B,) & 06s(X, Y, A5, A3, C) & A, + A; & 0,(C) &
& ¢os(X, Y, B, By, C) & B, + B;) — U ¢eg(X, Y, 4, B, U)).
(X) Qﬂsa(X, Y) = ‘Psl(X, Y) & 3Z(¢85(X, Z) & @75(X, Y, Z) & —|§072(Xa Z))

8.2. Lemma. Let A be a strictly large type. Let j € {77,78, ..., 86}. Then ¢ (X, Y)
in F , iff there are (F, iy A® and terms a, b such that X = (F, i)*, Y = Hj (a, b)
and:

(i) if j = 77 then var(a) = var(b);

(it) if j = 78 then (a, b) is a parallel equation;
(iil) if j = 79 then var(a) = var(b) and (a, b) is as in 4.2(2);
(iv) if j = 80 then var(a) = var(b) and (a, b) is as in 4.2(3);
(v) if j = 81 then var(a) = var(b) and (a, b) is as in 4.2(4);
(vi) if j = 82 then var(a) = var(b) and (a, b) is as in 4.2(5);

(vii) if j = 83 then (a, b) is a nice equation;

(viii) if j = 84 then var(a) = var(b) and (a, b) is as in 4.2(3) with x = y;

(ix) if j = 85 then var(a) = var(b), (a, b) is as in 4.2(4) and there are a term
w and a variable x such that var(w) = {x} and either b = o}(w) or a = a3(w);

I
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(x) if j = 86 then var(a) = var(b), (a, b) is as in 4.2(4) and (a, b) has a non-
trivial consequence as in the last case.

Definition. (i) y,4(X, Y, T) = 34, B,C, D, E(¢55(X, Y) & ¢54(X, Y. 4, B)& C =
=AV B&Y3(D)&E=D A C&T<E&VU(s(U)>(TSU - C S U))&
&VP3Q(P < T— ((Q)& P < Q& 14 £ Q& 1B £ Q))).

(i) ¥1o(X. Y, T) = ¢1o(X, Y, T) & VZ 3U((055(X, Y, Z) & 055(X, Z)) >
- (y15(X, Z,U)& U £ T)).

(iii) Y20(X, Y. T) = 0is(X, Y) & "[Y15(T) & VA, B(1o(X, A, B) > (B £ T
— ¢55(X, Y, A))]

(V) Wai(X, Y, T) = 05(X, Y) & 105,(X, V)& ([VU(((U) & T £ U) » 0,(U)) &
&YA, B(f20(X, 4. B) > (B < T g55(X, Y, A))].

(V) '/IZZ(Xa Y, T) = (Pgo(X> Y)& —](ﬂflS(X’ Y)& 30 ael(Q)& T[Jls(’r)&

& VA. B(,0(X, A, B) = (B £ T+ ¢55(X, Y, A)))].

(Vi) Y23(X, Y, T) = 05a(X, Y) & T1956(X, ¥Y) & T13Q 05(Q) & 1[5(T) &
& VA, B(W1o(X. A, B) VEL y,o(X, A, B)) > (B < T ¢55(X, Y, 4))) &

& 3C, D(p%6(X, Y. C, D) & VE((Y3(E)& T < E) » (C < E& D = E)))].

(Vi) ¥24(X, Y, T) = 0fo(X, Y) & T105(X, Y) & 13005(Q) & o[¥/15(T) &
& VA, B((10(X, A, B) VEL r,0(X, A, B) VEL Y1,5(X, 4, B)) » (B = T
< 055(X, Y, A)) & 3C, D(¢56(X, Y, C, D) & VE((y5(E)& T = E) -
- (C £ E&D £ E))]

(viii) ¥as(X, Y, T) = 0§s(X, Y) & T[,5(T) &
& VA, B((Yr20(X, A, B) VEL r55(X, A, B) VEL Yrp4(X, A, B)) » (B £ T
< @5(X, Y, 4))].

(iX) ¥26(X, Y, T) = 056(X, Y) & 1[,5(T) & YA, B((20(X 4, B) VEL
l/’zs(X* A, B)) - (B STe (Pgs(X’ Y. A)))]

(X) V20X, Y, T) = 05,(X, Y) & T1056(X, Y) & T[,5(T) & YA, B((Y20(X. 4, B)
VEL §/,5(X, 4, B)) — (B £ T ¢55(X, Y. A)))]-

(xi) Yas(X, Y, T) = ¥1o(X, Y, T) VEL (X, Y, T) VEL Yr24(X, Y, T)

VEL y,,(X, Y, T) VEL §54(X, Y, T) VEL Y/,¢(X, Y, T) VEL y2+(X, Y, T)
VEL (05,(X, Y) & wo(T)).

8.3. Lemma. Let A be a strictly large type. Then Y,5(X, Y. T) in £, iff there
are (F,i)e 4® and two terms a, b such that var(a) = var(b), X = Z((F, i)*),
Y= Z(Hp (a, b)) and T = Cn(a, b).

Proof. It is a formalization of Sections 3, 4, 5, 6 and 7.

& Definition. (i) Y,o(X, ¥, T) = ¢55(X, Y, Y) & T195,(X, Y) & W 15(T) &
(ii) l//30(X, Y, T) = l//zs(Xa Y, T) VEL '//29(Xa Y, T)-
(iii) ¥3,(X) = 34, B¥30(4, B, X).
(iv) ¥32(X) = 34, B(¢55(4, B) & YC(¢%4(4, B, C) > ID(¥30(4, C, D)& D < X))).
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8.4. Lemma. Let A be a strictly large type. Then:

(i) Y20(X, Y. T) in £, iff there are (F,i)e A® and two terms a, b such that
var(a) # var(b), X = Z((F, i)*), Y = Z(H (a, b)) and T = Cn(a, b).

(it) Y30(X, Y, T) in &, iff there are (F,i)e 4® and two terms a, b such that
X = Z((F, i)*), Y = Z(Hy {(a, b)) and T = Cn(a, b).

(iii) Y3,(X) in L, iff X is one-based.

(iv) ¥so(X) in &, iff X is finitely based.

Proof. It is a well known and easy fact that if 4 is large then every equational
theory which is not contained in E, is uniquely determined by its intersection with E
together with the fact that it is not contained in E,. From this the assertion (i) follows.
The rest is obvious.

8.5. Lemma. Let A be strictly large and let h be an automorphism of &£ ,. Then
h = Q. for some (c,f)e H,.

Proof. By 2.8, a restriction of & is an automorphism of the lattice of EDZ-theories
of type 4. Hence by Theorem 7.7 of [2] there exists a pair (¢, f) € G4 = H , such that
h(Z(A)) = Q. (Z(A)) for all A€ F,. Using the formula 3, we see that h(T) =
= Q. (T) for every one-based equational theory T. Since any equational theory
is the join of one-based theories, we get h = Q. ;.

Let 4 be a strictly large type and let (ay, by), .... (a,, b,) be a non-empty finite
sequence of equations such that if i = j then the sets var(a;) L var(b;), var(a;) U
v var(b;) are disjoint. Then we define a formula @, 4. . (ans0(X) as follows.
Let us fix a pair (F, i) € 4 and pairwise different variables x, y;, ..., y, not belonging
to var(a,) U var(b,) U ... U var(a,) U var(b,). Put t, = Hp;,(a;, by),.... 1, =
= Hp;,(a.b,), t = Hg; (ty, ..., ). Put

Ot tan by tans(X) = 3Y(94,(Y) &
& VA, B, C(30(4, B, C) = (C = X < ¢5,(4, Y, B)))).

Now we get evidently

8.6. Lemma. Let A be strictly large and let (ay, b,). ..., (a,, b,) be as above.
Then O (4 pyy....anpnX) in L4 iff X = h(Cn((ay, by), ..., (a, b,))) for some
automorphism h of &£ ,.

9. LARGE BUT NOT STRICTLY LARGE TYPES
An equation (a, b) of type 4 is called I-nice if A is large but not strictly large,
a < b and either a, b contain no variables or there are a variable x, a symbol F € 4,

and two integers n, m with 0 < n < m such that a = F"x, b = F"x.
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9.1. Proposition. Let (a, b) be a 1-nice equation. Put C = Cn(a, b). Then C is
just the greatest element T of ¥, with the following three properties:
(1) T< E,;

(2) the least EDZ-theory containing T equals Z(a);
(3) if (u, v) is a parallel equation then (u, v)e T iff (u, v) e C.

Proof. Evidently, the theory C has all these three properties. Let T be any element
with these three properties. Let (c, a) e T. We must prove (c, d) € C; it is enough to
consider the case ¢ < d. There are two sequences p, g€ A and an element ze V' u
U 4, such that ¢ = pz and d = gz.

Consider first the case when «, b contain no variables. By (2) we have a < ¢ and
0 z € 4, (a, b) = (sz, 1z) for some sequences s, t € 4™ and s is a beginning of p.
There is a symbol F e 4; such that ¢ ends with F and a symbol G e 4, \ {F}. Let
n > Max (4(b), 2(d)). The equation (FG"pz, FG"qz) is parallel and belongs to T,
so that it belongs to C. Let u,, ..., u, be an (a, b)-proof from FG"pz to FG"qz. It is
easy to verify by induction on i € {0, ..., k} that u; = FG"rz for some r with (pz, rz) €
e C. Especially, (pz, gz) e C.

Now consider the case (a, b) = (F"x, F"x). Let us fix a symbol G € 4, \ {F} and
an integer n > Max (A(b), A(d)).

Let z € 4. If the equation (G"pz, G"gz) is parallel then by (3) it belongs to C and
so evidently (pz, gz) e C. Suppose that it is not parallel, so that g == G*p for some
k = 1. Then the equation (Fpz, Fqz) is parallel, so that it belongs to C; but then
the number of the G’s in Fp equals the number of the G’s in Fg, evidently a contra-
diction. '

Let z € V. The equation (FG"pG"Fz, FG"qG"Fz) is parallel and belongs to T, so
that it belongs to C; hence the number of the G’s in FG"pG"F equals the number of
the G’s in FG"qG"F; hence the number of the G’s in p equals the number of the G’s
in g. Hence g consists not only of the G’s. The equation (pgz, gpz) is either parallel
or trivial and belongs to T, so that it belongs to C. From this it follows that p =
= G*poG' and q = G*q,G' for some k, ! = 0 and sequences po, o that neither
begin nor end with G. Now it is clear that (G"pG"z, G"qG"z) is a parallel equation,
so that it belongs to C; but then evidently (pz, gz) € C.

An equation (a, b) of type 4 is called 2-nice if 4 is large but not strictly large and
there are a variable x, two non-empty sequences s, t € A7) and two symbols F, G €
€ 4, such that a = sx, b = tx, a < b, neither s nor ¢ starts with F and neither s not ¢
ends with G.

9.2. Proposition. Let (a, b) = (sx, tx) be 2-nice. Put C = Cn(a, b). Then C is
just the greatest element T of ¥ 4 with the following two properties:
(1) T< Eg
(2) if (u, v) is either parallel or 1-nice then (u,v)e T iff (u, v)e C.

Proof. Evidently, C has these properties. Let Te %, have these properties and
let (c,d)e . We must prove (c,d)e C. It is enough to consider the case when
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¢ <dand ¢ = px, d = gx for some p, g€ 47). Let n > Max (A(b), A(d)). Let F, G
be as above. The equation (pgx, gpx) is either parallel or trivial, so that it belongs
to C. Denote by k (resp. [) the greatest non-negative integer such that F* is a beginning
of pg (resp. F' is a beginning of gp). Since neither s nor ¢ starts with F, evidently
k = 1. We can assume that (px, gx) is not I-nice. From this it follows that the largest
beginning of the form F" in p is the same as in g. Analogously, the largest end of the
form G"in p is the same as in ¢. From this it follows that (F"pG"x, F"qG"x)is a paraliel
equation, so that it belongs to C. But then evidently (px, gx) e C.

An equation (a, b) of type 4 is called 3-nice if 4 is large but not strictly large,
(a, b) is not 2-nice and there are a variable x, two non-empty sequences s, t € 4¢7)
and a symbol F € 4, such that a = sx, b = tx. a < b and neither s nor ¢ starts
with F.

An equation (a, b) of type 4 is called 4-nice if 4 is large but not strictly large,
(a, b) is not 2-nice and there are a variable x, two non-empty sequences s, t € A7)
and a symbol F € 4, such that a = sx, b = tx, a < b and neither s nor t ends with F.

An equation (a, b) of type 4 is called 5-nice if 4 is large but not strictly large,
(a, b) is neither 2-nice nor 3-nice nor 4-nice and there are a variable x and two
non-empty sequences s, t € 47 such that a = sx, b = tx, a < b.

9.3. Proposition. Let (a, b) = (sx, tx) be 5-nice. Put C = Cn(a, b). Then C is
just the least element T of & 4 with the following three properties:
(1) T< Eg
(2) the least EDZ-theory containing T equals Z(a);
(3) if (u, v) is either parallel or 2-nice or 3-nice or 4-nice then (u, v) e Tiff (u, v) e C.

Proof. Evidently, C has these three properties. Let T have these three properties.
We must prove (a, b) e T. By (2) there exists a sequence u € 47 such that (sx, ux) e
e Tand sx < ux.

Denote by F the first symbol in s and by G the first symbol in t. We have F + G
and 4; = {F, G}. Denote by n the positive integer such that G"F is a beginning of t.
Evidently, whenever (sx, 'x)e C then ' = G*Ft” for some k = 0 and some ?".
Consider the following cases.

Case 1. There is a sequence t, € A7) such that (sx, tpx) e C, sx < tox and f,
begins with F. Put t = 1,st,, 1, = 14,Stg,, let k be the length of ¢,¢, and let [ be the
length of t,,14,. We have (sx, is15x) € C, (sx, t§,5th,x) € C; since the sequences #st}
and 1,15, are of the same length, the equation ({stx, 16,s16,x) is parallel and so
belongs to T. The equation (rx, t{stsx) is either 2-nice or 3-nice and belongs to C,
so that it belongs to T. The equation (sx, 15, st5,x) is either 2-nice or 3-nice and belongs
to C, so that it belongs to T. Hence (sx, 1x) e T.

Case 2. t + Gs and there is no sequence , as in Case 1. We have (Gsx, Gux)e T
and this equation is either parallel or 2-nice or 3-nice, so it belongs to C. Let uy, ..., u;
be an (a, b)-proof from Gsx to Gux. Let us prove by induction on i€ {0, ..., k}
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that u; = Gpx for some p with (sx, px)e C. For i = 0 it is evident. Let u; = Gpx,
(sx, px)€ C, i < k. The term u;,, is obtained from u; if either a connected part s
in ‘Gp is replaced by ¢ or a connected part t in Gp is replaced by s. If the connected
part is a part of p, everything is evident. If p = s and the connected part is not
a part of p, then t = Gs, a contradiction. It remains to consider the case when
p # s, so that'p starts with G and u;, is obtained from u, if a beginning ¢ of u;
is replaced by s. Since ¢ is a beginning of Gp and Gp starts with GG, we have n > 2.
We have p = G"Fq for some g and some [ = 1. But then ¢ must begin with GG"F,
a contradiction. The induction is finished. Especially, (sx, ux) € C. Hence (ux, tx) € C;
since (sx, ux) € C and we are not in Case 1, either (ux, tx) or (tx, ux) is either parallel
or 2-nice or 3-nice or trivial and so (ux, tx) e T. Hence (sx, 1x) e T.

Case 3.t = Gs. Then (sx, tx) is either 2-nice or 4-nice, a contradiction. This case
is impossible.

9.4. Proposition. Let (a, b) = (sx, tx) be either 3-nice or 4-nice. Put C = Cn(a, b).
Then C is just the least element T of &, with the following three properties:
(]) Ts Eg
(2) the least EDZ-theory containing T equals Z(a):
(3) if (u, v) is either parallel or 2-nice then (u, v)e T iff (u, v)e C.

Proof. Evidently, C has these three properties. Let T have these three properties.
We must prove (a, b)e T. We shall consider only the case when (a, b) is 4-nice;
the 3-nice case is quite similar. Since (a, b) is not 2-nice, 4 contains precisely two unary
symbols. Let H be the last symbol in s, so that H is the last symbol in ¢, too.

By (2) there exists a sequence u such that (sx, ux)e Tand sx < ux. Suppose that u
does not end with H. Then (sux, usx) is a parallel equation belonging to T, so that
it belongs to C; but s, ¢ both end with the same symbol and so any consequence
of (sx, rx) must evidently have the same property; we get a contradiction. This proves
that u ends with H, too.

Denote by F the first symbol in s and by G the first symbol in z. Since (a, b) is
4-nice, we have F = G and 4, = {F, G}. Now we can define the positive integer n
and distinguish Cases 1, 2, 3 as in the proof of 9.3. Cases 1 and 2 can be solved simi-
larly as in the proof of 9.3. The case ¢ = Gs remains. Evidently, (sx, px)e C iff
p = G*s for some k = 0. We have (Gsx, Gux)e T; this equation is either paraliel
or 2-nice and so belongs to C. Hence (sx, Gux) e C and so u = G*s for some k > 1.
We get (sx, ux)e C. Now (sx, tx) € T follows easily.

An equation (a, b) of type 4 is called 6-nice if 4 is a large but not strictly large
type and there are a variable x and a non-empty sequence s € 4™ such that a = x
and b = sx.

9.5. Proposition. Let (a, b) = (x, sx) be a 6-nice equation. Put C = Cn(a, b).
Then C is just the least element T of &, with the following three properties:
(1) T< Eg;
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(2) the least EDZ-theory containing T equals W, x W,;
(3) if (u, v) is either 2-nice or 3-nice or 4-nice or 5-nice then (u, v)e T iff (u, v) € C.

Proof. Evidently, C has (1), (2), (3). Let T have (1), (2), (3). There is a non-empty
sequence u € A7) such that (x, ux) e T. The equation (ux, sux) belongs to C and is
either 2-nice or 3-nice or 4-nice or 5-nice, so that it belongs to T. Evidently (sx, sux)e T
and so (ux, sx) e T; we get (x, sx)e T.

10. LARGE BUT NOT STRICTLY LARGE TYPES, THE FORMULAS

10.1. Lemma. Let A be a large unary type, let Fe A, let x, y be two different
variables and let Te &,. Then (Fx, Fy)e T < Z(F*) iff the following three con-
ditions are satisfied:

(1) T¢ Ey

(2) the leasi EDZ-theory containing T equals Z(F*);

(3) whenever A is an EDZ-theory such that A = Z(F*) and A # 1y, then Z(F*) =
=Av T

Proof. First assume that (Fx, Fy)e T < Z(F*). Then (1) and (2) are evident.
Let A be an EDZ-theory, 1y, & A = Z(F*). We have 4 = Z(U) for some non-
empty full set U. Let a, b e F*. We must prove (a, b)e A v T. There are sequences
Sy, 83, Ly, by, € 447 and variables z,, z, such that a = s,Fs,z,, b = t;Ft,z, and
ux e U. We have (s,Fs,zy, s,Fux)e T, (syFux, t;Fux) e A, (t;Ft,z,, t;Fux) e T and
so (a,b)ed v T.

Now assumé that (1), (2), (3) are satisfied. By (2) we have 7 = Z(F*) and so it
remains to prove that (Fx, Fy)e T. By (1) there is a sequence se 47 such that
(sx,sy)e T; by (2), F is contained in 5. Put 4 = Z(sx). By (3) we have (Fx, Fy)e
€A v T. Suppose (Fx, Fy)¢ T. Then there are terms a, b such that (Fx, a)e T,
(a,b)e A and a =+ b. Since (a, b)e A, we have a = 1z for some sequence ¢ € A
and a variable z such that sx < tz. Since (sx, sy) € Tand sx < 1z, we have (1z, ty) e
e T. We get (Fx, ty)e Tand so (Fx, Fy)e T.

Definition. /3;3(X, Y) = of(X) & [ 1 5(Y) & VA(e(4) > (YS Ao X £ A)) &
&VA(((A) & A £ X & TTwg(4)) > X = A v V)]

10.2. Lemma. Let 4 be a large unary type. Then Y33(X, Y) in &, iff there are
an F € A, and two different variables x, y such that X = Z(F*)and Y = Cn(Fx, Fy).

Definition. 3,(A4, B, T) = (4) & (B)& TA < B& TIB< A&
& (AP(of(P) & A < P) > 3Q(¢§(Q) & B £ Q))& 3C, D, E([¢(C) & A < C &
&B < Cl&Y5(D)&E=D A C&T<E&VU(e(U)-» (TS U CSU))&
VPIQP < T- ((Q)& P < Q& 1A < Q& 1B = Q)).
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10.3. Lemma. Let A be a large but not strictly large type. Then {i3,{A, B, T)
in L4 iff there is a parallel equation (a, b) such that A = Z(a), B = Z(b) and
T = Cn(a, b).

Definition. ¥;5(X, X2, ¥) = ¢53(X 1, X,. Y) & ((713C=(C)) -
— 34, B, T(¢5(X,. A) & 35(X 5. B) & Y54(A, Y, T)& T < B)).

10.4. Lemma. Let A be a large but not stricily large type. Then 35(Xq, X5, Y)
in &%, iff there are two differeni symbols F, Ge A, and a variable x such that
X, = Z(F*), X, = Z(G*) and Y = Z((GFx)*).

Let 4 be a large but not strictly large type, let F € 4, and let ¢ be a term; let (4, U)
be the fine F-code of t. Then (Z(4), Z(U)) is said to be the fine F-code of 1 in .
Similarly we can introduce the notions of an (F, G, w, x)-code and of a fine
(F, G, w, x)-code of a non-empty finite sequence of terms in %, (see Section 5 of [2]).

Definition. y34(X, A, Uy, B, U, C, U3, D, Uy) = 3X,, Y(Y35(X, X5, V) &
& ¢50(X, X,, Y, A, Uy, B, Uy, C, Uy, D, Uy)).

10.5. Lemma. Let 4 be a large but not strictly large type. Then y3(X, A, Uy, B,
U,,C, Uy, D.U,) in £, iff there are an Fe A, and terms a., b, c,d such that
X = Z(F*), (A,U,),(B,U,),(C,U;),(D,U,) are the fine F-codes of a,b,c,d
(respectively) and (c, d) is a consequence of (a, b).

Definition. (i) ¢g/(X, A, Uy, B, U,) = @43(X, A, U;) & ¢45(X, B, U,) &
& (U; = U, VEL (ao(U,) & ao(U,)))-

(i) pge(X, A, U, B,U;) = ¢g4(X, A, U, B,U,)& 1A < B& 1B < A.

(iii) @go(X, A, Uy, B,U,) = @g7(X, A, U,, B,U,)& A < B& A % B&((2(U,) &
& ao(U,)) VEL 3Y(2,(Y) & @,(Y, B) & T1w,(4))).

(iv) @oo(X, A, Uy, B,U,) = @44(X, A, U, B,U,) & A < B& A + B& T1w,(A) &
& Tay(Uy) & Uy = U, & 3X,, Y, P, Q(033(X, X,. Y) & oy (P) & 2,(Q) &
& T1935(X, X5, Y, P, A) & T1936(X, X5, Y, P, B) & T1046(X, X5, Y, 0, A) &
& T946(X, X,. Y, Q. B)).

(V) 9oi(X, A, Uy, B,U,) = ¢5+(X, 4, U, B,U;) & A < B& A + B& Tw,(4) &
& Tag(U )& Uy = U, & T19oo(X, 4, Uy, B, U,) & 3X,, Y, P(935(X, X5, Y) &
& o, (P) & ((T1936(X, X, Y, P, A) & T1936(X, X5, Y, P, B)) VEL (T146(X, X5, Y, P,
A& T1946(X, X5, Y, P, B)))).

(Vi) @ox(X, 4, Uy, B,U,) = @g7(X, A, U, B,U,) & A < B& A + B& Twy(4) &
& T0(U) & Uy = U, & T19oo(X, A, Uy, B, U,) & T19o4(X, 4, Uy, B, U,).

(vii) @o3(X, A, Uy, B, U,) = @g4(X, A, Uy, B, U,) & 0,(4) & TTw,(B).

10.6. Lemma. Let 4 be a large but not strictly large type. Let i € {87, 88, ..., 93}.
Then ¢(X, A, U, B.U,) in %, iff there are an Fe A, and an equation (a, b)
such that X = F*, (A, U,) is the fine F-code of a, (B, U,) is the fine F-code of b and:
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(i) if i = 87 then var(a) = var(b);

(ii) if i = 88 then (a, b) is parallel,

(iii) if i = 89 then (a, b) is 1-nice;

(iv) if i = 90 then (a, b) is 2-nice;

(v) if i =91 then (a, b) is either 3-nice or 4-nice;
(vi) if i =92 then (a, b) is 5-nice;
(vii) if i = 93 then (a, b) is 6-nice.

Definition. (i) 5-(X, 4, U,, B, U,, T) = ¢56(X, A4, Uy, B, U;) & Yr34(A4, B, T).

(ii) ‘/fss(X’ A, Uy, B, U,, T) = C”fsg(X’ A, Uy, B, Uz)& T[nﬁ”(T)& VP(‘C(P) -
> (T<Pe A< P)&YC,V, D, V,,UWs:(X, C,V,. D, V5, U) -

- (U £ Toys(X, A, U,, B,U,. C, Vy, D, V,)))]-

(iii) Y3o(X, A, Uy, B,U,, T) = ¢50(X, 4, Uy, B, U,) & T[,5(T) &
&YC, Vi, D, V,. U((Y5-(X, C, Vy, D, Vy, UY VEL Yr34(X, C, Vy, D, V,, U)) =
- (U £ Toys6(X, A, Uy, B,U,, C, vy, D, V,)))]-

(iv) Vao(X, A, Uy, B, Uy, T) = 954(X, 4, Uy, B, Uz) & 1[13(T) & VP(e(P)
(TSP A<P)&YC, V,, D, V,, U((U3:(X, C, Vi, D, V, U) VEL Yr34(X, C, V4,
D, V5, U)) > (U £ Teo ys6(X. A. Uy, B,U,, C, Vy, D, 1,)))]-

(V) l/’41(X, A, Uy, B, U,, T) = 97592(X, A, Uy, B, UZ)& T[‘pxa(T)& VP(E(P) -
—(T< P A< P)&YC,V,, D, Vy, U((W3:(X, C, Vi, D, V,, U) VEL Yr36(X, C, V5,
D, V5, U) VEL Yiu0(X. C, V,, D, V5, U)) > (U £ T Yae(X, A, Uy, B, Uy, C, Vy, D,
Va))l-

(Vi) '//42(X> A,Uy, B, U,, T) = (,933(X, A, Uy, B, Uz) & T[lzf‘w(T)& VP((S(P)&

& T £ P) - wy(P)) & VC, Vi, D, V,, U(Y36(X, C, Vi, D, V5, U) VEL Yu(X, C, V1,
D, Vy, U) VEL Yiuy(X, C, Vy, D, V,, U)) = (U £ T 3(X, A, Uy, B, Uy, C, V4, D,
Vo))l

(vii) Y43(X, 4, Uy, B,U,, T) = Y34(X, 4, Uy, B, Uy, T) VEL Yr35(X, 4, Uy, B, Uy,
T) VEL y35(X, B, U,, A, U,, T) VEL Y35(X, A, Uy, B, U,, T) VEL Y39(X. B, U,, A.
Uy, T) VEL ... VEL y,5(X, A, Uy, B, U,, T) VEL y145(X, B, U,. 4, Uy, T) VEL (@54(X,
A,Uy,B,Us)& A = B&U; = U, & wy(T)).

10.7. Lemma. Let 4 be a large but not strictly large type. Then Y45(X, A, Uy, B,
U,.T) in %, iff there are an F € A, and an equation (a, b) such that var(a) =
= var(b), X = Z(F*), (4,U,) is the fine F-code of a in <4, (B, U,) is the fine
F-code of b in & 4 and T = Cn(a, b).

Proof. It is a formalization of Section 9.
Definition. (i) Y,4(X, 4, Uy, B, Uy, T) = ¢%3(X, 4, U,) & 953(X. B, U) &
& 105X, A, Uy, B, U,) & T1,5(T) & VC, Vi, D, Vy, U(Yas(X, C, V4, D, Vo, U) =

- (U é T+ l//36(X9 A, Ul7 Ba UZ, C, I]1’ D: VZ)))
(ii) Yas(X, A, Uy, B, Uy, T) = Y45(X, 4, Uy, B, U, T) VEL 4u(X, A, Uy, B, Uy, T).
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10.8. Lemma. Let 4 be a large but not strictly large type. Then y,5(X, A, Uy,
B,U,,T) in &, iff there are an F € A, and an equation (a, b) such that X =
= Z(F*), (4, U,) is the fine F-code of a in % 4, (B, U,) is the fine F-code of b in &,
and T = Cn(a, b).

Definition. (i) y,6(X) = 3Y, 4, Uy, B, U, ¥45(Y, 4, Uy, B, U,, X).

(") l/’47()(1’ XZa Y: Al: Bl) AZ’ B2’ D* T) = l//35(X1, XZ’ Y) & (024(X1~ X27 Y’ Al’
By, D) & ¢%4(Xy, X,, Y, Ay, B,, D)&YC, Vy, E, V,, U(Yus(Xy, C, Vi, E, V,, U) >
- (U £ To ¢io(X,X,, Y, Ay, By, A3, B, D, C, V}, E, V,))).

(iii) Yus(X) = 3X,, X, Y, Ay, B, A;, B,, DYys(X, X5, Y, 4, By, A,, By, D, X).

10.9. Lemma. Let 4 be a large but not strictly large type. Then:

(i) Vao(X) in &L, iff X is one-based.

(i) Ya7(Xy, X5, Y, Ay, By, Ay, By, D, T) in £ 4 iff there are two different symbols
F,Ge 4y, a variable x, an integer n = 1 and equations (ay, by), ..., (a,. b,) such
that X, = Z(F*), X, = Z(G*), Y = Z((GFx)*), (A, By, D) is a fine (F, G, GF, x)-
code of ay, ..., a, (Az, By, D) is a fine (F, G, GF, x)-code of by, ..., b, and T =
= Cn((ay, by), ... (a,. b,)).

(iii) Was(X) in L., iff X is finitely based.

10.10. Lemma. Let 4 be large but not strictly large and let h be an automorphism
of L4 Then h = Q, ; for some (c, f)e H,.

Proof. By 2.8, a restriction of / is an automorphism of the lattice of EDZ-theories
of type 4. Hence by Theorem 7.7 of [2] there exists a pair (¢, )€ G, such that
h(Z(4)) = Z(P, [(A)) for all Ae F,.

If 4 is not unary then H, = G; if 4 is unary then H, can be identified with the
subgroup of G, formed by the pairs (d, g) such that d = 1. We shall now prove
(c,f)e H,. Suppose, on the contrary, that 4 is unary and ¢ = 2. There are two
different symbols F, Ge 4. We have y,5(Z(F*), Z(G*), Z((GFx)*)) and so
Vas(h(Z(F*)), h(Z(G*)), h(Z((GFx)*))), i.e. y35(Z(H*), Z(K*), Z((HKx)*)) for some
H, K € A, a contradiction.

Now evidently h(Z(A4)) = Q. (Z(A)) for all Ae F,. Using the formula ;5
we see that h(T) = Q. [(T) for every one-based equational theory T. Since every
element of % is the join of one-based equational theories, we get h = Q.. /.

Let 4 be a large but not strictly large type and let (ay, by), ..., (a,, b,) be a non-
empty finite sequence of equations of type 4. Then we define a formula @4, ,, .
r(amb)(X) as follows. Let us fix a symbol F € 4,. For every i € {1, ..., n} denote by
(ai, u}) the fine F-code of a; and by (b}, v}) the fine F-code of b. Put (t, ..., t,,) =
= (ay, uy, by, vy, .., Gy, U, by, ,). For every i€ {1, ..., 4n}, the term ¢; can be uni-
quely expressed in the form ¢; = F, ... F; ;y; where y,e VU doand F, 4, ..., F;, €
€ 4;. In Section 7 of [2] we have introduced the formula g, _, . Put

seeeslan

@A,‘anbl),...,(ﬂmbn)(X) = EPI’ P2’ Qa Xla LR X4n> Yl: ceey Y4m Zl,la CERT) Zl,k-u
s Zats ooos Zan gy Tis o T(W3s(P1s Py, Q) & et Prs Pay 0, X4, 0, Xy,

.....
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Yio oo Yaw Zy 1o ooy Zagp) & Was(Pys X1, Xoy X3 Xy T)) & ... & Was(Pyy X o,
Xan—2Xan—1> Xan T,,)&X =Ty Vv ..V 7:,)

10.11. Lemma. Let A be large but not strictly large and let (a, bl), e (a,,, bn)
be a non-empty finite sequence of equations. Then O, , 4, ., (,,",,,")(X) in %,
iff X = h(Cn((ay, by), ..., (a,, b,))) for some automorphism h of £ 4.

11. TYPES CONTAINING ONLY NULLARY SYMBOLS

In this section we shall investigate the types 4 such that A4 = 4,. In this case the
lattice %, is isomorphic to the equivalence lattice of 4, with one greatest element
added.

Definition. (i) Y,o(X) = 3A(Y,(4) & X < A& 13B(X < B < A)).

(1) Yso(X) = 34, B(wo(4) & Y49(B)& A = X A B) &1 wy(X).

(i) Y5 (X, Y) = T0,(X) & Ty (Y) & Y3(X) & ¥3(Y) & 3A(wo(4) & A = X A
A Y)& (06(X) VEL 0(Y) VEL3B(B = X v Y& “1y5(B))).

(iv) ¥s52(X, Y) = ¥r5y(X. Y) & 34, B, P(wy(A) & B = X v Y& Yso(P) & A =X A
AP&A=YAP&YU(Y3(U)& P £ U)—> X < U)&VU((y3(U)& B £ U) »
- P < U))

(V) '//53(X) = j(01(X)& ‘/’3(X)& 1344, A, B(A1 <A, &4, X& ‘psz(Ah B)&
& l/’sz(B, Al) & l//sz(AZ’ B) & ‘psz(Ba Az))'

(vi) ¥54(X) = 0y(X) VELIY()53(Y) & X £ 7).

(vii) ¥ss(X) = 34, B(wo(A) & wy(B) & (X = AVELX = BVEL 73Y(A < Y <
< X)).

(Viii) l/’s\a(X) = l.[/49()3’)& '?//3(X)-

(ix) ¥so(X, Y, A) = Yse(X) & hse(V) & X * Y& Yhs5(A) & TA S X & 1A <
< Y& T0,(A).

11.1. Lemma. Let 4 = 4,. Then:
(1) Yao(X) in 24 iff X = (C x C) U (D x D) U ly, for two non-empty disjoint
subsets C, D of A with C L D = A.
(i) yso(X) in £, iff Card(4) = 2 and there is a set M of pairwise disjoint two-
element subsets of A such that (u, v) e X iff either u = v or {u, v} € M.
(iil) sy (X, Y) in 2, iff there are two disjoint subsets C, D of A such that X =
=(CxC)uly,and Y= (D x D) U 1y,
(iv) Ys2(X, Y) in &, iff Card(4) = 2 and there are two disjoint subsets C, D
of 4 such that Card(C) £ Card(D), X = (C x C) U 1y, and Y= (D x D) U ly,.
(V) ¥s3(X) in £, iff X = (C x C) U 1y, for some finite C < A.
(Vi) Ys4(X) in 2, iff X is finitely based.
(vii) ¥s5(X) in £, iff X is one-based.
(viil) Y56(X) in 2, iff Card(4) = 2 and X = ((4~{c}) x (A~{c})) v Ly, for
some c € A.
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(ix) ¥s+(X, Y, A) in £, iff Card(4) = 3 and there are two different symbols
¢, d e A such that X = ((AN{c}) x (AN{c}))u 1y, Y= ((4\{d}) x (A~{d})) L
U 1y, and A = Cn(c, d).

11.2. Lemma. Let A = A, and let h be an automorphism of £ ,. Then h = Q. ;
Jor some (¢, f)e Hy.

Proof. IfCard(4) < 2,itis clear, since then % , has only the identical automorphism.
Let Card(4) 2 3. For every oe 4 put g(o) = ((4~{0}) x (4\{o})) U 1y,, so
that o g(o) is an injective mapping of 4 into .#,. It follows from L. 1(viii) that
if 0 € 4 then h(g(0)) = g(c(0)) for some c(0) € 4; evidently, ¢ is a permutation of 4.
Denote by f the identical permutation of the empty set, so that (¢, f) € H,. It is easy
to see that h = Q, ;.

Let 4 = 4, and let (ay, by), ..., (a,, b,) be a finite non-empty sequence of non-
trivial equations. Then we define a formula @, 4,).....can6n(X) as follows. Put
(1155 t20)=(ay, by, ..., a,, b,). If t;€ V for some i, then put @4 (4, 1, (ansm(X) =
= w,(X). If ;€ 4 for all i, put

@A.(nl,b.),....(a,,.b,,)(X) = 34y, ..., Ay, By, -, B,
(s7(A, Ay, By) & ... & Ys55(Asy -y, Az, B)& X = By v ... v B,& g, & g,) where

g; is the conjunction of the formulas A, = A4; (i,je{l,....2n}, 1, = 1;) and g,
is the conjunction of the formulas A; + A; (i, jle {1, ..., 2n}, t; * 1,).

11.3. Lemma. Let 4 = A, and Card(4) = 3. Let (ay, by), ..., (a,. b,) be a finite
non-empty sequence of non-trivial equations. Then O 4, piy...anon(X) in Ly
iff X = h(Cn((ay, by), ..., (a, b,))) for some automorphism h of £ ,.

12. SMALL TYPES CONTAINING A UNARY SYMBOL

12.1. Lemma. Let 4 = A, U {F} for some unary symbol F. Then 1//34(/1, B, T)
in &4 iff there are two different symbols ¢, d e A, and two integers n, m = 0 such
that A = Z(F'c), B = Z(F"d) and T = Cn(F"c, F"d).

Definition. (i) Yss(X, Y, T) = 34, Ty, Ty, B(y3(X, A, T)) & Y24(Y, 4, T,) &
&Y<X&B=Tv T, &,[VU((U) > (TS U X SU)&T, < B)).

(i) ¥so(X, Y, T) = 0%(X) & @5(Y) & Y < X & T[VU(e(U) » (TS U = X < U)) &
& VA, B, Ty(Y14(4, B, T;) > 1T, < T)& VA4, B, U, Ty((Vss(4, B, Ty) & ¢5(4, X) &
& ¢5(B.U)& T, £ T) > U < Y)& VA, B, Ty((54(A. B, ;) & 0( 4, X) & ¢(B.Y)) -
- T, £ T)]

(iii) Yoo(X) = 34, B(Y34(4, B, X) VEL Y54(4, B, X) VEL y54(4, B, X)) VEL ¢%(X)
VEL 34, B(¢5(A) & °(B) & x[e(X) & 4 = X & B < X]) VEL wy(X).

(iv) Ye1(X) = 34, B(so(A, B, X) & 04(4) & o (B)).
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(V) Yoo X, Y) = &(Y) & YU(@5(U, Y) > (a5(U) & (34, B. T, A,(¥34(4, B, T) &
& ASU&pi(A,A,)& 14, < X)VEL3A, B, T, A, B,, T,(Vs5(4, B, T)& A S U &
& ‘Pg("‘, Al)& (Pf;(B, Bl)& WSQ(Ah B,.T))& 1T, £ X))))

12.2. Lemma. Let 4 = A, U {F} where np = 1 and Card(4,) = 2. Then:

(i) ¥ss(X, Y, T) in &, iff there is a symbol ce A, and two integers n, m such
that 0 < n < m, X = Z(F'c), Y = Z(F"c) and T = Cn(F"c, F"c).

(il) ¥so(X, Y, T) in L, iff there is a variable x and two integers n, m such that
0n<mX-= Z(F”x), Y= Z(F”'x) and T = Cn(F”.x, F"'x).

(i1i) Yeo(X) in L4 iff X is one-based.

(iv) Y6y(X) in £, iff X = Cn(x, Fx) (where x € V).

(V) Voo X, Y) in L, iff Y is the EDZ-theory determined by the nullary symbols
that are contained in any base for X.

Let f be a formula and L be a variable not contained in /. Then we define a formula
S as follows: if f is without quantifiers then f¥ = f; if f = —ig then /& = —19V;
if f=g&h then f* = g™ & h™; similarly for VEL, —, «<»; if f = VX g then
P =vX(LLX - g®):if f=3Xg then fV = 3IX(L € X & g™).

Definition. ¢3(X) = 3Y, L, A(Yo(X, Y) & Y ,(L) & 4 = L v Y& Y$3(A)).

12.3. Lemma. Let 4 = 4, U {F} where np = 1 and Card(4,) Z 2. Then 45(X)
in %4 iff X is finitely based.

12.4. Lemma. Let 4 = Ay U {F} where np = 1 and Card(4o) = 2. Let h be an
automorphism of £ 4. Then h = Q, , for some (c, f) e H,.

Let 4 = 4o v {F} where np = 1 and Card(d,) = 2; let (ay, as), ..., (az-1» as,)
be a finite non-empty sequence of equations; for every i e {1, ..., 2n} let a; = F¥()y,
where y; € V'u 4o; suppose that whenever i € {1,...,2n} is odd then either k(i) <
= k(i + 1)7 Yi = Yisr OF k(i.) = k(i + 1)’ VieV, yiy eV yi F yisq Or yi€dg,
Vie1 € 4o, yi F yisy- Put

O sararyetan-1.az(X) = A1 00 s A iays s Ay gy oo Ay iz Bi- -
ceo Bn((Al.O <A4,;<..< Al.k(l))e& & (Ao < Ay <. < Az,,‘k(z,,))s&
&g 8&9,&09:89,& gs& ge & g1 & G & go & X = B, v..VvB)
where

g1 is the conjunction of the formulas w,(4;,) (i€ {1, ... 2n}, y;e V),

g is the conjunction of the formulas o5(4; o) (ie {1, ... 2n}, y; € 4,),

g3 is the conjunction of the formulas 4; , = 4; , (i,j e{l, ..., 2n}, yi=y;€4y),

g4 is the conjunction of the formulas 4;o % 4;, (,‘,je{], ...,Zn}, Yi€ 4o,

yjer: J’i*J’j), ‘

gs is the conjunction of the formulas wo(B;) (i€ {1, ..., n}, azioy = az),
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ge is the conjunction of the formulas ¥34(42i- 1 k2i-1)> A2: k20, Bi) (i€ {1, ..., n},
V2ic1€ 4o Y2 € Aoy Vaioy * y2i)s

g, is the conjunction of the formulas ¥/ss(A2i- 1 k2i-1)> Azinaiy Bi) (i€ {1, ..., n},
k(2i — 1) < k(2i), y31-1 = y3; € do);

g is the conjunction of the formulas ¥so(42i- 1 k2i- > A2iniy Bi) (i€ {1, ..., n},
k(2i = 1) < k(2i), y3i-1 = y2i€V)s

g, is the conjunction of the formulas B; = A,; & ¢%(B;) (ie{l,....n}, y,;_, €V,
V2 €V, Yaioq F }’2.')-

12.5. Lemma. Let A = Ay U {F} where ng = 1 and Card(4,) = 2; let (ay, as), ...
vy (a24-1, az,) be as above. Then Oy a, . am-r.a)X) in L4 iff X =
= h(Cn((ay, az), ..., (az,-1» a5,))) for some automorphism h of % ,,.

Definition. 15,(X) = 710,5(X) VEL 34(05(4) & X < A) VEL 134, Y, Y (o(4) &
&Y, SA&X =Y,V Y,&X + Y,).

12.6. Lemma. Let A = Ay, U {F} where ny = 1. If A, is empty then every
equational theory of type A is one-based. If Card(4,) = 1 then every equational
theory of type 4 is two-based; we have Yeq(X) in L 4 iff X is one-based.

13. THE MAIN RESULTS

Definition. @(X) = (3,(X) & 34 &5(A4)) VEL (46(X) & Y5 & 7134 35(A)) VEL (yr, &
& Y55(X)) VEL (6o(X) & Ty & 15 & 34, B(ag(A) & o5(B) & A =+ B)) VEL (Y, &
& s & 134 a(A)) VEL (Yrea(X) & Ty & 105 & 31 A af(A)).

13.1. Theorem. Let A be any type. Then <13(X) in &, iff X is one-based. Con-
sequently, the set of one-based equational theories of type A is definable in ¥ ,.

Definition. ¥(X) = (¥3,(X) & 34 @5(A4)) VEL (Y45(X) & U5 &
& 134 35(A)) VEL (Yra & Y54(X)) VEL (1, & 95 & ((34, B(og(A) & of(B) &
& A # B)) - Y3(X))).

13.2. Theorem. Let A be any type. Then Y(X) in £, iff X is finitely based.
Consequently, the set of finitely based equational theories of type A is definable
in &,

Theorems 13.1 and 13.2 follow immediately from 8.4, 10.9, 11.1, 12.2, 12.3 and
12.6.

13.3. Theorem. Let a type 4 be given.

(i) If 4 *+ {0y, 05}, 4 * {F} and A * {F, o} for any unary symbol F and any
nullary symbols o, 0y, 0, (0y * 0,), then the mapping (c,f)~ Q. is an iso-
morphism of H, onto the automorphism group of & 4.
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(it) If 4 = {oy. 0,} where oy, 0, are two different nullary symbols, then &,
has only the identical automorphism.

(iii) If either A = {F} or A = {F, o} where F is unary and o is nullary, then the
automorphism group of ¥, is isomorphic to the group of permutations of an
infinite countable set.

Proof. For (i) see 8.5, 10.10, 11.2 and 12.4. The assertions (ii) and (iii) are easy
and they are left to the reader.

13.4. Theorem. For any type A and any finite sequence (ay, b,), ..., (a,, b,) of
equations of type A there exists a formula ©(X) such that O(X) in L, iff X =
= h(Cn((ay, b,), ..., (a,, b,))) for some automorphism h of & ,.

Proof. If 4 < {0y, 0,} or 4 = {F, o} for some unary symbol F and some nullary
symbols o4, 0,, 0, then the proof is not difficult and it is left to the reader. For the
remaining types see Lemmas 8.6, 10.11, 11.3 and 12.5, where the corresponding
formula ©(X) is effectively constructed; notice that any finite sequence of equations
is equivalent to a sequence for which the formula ©(X) is constructed in these lemmas.

14. REMARKS AND OPEN PROBLEMS

Theorems 13.1, 13.2, 13.3 and 13.4 are the results of this treatment; Parts I and 11
are necessary, too. Let us mention briefly the idea of their proofs. First of all, it is
necessary to find a formula defining in #, the et of EDZ-theories (equational theories
with at most one block of cardinality ;2); see Theorem 2.8. To do this, we need
a characterization of modular elements in the lattice %, since it turns out that the
set of EDZ-theories does not differ much from the set of modular elements of % ;
such a characterization is found in Part I. Then we must study definability and
automorphisms in the lattice of EDZ-theories, or — which is the same — in the lattice
of full sets of terms; this is done in Part II. If this is carried out, Propositions 3.1
and 3.2 enable us to characterize in the lattice &, equational theories generated by
a parallel equation. Finally, we show that some special equations are determined by
their parallel consequences, some less special equations are determined by their
consequences that are either parallel or considered before, etc.; after finitely many
steps all equations are exhausted. Here the case of a type consisting of a single binary
symbol is the most difficult.

We see that the notion of EDZ-theory is fundamental for the investigation of
definability in the lattice of equational theories. The varieties corresponding to
EDZ-theories were studied in [5], [6] and [7]; they were called EDZ-varieties or
varieties of algebras with equationally definable zeros there.

Let us formulate some open problems related to the contents of this paper.

The formulas @(X) and ¥(X), defining one-based and finitely based equational
theories in the lattice %4, are very long.
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Problem 1. Does there exist a short formula f(X) such that for any type A, f(X)
in &, iff X is one-based?

Problem 2. Does there exist a short formula f(X) such that for any type 4, f(X)
in &, iff X is finitely based? '
The author’s conjecture is that Problem 2 could have a positive solution.

Problem 3. Let 4 be a large type. Is every equational theory T of type A such that
T < E, uniquely determined by its parallel equations and the EDZ-theory
generated by T?

A positive answer to Problem 3 would simplify the contents of this paper.

In [1] we have defined a quasiordering on the set W, of A-terms. Put 7, = W,[~,
so that 7 4 is a poset.

Problem 4. [nvestigate definability and automorphisms in the poset I ,.

Problem 5. Let A be an at most countable type. Is the set of recursively based
equational theories of type A definable in & 4? Is every recursively based equational
theory of type A definable up to automorphisms in ¥ ,? Does there exist a definable
element of £, which is not a recursively based equational theory?

Problem 6. Is the set of equational theories Te &, such that the corresponding
variety of A-algebras has the amalgamation property (or some other interesting
property) definable in &£ ;?
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