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Czechoslovak Mathematical Journal, 32 (107) 1982, Praha 

ON THE EFFECT OF THE PERTURBATION OF A NONNEGATIVE 
MATRIX ON ITS PERRON EIGENVECTOR 

L. ELSNER, Bielefeld, С R. JOHNSON, College Park, M. NEUMANN*), Columbia 

(Received September 18, 1979) 

1. INTRODUCTION 

The behaviour of the Perron (eigen-) root of an n x n nonnegative matrix Л when 
some of its entries are positively perturbed is well known and well documented, e.g. 
[1], [5] and [6]. Rather less seems to be known about the behaviour of a correspond­
ing Perron (eigen-) vector, or, to be more precise, the behaviour of its components 
when A is subjected to such a change. Since the Perron vector often has useful 
interpretations, for example in steady state distributions, priorization [4], in niche 
overlap [3], etc. it seems natural to investigate this problem. 

Frequently in practical situation (as in certain instances of those mentioned above) 
the nonnegative matrix A is irreducible. From the Perron-Frobenius theory it is 
known that for such matrices the Perron root is positive and simple, and hence the 
Perron vectors, all of which are positive, are multiples by a positive scalar of each 
other. Section 2 will commence with a result (Theorem 2.1), on the topic of the 
title, for the case where A is nonnegative and irreducible. Fïowever, no assumptions 
concerning the adoption of a normalization strategy towards the (possible) Perron 
vectors before and after the perturbation will be made. With some re-arrangements 
of the inequalities obtained in Theorem 2.1, a corollary shows that the conclusions 
of the theorem hold when the condition that A be irreducible is replaced by the weaker 
conditions that: the Perron roots of A and its positive perturbation, say Ä, are simple, 
but that the Perron roots of the nonnegative matrices sandwiched between A and Â 
are not necessarily simple. Hence there is some justification in viewing the results 
of the corollary as being global (in nature). 

Suppose that Я is a simple eigenvalue of an n x n (complex or real) matrix С 
Then for any n x n matrix D, there exists a number e > 0, possibly dependent on D, 
such that the matrix Q : = С + ôD has a simple eigenvalue Я̂  for each (5 e [ —г, e]. 
Moreover, if for each ö in this range the same normalization scheme is applied to an 
eigenvector corresponding to 1^, then both Я̂  and the components of the associated 
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normahzed eigenvector are analytic functions of ô in some open interval containing 
[ —e, г], e.g. Wilkinson [7, pp. 66 — 67]. In Section 3, under the assumption that A 
is an n X n nonnegative matrix whose Perron root is simple, we exploit this result 
to show (cf. Theorem 3.1) that while (as mentioned previously) the Perron root of A 
is a nondecreasing function of a positive perturbation, in a (one sided) 'neighbour­
hood' of A whose size may depend on the particular perturbation, the entries of the 
corresponding normalized Perron vector are nonincreasing functions of a positive 
perturbation. We prove this local (in nature) result using an analytical approach 
(as, indeed, the result from [7] suggests would be the case). Subsequently, some of 
the intermediate relations derived in the course of proving Theorem 3.1, are used 
to study various specific cases of perturbations. These cases all fall within the frame­
work of positive perturbations in one row of the matrix A, which is the only type of 
modification considered in Sections 2 and 3. 

In the final section, 4, we present several observations concerning the perturbation 
in more than one row of a nonnegative matrix A whose Perron root is simple. Further­
more, mention of the difficulties in sharpening these observations is made. 

Finally, the following notations will be required. The /th n-dimensional unit co­
ordinate vector will be denoted by e^^K For an n-dimensional (column) vector x, x^ 
will denote the transpose of x, and for an n x n matrix E, Q[E) denotes its spectral 
radius. 

2. THE IRREDUCIBLE CASE AND OTHER INITIAL OBSERVATIONS 

Theorem 2.1. Let A be an n x n nonnegative irreducible matrix. Then for any 
non negative n-vector v Ф 0, 

(2.1) , ^ > ^ ; кФ1, lu к un, 
Xi Xj^ 

where x = (x^, ..., x^)^ and y =^ (j;^, ..., j j ) are (positive) Perron vectors of A 
and A + e^^^v^, respectively. 

Proof. Suppose there exists an index m Ф /, 1 ^ ni ^ n, such that 

^ - max ^ . 
X^ l u k u n X k 

Set Q: = Q{Ä) and o: = Q(A + e^^h'^). Because A is irreducible and e^'^v^ ^ 0, 
e^'^v^ Ф 0, 0 < Q < Q. Hence 

0 <r л ^^" <̂  Я -̂ -̂  - ^ V /7 Z^ T < : ^ y /7 ^ - o ^ 
^ < Q < ^ — Z J ^mk ^ k ^ l u ^mk — Q » 

^ m -^m X^ k = l Хд. X ^ fc = 1 ^m ^ m 

which is not possible. Thus the inequalities in (2.1) are valid. П 

Examples of dimension n ^ 4 can be constructed to show that the largest relative 
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change in the component of a Perron vector corresponding to the row in Л which 
has been positively perturbed does not imply the largest absolute change for that 
component, that is, it does not follow from (2.1) that 

>'i - Ук > ^i - х^:к Ф i, I й ^ й n . 

We note, however, that if both Perron vectors x and у were to be normalized so that 
^i — y-i = I5 then Theorem 2.1 implies that 

(2.2) Xk> Ук^ к Ф i, /с = 1, ..., n , 

a manifestation which will be more deeply understood from the analytical approach 
of the next section. 

If in Theorem 2.1 the assumption that A is irreducible is replaced by the assumption 
that the Perron roots of A and A + e^^h^ are simple, then the strict inequalities in 
(2.1) have to be weakened to accommodate the possibility that no greater relative 
change occurs in the ith component over all other components. Moreover, since 
some of the entries in the Perron vectors m.ay well be zero, these inequalities have 
to be re-arranged to meet such an eventuality. 

Corollary 2.2. Let A be an n x n nonnegative matrix whose Perron root is simple 
and suppose that v ^ 0 is a nonnegative n-vector for which the Perron root of 
A + e^ -̂?/ is simple. Let x = (x^, ...,x„)^ and у = (y^, ..., j/J^be Perron roots 
of A and A + e^^^v^, respectively. Then 

(2.3) Xj^yi ^ x^yj, 

for all к — 1,2, ..., n. 

Proof. Let J be the n x n matrix whose entries are all unity and for ô e [0, 00) set 

A^: = A •}- ÔJ and Ây. = /4^ + e^%'^ . 

Furthermore, for any ô in this range let x(ô): = (xi(ô), ...,х„(о)У and y[S) = 
= {yi{ô),..., Уп{^)У be Perron vectors of A^ and A^, respectively. Then for ô > 0, 
A^ is irreducible and so, by (2.1) 

Ч{о) yi{^) > ^i{^) Ук{^) 

for all /c Ф i, 1 ^ к -^ n. Since the Perron root of A is simple, inequahties (2.3) 
follow by letting ^ -> 0. П 

The following observations are now possible. 

Proposition 2.3. Under the assumption [and notations) of Corollary 2.2, if yt = 0 
then у = OCX for some positive number oc, whereas if Xi = 0 then inequalities (2.3) 
are trivially satisfied. 

Proof. Clearly the second observation follows from an inspection of (2.3). Sup-
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pose then that y^ = 0 (but that we have no prior knowledge concerning Xi). Without 
loss of generality (WLOG) we may assume that i = 1. Let y^ = (0, t]^), where rj 
is an (n — l)-vector and partion the matrix A as follows: 

where a, b and В are {n — 1)-vectors and an (n — 1) x (/i — 1) matrix respectively. 
Since j i = 0, it readily follows that 

Bri = Q{A + e^^^v'^)rj . 

But then, as rj is necessarily a nonzero vector, Q[A + e^^^v^) is an eigenvalue of B, 
showing that 

(2.5) Q{A + e^%^) й Q{B) . 

However, since Б is a principal submatrix of A, 

(2.6) Q{B) S QiA) й Q{Ä + e^'^v'') . 

Hence, from (2.5) and (2.6) we have that 

(2.7) Q{A) = Q{A + e^'^v''). 

Set Q: = Q{A + e^^^v^) and consider the eigenvalue-eigenvector relationship 

(2.8) {A + e^'V)y = Qy, 

Since e^^h^ is a nonnegative matrix and since gyi = 0, it follows that (e^^^v^) у = 0, 
and so (2.8) reduces to the equality 
(2.9) Ay = Qy, 

Whence, because the Perron root of A is simple (and as у Ф 0 is a nonnegative vector), 
(2.7) and (2.9) show that there exists a positive constant a such that 

у = ax 
and the proof is complete. П 

Proposition 2.3 suggests that of more interest is the study of the effect of a positive 
perturbation on a Perron vector in the event that the entry of the eigenvector cor­
responding to the row of the yet unperturbed matrix is nonzero and hence positive. 
(Such is the case, of course, when A is irreducible.) 

3. AN ANALYTICAL INVESTIGATION 

As in the proof of Observation (2.3), in this section we shall continue to assume, 
WLOG, that the positive perturbation occurs in the first row of the matrix. More 
importantly, we shall suppose throughout, that whenever the first component of 
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any Perron vector is nonzero, then that eigenvector has already been normalized 
so that its first entry equals unity. We shall refer to this normalized eigenvector as 
the Perron vector. 

With Proposition 2.3 and the comment that followed in mind, we now proceed 
to prove one of our principal results. 

Theorem 3.1. Let A be an n x n nonnegative matrix whose Perron root is simple 
and such that the first entry of (any of) its Perron vectors is nonzero, and assume 
that V Ф 0 is a nonnegative vector. Then there exists a positive number SQ, possibly 
dependent on v, such that 

(3.1) ^ z,(e) й 0 
de 

for each s e [0, SQ] and for each 1 ^ к ^ n, where for each e e [0, SQ], z(e) = 
= (zi(e),. . . , ^„(e))^ denotes the Perron vector of 

A,: = A + se^^^v^ . 

Proof. We first note that for any e > 0 the matrix A + se^^^v^ cannot have 
a Perron vector whose first component is zero, otherwise, by Proposition 2.3, Zi{0) = 
= 0, which contradicts our assumptions. Next, as indicated in the Introduction, 
because the Perron root of A is simple, there exists a sufficiently small BQ such that 
in [0, во] both ^(e): = д{А^) and z(e) (viewed as a simple eigenvalue and a cor­
responding normalized eigenvector) are differentiable with respect to e. 

For e G (0, BQ] consider the relationship 

(3.2) {A,-Q{e)l)z(8)=-0. 

Then upon difterentiating (3.2) with respect to s in this range, one obtains 

(3.3) ( Л - Q{B) I) zXs) + (/''v^ - r (e) / ) Z{B) = 0 . 

Let F(e) be the left Perron vector of A^, в e [0, eo]- It is well known that F(e) z(e) ф о 
throughout [0, eo], so that premultiplying (3.3) by F(e), e e (0, eo], and solving 
for ^'(e) we obtain that 

(3 4) / : ( e ) W z ( e ) ^ 

Next, partition A as in (2.4) and write 

(3.5) (z(e))^ = (l,(w(a))-) and (2'(e))^ == (0, (w'(e))^), 

where w{s) is an (n - l)-vector. Then from (3.3), (2.4) and (3.5) we see that 

(3.6) {B - Q{S) I) w'(e) = ê'(e) w{s) , 
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where, here, / is the identity matrix of order n — 1. Clearly 

(3.7) Q(B) ^ Q{A) = ~Q{0) й ё(в) 

for every s G [О, BQ]. If for all e e (0, SQ], ^(г) > Q(B), then (B — д(г) l)~^ exists and 
is a nonpositive matrix. Thus as w(s) ^ 0 and since ^'(e) ^ 0 (because Q(S) is a non-
decreasing function in the interval [0, EQ] and as also confirmed by inspection of 
(3.4)), we obtain at once from (3.6) that w'(e) ^ 0, so that, since Zi(s) = 1 for all 
e G (0, Co], (3.1) is readily seen to be satisfied. 

Suppose, then, that ^(г) > Q{B) for all s G (О, SQ] and let 

e^ = sup {s G (0, во] I ö(e) =^ Q{ß)} • 

If г^ < SQ, then exactly as in the preceding paragraph, we show that (3.1) is valid 
in (e^, го], while in (0, г^], from (3.7) we have that 

(3.8) Q: = Q{0) = Q(A) = Q{B) = ^(г). 

Thus ^'(г) = 0 in (0, г^;], in which case 

w'(e) e ker (В — Q1) ' 

for each г in this interval by (3.6). Now (3.8), (3.2), (2.4) and the first expression in 
(3.5) imply that 

(3.9) b + {В ~ QI) W(0) = 0 . 

But as ^ is a simple eigenvalue of ^ , it follows that rank (A -- QI) = n — 1, so that 
upon taking account of (3.9) (and (2.4)), a simple rank 'analysis' shows that rank 
(B — QI) = n ~ 2. Hence ker (B — QI) is one dimensional and is therefore spanned 
by a Perron vector of B, call it U. Since м '̂(г) G ker (В — QI) for each г G (О, г^], \у'(г) 
must be а multiple by a scalar, possibly dependent on s, of w; that is 

(3.10) W^E) = ^(г)й 

in (0, г^,,], where ^(г) is some well defined function on this domain. Consider now the 
first component of the n-vectors on both sides of (3.3). Since ^'(г) = 0 in (0, г^;,], 
we deduce, using the notations of (2.4) and (3.5), that 

(3.11) a^ w'{e) + Bv^ w'{s) + v^ z(e) - 0 , 

where v is the (n — l)-vector formed from the second through the nth component 
of V. For any г G (О, г̂ ,̂] for which v^ z(e) > 0, (3.11) impHes that [d^ 4- &v^) W{&) < 
< 0. But then, since a^ + EV^ ^ 0, w\£) must have at least one component which is 
negative. Whence, because ü is a nonzero nonnegative vector, it is readily argued 
from (3.10) that vy'(e) ^ 0. Suppose therefore that for some г G (О, г^], v^ z(e) = О, 
and consider the function 

(3.12) Ф{Е): - V'Z{E) 
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in (О, s^^. Clearly, ф(е) as a scalar product of two nonnegative vectors is a non-
negative function. Furthermore, by the assumptions of the theorem, фСв) is dif~ 
ferentiable in the interval (0, e î,], with 

(4.13) ф'{8)== v^ z'{s) = 48)v4i 

by (3.5) and (3.10), so that since ф(е) = 0, we must have that ф'(е) ^ 0. If v^U > 0, 
then, evidently, from (3.13) and (3.10), w'Çs) ̂  0. If, however, v^U = 0, then by 
(3.13) ф'(в) = 0 throughout the interval (0, г] , in which case ф is a constant in this 
range and so, because ф(г) = 0, 

ф(г) - î ^ z{8) = 0 

for all 8 e (0, e]. We have thus shown that for any s e (0, e], 

(3.14) A z(e) = {Ä + se^'^v'') z{8) - ^(e) z(e) = g z(ß) , 

where the last equality in (3.14) follows from (3.8). But then, since the Perron root 
of Л is simple (and since the same normalization strategy is applied throughout) it 
follows that z(s) = z(0) for all e e (0, e]. Hence in this interval w'{s) = 0 and so (3.1) 
holds (also) in the case when ^(e) = дСв) for some ее (0, SQ]. П 

Theorem 3.1 exhibits that with an appropriate eigenvector normalization scheme, 
nonnegative matrices whose Perron roots are sim.ple, when positively perturbed, 
manifest a 'pay-off' relationship between the Perron root and the Perron vector — 
of the form described in the introductory section. 

Some of the expressions developed in the course of proving the theorem can be 
exploited to obtain a further insight into the nature of the decrease (or lack of) of 
the dififerent com.ponents of the Perron vector in various situations. We shall consider 
three cases. For the sake of convenience, we retain (in all cases) the notations used 
in Theorem 2. 

Case 1. Suppose that v^ z(0) = 0. Since Z;̂ (0) ^ Zf^(s) for all s e [0, EQ] and for 
all 1 ^ к ^ n, it follows that v^ z^e) = 0 for all s in this range. But then from (3.4) 
g: = g(p) = ^(e) = const, throughout the interval. Moreover, as in (3.14), we observe 
that for each s E [0, SQ], 

A z{s) = g z(e) , 

implying, by the simplicity of the Perron root of A (and the previously mentioned 
normalization of Perron vectors) that 

z(0) = z(s) for all s G [О, £o] • 

Case 2. Suppose that v^ z(0) > 0, that the Perron root of A + e^^^v^ (as well as 
that of A) is simple and that g: — g{Ä) == g(A + e''^^^). Under the latter assumption 
it is evident that g(s) (when considered as an eigenvalue of some small, not necessarily 
positive, perturbation of A) is constant in some neighbourhood of e = 0, so that 
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from (3.4), F(0) ê ^̂  = 0. Whence, there exists a nonzero n-vector x such that 

(3.15) {A-QÏ)x = e^'\ 

yielding the factorization 

(A - QI + e^^^v"") = {A - QI) (I + xv'^) . 

Thus, if y is a vector which satisfies 

(3.16) {l + xv^)y = z(0), 

then 
(A - Ql + e^%'')y = 0 , 

so that, because the Perron root of A + e^^h^ is simple, y = a^ = C, where ( = 
= (Ci, ..., СпУ denotes the Perron vector of Л + e^^^v^. It follows from (3.16) that 

(3.17) C = z{0)- ( Л ) х . 

Partition the vector x into x^ = (0,3c^), where 3c is an (n — l)-vector, in which case 
from (3.15) and (2.4) we see that x e ker (B — gl). (Whence, additionally Q = Q{B).) 
We first note that v'^C =r 0, otherwise ifv^C == 0 then (3.17) would reduce to С = z(0), 
implying that Î;^C = v^ z(0) > 0, which is at once a contradiction. Next, as Ci = 
= zi(0) = 1, it follows from (2.3) that Zj,{0) ^ Ck for к = 2 , . . . , n, so that by (3.17) 
x^ = (O, x^) is a nonnegative vector. Finally, upon premultiplying both sides of 
(3.17) by v^ and substituting in that same equation the expression obtained for v^C, 
we obtain that 

1 + V X 

The (numerical) coefficient of x in this equation is positive, and hence, with the 
exception of the first component of С which is the same as that of z(0), the question 
for which indices к lying between 2 and n, 

(3.18) Ф)>и, 
entirely depends on the nonzero entries of x, and hence on the nonzero entries of 
a Perron vector of В which is unique up to a multiple by a positive constant. In any 
event the example 

i ( i) + £ 0 
0 1 0 
1 0 0 

1 
1/(1 + 2e) 

1 

1 
1/(1 + 2e) 

1 

illustrates that for no k, 2 ^ к £ n, (3.18) need hold. 

Case 3. Suppose that v^ z(0) > 0 but д(г) is not a constant in an Interval [0, eg] 
in which A^ has a simple Perron root. Then there exists an e^ e (0, SQ) such that 
simultaneously Q(8J) > Q(0) = Q(A) ^ в(В) and ë'(^i) > ^- ^^ follows from (3.6) 
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that 

(3.19) - wie,) = g%) {Q(S,) I - В)-' w(e) ^ ^ w(e) , 

where the inequality on the RHS of (3.19) has been obtained by the Neumann 
expansion of (^(г^)/ — B)~^. From (3.5) and the fact that in (3.19) Q'{^I)\Q{^\) > 0 
it follows that for each index k, 2 S k й n, for which ẑ (̂0) > 0, zJO) > Z},(EQ). 

Evidently, Case 3 together with Theorem 3.1 provides us with a further, and 
perhaps deeper, proof of Theorem 2.1 as well as of (2.2), since if A is irreducible then 
A + ee^^^v^ (is irreducible for all e > 0 and hence) has a simple Perron root in [0, e) 
and Zk(0) > 0 for all 2 ^ /c ^ n. We further remark that the results in Case 3 could 
be sligthly strengthened by the observation that if г > 0 but e ф [0, го] and Q{A^) > 
> Q{B), then necessarily the Perron root of A^ is simple. 

In the next section we shall present some observations relating to the perturbation 
of a nonnegative matrix whose Perron root is simple in more than one row. The 
difficulties arising in the analysis of these more general perturbations will be raised. 

4. CONCLUDING OBSERVATIONS AND REMARKS 

We begin with a generalization of Theorem 2.1. 

Observation 4.1. Let A be an n x n nonnegative irreducible matrix and let ß 
be a nonempty subset of {1,2, ..., n}. For an index i e ^, denote by Vf^i^ any nonzero 
nonnegative n-vector. Let x = (x^, ..., x„y and у = (у,, ..., у^У denote, respectively, 
Perron vectors of A and A + Y, ^̂ *^̂ u)- Then for any index j ф ^, 

(4.1) ^ ' < max ^ . 
X j »6 / X; 

Proof. Assume that there exists an index тф / such that 

^ = max ^ . 
X^ lukânXk 

Then exactly as in the proof of Theorem 2.1 a contradiction is obtained. П 

The problem of identifying the index IQ e f for which the ratio on the RHS of 
(4.1) is maximal does not seem to be simple, and examples can be constructed to show 
various modes of behaviour. Thus further investigation is needed to obtain a deeper 
insight into this problem. 

An 'appropriate' re-arrangement of the inequalities in (4.1) allows (just as in 
Theorem 2.1) a weakening of the condition that A in the above observation is ir­
reducible to the conditions that both A and ^ + X ^ '̂̂ ^ш Possess a simple Perron 
root. 

107 



Observation 4.2. Let A he an n x n nonnegative irreducible matrix and let и 
and V be nonzero nonnegative n-vectors. Suppose that the matrix 

A: = A + e^'^u^ - e^'\'' 

is nonnegative and irreducible, and let Q and x = (xj, ..., x^Y and Q and у = 
— (j'l' •••? УпУ denote the Perron roots and Perron vectors of A and A, respectively. 
Then 

(0 (/ 0 g Q, then 

for all к Ф /, 1 ^ к ^ n, while 

(ii) / / Q ^ Q, then 

for all к Ф j \ 1 ^ к <, п. 
Whence, if Q = g, then 

for all к Ф /, /: 1 ^ к ^ п. 

Ih ^ Ii 

X; Xi- X; 

P r o o f Without loss of generality we may assume that / == 1, j = 2 and x^ = 
—- у I = 1. Partition the vectors x, y, v and e^^^ as x^ ~ {\, x^), y^ — (1, y^), v^ = 
= (vi, v^) and (e^^•^У = [0, el) а"<̂  consider the partition of A given in (2.4). (We 
shall only prove here Statement (i), as the proof of Statement (ii) follows along 
similar lines.) From the relation Ax ~ QX we obtain that 

X = {Q1 - B)-^ , 

and iTom Ây = gy we have that 

(b - v^ëj) Л л- (В - ë^v^) у =-- gy . 

From the second of these equalities we further obtain that 

(4.2) 31 = (^/ _ 5 + ё^Ъ'У ' (b - v,ë2), 

where here / denotes the identity matrix of order n — 1. Since gl — В and gl ~ В + 
+ ^2^^ î"^ nonsingular M-matrices (or in the language of Fiedler and Ptak [2], 
matrices in class K) such that 

gl - В S gl - В + ë2V^, 

componentwise, by [2, Thm. 4.2] 

(4.3) 0 ^ (ê/ - ^ + ë2v^y^ й (gl ~ в у \ 
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and hence 

(4.4) y й {QI - ВУ {b - v,ë2) й{01-ВуЧ = х. 

If î̂ i ф О then the last inequality is strict because {QI ~ Б)~ ^ > 0 due to irreducibility 
of B. While if t̂ i == 0, then i; ф 0, so that ^2^^ is not the zero matrix, then the second 
inequality in (4.3) is componentwise strict, showing that v < 3c by (4.2), (4.3) and 
(4.4). D 

The adaptation of the statement of Observation 4.2 to the case where the ir­
reducibility of the matrices A and A + e^^^u^ — e^-'h)^ is replaced by the assumption 
that their respective Perron root is simple is not quite obvious. It is easy to prove 
that 

Q < Q ̂  yk^i g yiXj,, /c = 1, . . . , n 
or that 

Q > Q ̂  Ук^] ^ yj^k у к = 1, ...,n, 

but counterexamples show that for ^ = ^ no such statement is possible. 
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