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1. INTRODUCTION

In his lecture at the 2-nd International Congress of Mathematicians in the year
1900 (see [1]), David Hilbert formulated his 6th problem:

,,Durch die Untersuchungen iiber die Grundlagen der Geometrie wird uns die Auf-
gabe nahe gelegt, nach diesem Vorbilde diejenigen physikalischen Disciplinen
axiomatisch zu behandeln, in denen schon heute die Mathematik eine hervorragen-
de Rolle spielt: dies sind in erster Linie die Wahrscheinlichkeitsrechnung und die
Mechanik.

... Uber die Grundlagen der Mechanik liegen von physikalischer Seite bedeutende
Untersuchungen vor; ...; es ist daher sehr wiinschenswert, wenn auch von den
Mathematikern die Erorterung der Grundlagen der Mechanik aufgenommen
wiirde. ...*

Hilbert also indicated what the solution of this problem in his opinion should
contain. He said among other:

,,Auch wird der Mathematiker, wie er es in der Geometrie getan hat, nicht blof
die der Wirklichkeit nahe kommenden, sondern iiberhaupt alle logisch mdoglichen
Theorien zu beriicksichtigen haben und stets darauf bedacht sein, einen vollstindigen
Uberblick iiber die Gesamtheit der Folgerungen zu gewinnen, diec das gerade ange-
nommene Axiomensystem nach sich zicht.

Ferner féllt dem Mathematiker in Ergédnzung der physikalischen Betrachtungs-
weise die Aufgabe zu, jedes Mal genau zu priifen, ob das neu adjungierte Axiom mit
den fritheren Axiomen nicht in Widerspruch steht. Der Physiker sieht sich oftmals
durch die Ergebnisse seiner Experimente gezwungen, zwischendurch und wahrend
der Entwickelung seiner Theorie neue Annahmen mit den fritheren Axiomen lediglich
auf eben jene Experimente oder auf ein gewisses physikalisches Gefiihl beruft — ein
Verfahren, welches beim streng logischen Aufbau einer Theorie nicht statthaft ist.
Der gewiinschte Nachweis der Widerspruchslosigkeit aller gerade gemachten An-
nahmen erscheint mit auch deshalb von Wichtigkeit, weil das Bestreben, einen solchen
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Nachweis zu fiihren, uns stets am wirksamsten zu einer exakten Formulierung der
Axiome selbst zwingt.*

Since the trme of this Hilbert’s lecture, the axiomatic probability theory has been
built. In the almanac [2], in which the statement of the solution of Hilbert’s problems
is discussed, among the references to the 6th problem only papers of probability
theory are quoted. There is only a remark that a great amount of axiomatic explana-
tions of various sections of physics exists. As examples of an axiomatic theory of the
classical mechanics Hamel’s and Marcolongo’s papers are mentioned. But in the
book of Marcolongo (see [7]) only the statics is built axiomatically. In the book of
Hamel (see [9]), the matter is discussed from the physical point of view; from the
mathematical point of view this book does not satisfy today’s demands on exactness
and logical completeness. Also more recent books, e.g. [10]. are written mainly from
the physical point of view.

A paper that meets Hilbert’s demand most closely is — as far as I was able to find
out — the paper [8]. Theorems are here deduced from exactly formulated axioms in
a purely logical way. Nonetheless, any logical analysis of the system of axioms (such
as the proof that the system is not contadictory, that axioms are independent etc.)
is again missing here and could be probably hardly accomplished due to a consider-
able complexity of the system.

There are, however, some papers, in which some special topics of mechanics are
presented axiomatically and dicussed from the mathematical point of view. Thus
the notion of the resultant of two forces is axiomatically defined and studied in the
papers [3], [4], [5] and [6]. Moreover, in the papers [4], [5], and [6] a logical
analysis of axioms is carried out. In the book [7], an axiomatic system of statics is
given.

In this paper we give a system of axioms for the mechanics of a system of material
points, we prove that this system is not contradictory, deduce some fundamental
theorems and prove the independence of the individual axioms. The axioms are for-
mulated in terms of geometrical and physical notions without referring to coordinates
(even though coordinates are of course used when theorems are formulated and
demonstrated). By the formulation of axioms we avoided the assumptions about the
existence of derivatives of the functions taken into account, because such assumptions
seem to be artifical and unnatural. The assertions concerning the existence of deriva-
tives are proved as theorems.

2. SYSTEM OF AXIOMS

Let us have a threedimensional euclidean space Ej, that is, a metric space with
a metric g, in which it is possible to introduce reference systems (called cartesian)
which map the space onto the set of triples of real numbers in such a way that if

3
A = [ay, ay, a3], B = [by, by, bs], then o(4, B) = (Y. (b; — a;)*)'/>. We consider
=1
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the geometry of Ej, as known. Let us recall only that vectors are defined in E;. A vector
is given by a pair of points A, B and two pairs (4, B) and (C. D) define the same
vector if and only if there exists a point E such that (4, E) = o(E, D) = 1o(4, D).
o(B, E) = o(E, C) = }o(B, C). If a vector U is defined by a pair of points 4, B,
we shall write U = AB. The set of all vectors of the space E; will be denoted by V;.
If Ue V5, Ve Vs, then U + Ve Vyis defined. If Ue V5 and « is a real number, then
aUe Vy is defined. If U = AB, then the number ¢(4, B) is called the magnitude |U!
of the vector U. If \U' = 1 then U is called a unit vector. If V = aU, where a = 0
and U is a unit vector, then U is called the direction of the vector V. The null vector
will be denoted by 0.

By a system of vectors { Uj}je, we mean an arbitrary set J (possibly empty) together
with a map J — Vj such that je J~ U; e V5. If J has only one element, we shall
sometimes write only {U}, if no error can occur. If J is empty, the system of vectors
will be called empty as well. If { Uy} ek, {¥,} 1cr. are systems of vectors and K n L = 0,
then by { U}k U {V} e We mean the system {W;} k.., Where W, = U; if je K
and W; = V;if je L.

We introduce the following denotations: Let Z; be an open interval of real
numbers and let us have maps

B:7,->E;, C:7;-E;.
If te 7, we put
(2.1) Ay(C; 1) = C(1) — B(1).
Ifteg,,7>0,t+ 17, we put
(22) Vy(C: 1, 1) = AalCit D) = ACr).

T

The vector V(C; t, t) will be called the mean velocity of the point C with regard to B
in the interval t, t + ). Ift,€ 7, 7> 0,t, <t,, t, + 1€7,, we put

5(C: 12, 1) = Vp(C 1, 1)
I, — 1y

(2.3) AL(City,ty,1) = v

The vector Ay(C; 1y, 1,, ) will be called the mean acceleration of the point C with
regard to B between the intervals {t,, t; + 7) and {t,, t, + 7).

For vectors U, V, W we have the primitive notion the force W is the resultant of
Jorces U,V (in symbols W = U@ V). ')

By R we shall denote the set of all real numbers, by R the set of all positive real
numbers.

We suppose that we have an open interval 7 < R whose elements are called time
instants. Further, we have a set ./ whose elements are called particles. With any

l) We do not define the notion of force. The expression the force x is the resultant of forces
¥, z(or x = y @ z) must be considered a propositional function with the domain V3 X V3 X Vj.
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particle o € .4 we associate a positive real number m,, called the mass of the particle
a. For each particle « € .# we have a map P,: 7 — E;. If e ., te 7, then the
point P,(t) € E; is called the position of the particle o at the instant t. If we 4,
pedl, FeVy, te 7, then we have the primitive notion the particle 8 effects the
particle o at the instant t by the force F (in symbols %(o, B, t, F)).

A material point is defined as a pair {4, m}, where Ae E;, me R™.

If we have an open interval 7, = J,amap Y: 7, - E;, a number me R*, and
if we have for every 1 € 7, a system of vectors {F(1)} ., (the set J being the same for
all te ), then we introduce the primitive notion the motion of the material point
{Y(1, m} in the interval I | can be interpreted by the operation of the system of
forces {F(1)} ., (in symbols Z({Y(1), m}, {F{(t)} ;s> T 1))-

For these primitive notions we suppose the validity of the following axioms:

1. The effect of a force

Axiom L1. If the motion of a material point {B(t), m} in an open interval 7| <
can be interpreted by the operation of a system of forces {F|(t)};.,, if the motion of
a material point {C(t), m} in T can be interpreted by the operation of a system
of forces {Fj(1)},.; v {G(t)} and if the vectors G(t) have for all te 7 the same
direction u, then for every t, € I {, T > 0,1, < t,, 1, + 1€ T, there exists a number
k = 0 such that

Ay Csty t, 1) =k.u.

Axiom 1.2. Suppose that the motion of the material point {B(t), m} in the open
interval I, < J can be interpreted by the operation of the system of forces
{F(1)} js» the motion of the material point {C(t), m} by the operation of the system
of forces {Fj(t)};.; v {G(1)}, where the vectors G(t) have for all te T, the same
direction u. Let t; € 7 (,© > 0,1, < 1,1, + 1€ T, and let

AyCity ty, 1) =k.u, k=0.
Then
py |G| £ p, Sforall telt,t, + 1)
implies
P = mIAB(C; SPRPH T)i é«l’z .

Axiom 1.3. Suppose that the motion of the material point {B(t), m} in the open
interval I, < J can be interpreted by the operation of the system of forces
{F{(t)} jes» the motion of the material point {C(t), m} by the operation of the system
of forces {F|(t)};.; v {G(1)}, where the vectors G(t) have for all te T, the same
direction u. Then, if the function t — lG(t)l is bounded on every compact subinter-

val of Ty, the function t — |Ay(C; 1) is also bounded on every compact subinterval
of 7 ,.
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II. The composition of forces

Axiom IL1. If for every t from an open interval I < J, the force G(t) is the
resultant of forces Gy(t), Gy(t). then the motion of a material point {B(t), m} in 7
can be interpreted by the operation of the system of forces {Fj(t)};o, v {Gy(t)} v

U {G,(1)} if and only if it can be interpreted in I | by the operation of the system

of forces {Fi(1)} o, v {G(1)}.

Axiom IL.2. If F, G are vectors, then there exists a vector H such that the force H
is the resultant of forces F, G.

Axiom IL3. Suppose that the motion of the material point {B(t), m} in the open
interval 7, <  can be interpreted by the operation of the system of forces
{F|(1)} ;;- Let G be a vector and let points C(1), t € 7, satisfy

mA y(City, t,,1) = G forevery t1€T (1, <ty 1>0,1,+1€7,.

Let the function t — Ag(C; t) be continuous on F {. Then the motion of the material
point {C(t) m‘ in the interval 7 | can be znterpieted by the operation of the system

of forces {F (t)}ﬁ, v {G}.

I111. The decomposition of motions

Axiom IIL1. If 7y = F is an open interval and if there exist (for all te T )
points C(t) such that the motion of the material point {C(f), m} in | can be
interpreted by the operation of the system of forces {F1)},., v {G(t)}, where the
vectors G(r) have the same direction for all te I, and the function tr—»!G(t)!
is continuous on 7, then there exist (for all t € T ,) points B(t) such that the motion
of the material point {B(t), m} in T, can be interpreted by the operation of the

system of forces {Fy(1)} ;.

1V. Law of inertia

Axiom IV.1. If the motion of a material point {B(t), m} in an open interval
T, © T can be interpreted by the operation of the empty system of forces and if
HWET t <t,1>0,t, + 1€T 4, then

o(B(t; + 7), B(1,)) = o(B(t2 + 1), B(t2))

Axiom IV.2. If the motion of the material point {B(t), m} in the open interval
T, = T can be interpreted by the operation of the system of forces {0}, then it
can be interpreted by the operation of the empty system of forces.

Axiom IV.3. If the motion of the material point {B(t), m} in the open interval
T | = T can be interpreted by the operation of the empty system of forces, then the
functzon t— B(t) is continuous on J ;.



V. Gravitational law

Axiom V.1. Let o € # be a particle with a mass m,. Let, for every pe 4 \{a}
and every te I 4, F,,(t) be a vector such that the particle f effects the particle o
at the instant t by the force Fy(t). Then the motion of the material point {P(t), m,}
can be in every open interval I | < T interpreted by the operation of the system
of forces {Fy(t)} e snioy-

Axiom V.2. If we M, fe M, te T and P(1) + Pyt), then there exists a vector F
such that the particle B effects the particle « at the instant t by the force F.

Axiom V.3. If the particle B effects the particle « at the instant t by the force F
and P(t) % Py(t), then the unit vector P(t) P,(1)/o(P,(t), P4(t)) is the direction of the
vector F.

Axiom V.4. There exists a positive real number x such that if the particle B effects
the particle o at the instant t by the force F and if Pa(t) + Pﬂ(t), then

| l = 2L 2"
(e(P(1), Ps(1)))

Axiom V.5. If we M, B € M, then the function t — Ap (Py; t) is continuous on 7.

VI. Axioms of existence
Axiom VI.1. The set # of all particles is non-empty.
Axiom VL.3. The set A of all particles is finite.

Axiom VL.3. If te 7 and a, B are two different particles, then P(t) # Py(t).

3. AUXILIARY THEOREMS

Before analysing our system of axioms, we prove two auxiliary theorems.

Theorem 3.1. Let s be a real function defined on an interval K (open, semiopen
or closed) of real numbers. Suppose that to every Te€ K there exist numbers e; > 0,
4 > 0 such that

(3.1) s(t) = S(T)| <e&r if |t—T|<d;, tek,
and that there exist real numbers M, M, such that

s(t; + 1) — s(t;) B s(ty + 1) —
T T

(2) Myt —1)< ) < (1, - 1)



if t; <t,, 1>0,t,€K, t, + 1€K. Then

(a) M 1 + s(to + ) — s(to) < s(to + n7) — s(to)
2 T B nt
1 " s(to + 1) — s(to)

IIA

n
S M,T

if nis a natural number and tyeK, ty + nteK, v > 0;

(10+7) - s
0 - 0
(b) M= 4 L < St +9) = s(to)
2n g g
n
B s< . f) ~ 5(t0)
< M,o " + "
2n a
n
if n is a natural number, tyeK. ty + 0€K, o > 0;
© My < s(to + 1) — s(to) _s(te — 1) = s(to) < Myc

-1
ift>0,t —t€ek, ty + 1€ K;
(d) at every ty € K there exists a finite

(to) = (o) = lim s(t) S(to)

(e) the function v is continuous on K;

(f) s(to) + ov(to) o + IM,0* < s(ty + 0) < s(to) + v(to) 0 + $M,0?
if 6 >0, tyek, ty, + cek;
(2) u(ty) + Myo £ o(ty + o) < v(ty) + Myo

if 6 >0, tyekK, t, + cekK.
Proof. (a) If k is a natural number, 1 < k < n, and if we write in (3.2) ¢, instead
of t; and t, + (k — 1) 7 instead of t,, we obtain
+ 1) = 5(to) _ s(to + k) — s(to + (k — 1) 7)
T B T

IIA

M,k - 1)t + s(to

< My(k — 1,)T+ﬂ0_f_7)_‘ﬁ(’_°)_



We can see that this formula holds also for k = 1. By summing for k from 1 to n
we obtain

Mz n(nz—— 1) ‘o s(to + 1) — s(to) < sty + nt) — s(1,) <
T T

< Myt n(nz— 1) n s(ty + 1) — s(to).
T

(b) is obtained by putting ¢ = nt in (a).

(c) If we write in (3.2) o instead of t, and t, — t instead of t;, we obtain

My < s(to — 1) — s(t,) st =T+ 1) = s(1g — 1) < My
T T
because

S(to — 7+ 1) = st — 1) _ s(to — 1) — 5(to)
T -1

we obtain (c).

(d) We will prove first of all that

(3.3) pa(to) = lim Sups(’_O“L_T.L__S(fO_) < +o0

=04 T
if o€ K and ¢, is not the right hand side boundary point of K. Indeed, let ¢ > 0,
dr > 0 be numbers satisfying (3.1) for T = t,. We can choose & so small that
to + 0r€ K. Suppose that limsup (s(to + ) — s(to))/t = co. Then there exists

=04

a number 7, such that 0 < 7, < d; and that

slto %) = sto) - 5y 521 4 My 5y
To

There exists a natural number n such that 16, < nt, < 6;. By (a), we obtain for
such a number n the inequalities

s(to + nto) — s(to) > s(to + 1) — s(1o) + Mo T
nt, - T re

1
> 260070 +

+ |M1| Or + IMnty — M1 =
> 2,07 + |My| 67 — 3|M,| 6 — 4|M,| 67 = 26,077,

therefore
=1 -1 15 .
s(to + nto) — s(to) > 2e701 ‘ntg = 26707 . 307 = &r;

but this is a contradiction with (3.1), because nt, < d. Hence (3.3) is proved.
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Now we will prove that

(3.4) pi(to) = lim inf s(to + 7) = s(to)

=04+ T

> — 0

if t, € K and ¢, is not the right hand side boundary point of K. Indeed, let ¢ > 0,
dr > 0 be again numbers satisfying (3.1) for T = 1, and 1, + 6, € K. Suppose that
lim inf ((s(to + ) — s(t5))/r) = —co. Then there exists a number 1, such that 0 <

04

< 175 < 0 and that
s(to + 7o) = s(to)

To

—2e707 " — |M,| 8.

A

There exists a natural number n such that 15, < nty < d7. By (a), we obtain for
such a number n the inequalities

s(to + nto) — s(io) < s(to + 7o) — s(to) b My 1
nt, - To

< =207 " — |M,| 67 + IM,nty — $M,y1 £

S —2e:87" — |My| 8p + HM,| 67 + §|My| 8 = — 26877,
therefore
s(to + nto) — s(to) < —2e707 'n7g .

The number on the right hand side being negative, we obtain
s(to + nto) — s(to)| > 26707 'ny = 26407 . 301 = &1

but this is a contradiction with (3.1), because nt, < J;. Hence (3.4) is proved.
Now we will prove that there exists a finite 11m ((s(to + 1) = s(10))/7) at every

point t, € K which is not the right hand boundary pomt of K. With regard to (3.3)

and (3.4), it is sufficient to prove p,(t,) = p,(to). Let us suppose that p,(t,) < p,(to)

for some 1, € K. Let us denote H = p,(1,) — p,(to). There exists a number n > 0

such that t, + e K and

s(to + ) — s(to)
T

(3.5) py(to) — 3H < < py(to) + 4H, whenever 0 <71 <7.

Let us choose a number N such that

. H
(3.6) 0 < N < min (n, - 2(|M1| N IMZD).

Further, let us choose a number ¢ such that

HN HN )
4(H + 2|M,| N’ 4(2H + |M,| N + |M,|N

(37) 0<d<min (%N,



There exist numbers 7,, 7, such that

o) Lot Bl =l <y gm = (i) - 11, 0 <7 <5,
1
(3.9) s(to + 7a) = 5(to) palte) — #H, 0 <1, <3d.

T2

There exists a natural number n, such that N — 6 < n,t, < N. Further, there
exists a natural number n such that n,t, — 6 < n 17, < n,t,. Consequently, with
regard to (3.7) we obtain

(3.10) O0<N—-20<mn,t,—d<nt <ny, £N.

Let us now denote

(3.11) 8o = NyT, — NyTy
thus
(3.12) 0<do<d.

By (a) and (3.9) we now have

s(to + n,75) — s(to) S s(te + 15) — s(to)
nyt; a T2

+ Myt — IMyT, >
> Pz(’o) — zH + M nyt, — $M 1,
therefore (3.11) yields
s(to + ny13) > s(to) + na7a(pa(te) — $H) + 1M, (ny7,)* — IM (ny7s) 75 =

= s(to) + ny7y(pa(te) — H) + So(p2(to) — 4H) + IM (ny7,)* — IM,(n,7,) 1, .

In a similar way, (a) and (3.8) imply

S(to + ’7171) - S(to) < S(to + TI) - 3(10) + iM.n,t
nies = . 2oy Ty

— iM,t, <

< Pz(fo — 3H + IM,nty — $M,T,,
therefore

s(to + ny70) < s(to) + my7,(pa(te) — 3H) + IMy(ny7,)? — 3My(ny7y) 7, -
Subtracting the two inequalities and using (3.10) we obtain
s(to + n213) = s(to + ny7y) > Iyt H + 8o(py(to) — H) — 3|M,| N* —
— 3|M,| N? — 3 M| N6 — 1{M,| N6 > $H(N — 28) + 8o(p(to) — +H) —
— 3|M,| N?* — §|M,| N* — }|M,| NS — §|M,| N& = 84(p,(to) — 1H) +
+ IN(H —|M,| N — |M,|N) = 6(H + 1|M,| N + 4|M,|N).
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By (3.6) we have 2N(|M,| + |M,|) < N(1 + 2(|M,| + [M;]) < H, and therefore
we obtain
s(to + ny75) — s(to + ny7y) >

> 8o(py(to) — 3H) + INH — 5(H + 3|M,| N + 3M,|N);

by (3.7) we have 6(H + %

M,| N + 1|M,| N) < $HN and therefore
s(to + ny15) — s(te + ny1y) > So(palte) — $H) + $NH .
As we have n,t, = n,;t, + &, by (3.11), we obtain with regard to (3.12):

s(to + my7y + 3o) = s(to + ny7y)
do
> p,(to) — 1H + $6~'NH .
By (3.2) and (3.10) we hence obtain

> py(to) — 4H + 46 'NH =

s(to + 5(;,) — s(to) > s(to + ny7y + 550) = s(to + my7y) My, >
0 0

> py(to) — 3H + 67 'NH — |M,| N ;

but by (3.7) we have 6 'NH > 4(H + 2|M,| N) and therefore

M:———S(to) > pa(to) = H + 3H + [Mo[ N — [My| N = py(to) + 4H,

0

which is a contradiction with (3.5), because d, < # by (3.12), (3.7) and (3.6). Thus
we have proved p,(to) = p,(to).

Now we will prove that there exists a finite lim ((s(t, + ) — s(to))/z) at every

=0~

to € K which is not the left hand boundary point of K. Indeed, put K =

= {teR: —teK}, 3(t) = s(—1), Ty = —to. The function 3 satisfies (3.1) and (3.2)

on the interval K, therefore there exists a finite lim ((3(7, + ) — 3(t,))/7) and ob-
=04+

viouslylggn_((s(to + 1) — s(t))]7) =r1_i$ ((3(0 + 1) — 3(10))]7)-

Now we can already prove (d). Indeed, if 1, is the left or the right hand side
boundary point of K, then lim ((s(t) — s(to))/(t — to)) = lim ((s(to + 1) — s(to))/7)
t=1to =04+

or 31:1’1 ((s(r) = s(eo))/( — to))'e——k-'lj;n_((s(to + 1) — s(to))/t), respectively. If t, is an

interior point of K, then, by (c), we have lim ((s(to + ) — s(t,))/7) =
=04+

= lim ((s(to + 1) — s(to))/7)-

11



(e) Iftoe K, teK, t, + €K, t + T K, then by (3.2) we have

(D) =) _slto +9) = slha)) gy gy

where M = max (\M,l, ‘Mzi). By passing to the limit we obtain

o(1) — v(to)| < M|t — 1|,
therefore v is continuous at ¢,.
(f) If toe K, 6 > 0, t, + 0 € K, we obtain from (b) with regard to (d) by passing
to the limit for n - wo:
s(to +

IM o + u(ty) £ ko) = s(to) < Moo + v(1g);
o

from these inequalities we easily obtain (f).

(g) f 10eK, 6 > 0, 1, + o€ K, we can write

oty + o) = lim s(to + 0 —1) — s(te + a).
=04 ~ -7

But

s(to + 0 — 1) —s(tg + 0) sty + 0) —s(ty + 0 — 1) .
-1 T '

if we suppose 0 < 7 < ¢ and if we write in (3.2) t, + o — 7 instead of t,, t, instead
of 1,, we obtain

Ao T Ay Mo —1) £

< s(to + 6) —s(to + 0 — 1) < s(to + 1) = s(to) + Mo — 1)
T T
by passing to the limit ¢ — 0, we obtain (g).
Theorem 3.2. Let us have an open interval K < R and maps
B: K—E,, C:KoE,.

Suppose that the function ti—»‘AB(C; t)| is bounded on every compact interval
K, < K and that there exists a vector u such that

(3.13) Ay City, 1) = u

forevery t,eK,t > 0,t; <t,,t, + 1€ K. Let tye K. Then there exists a vector v
such that

(3-14) Ag(C; 1) = Ag(C; 1o) + (t — to) v + 3t — 10)* u
for every te K.
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Proof. Let us choose a cartesian reference system & and let Ag(C; 1) = (s,(2),
s2(1), s3(1)), u = (uy, uy, u3) in &. Then, by (2.3) and (2.2), (3.13) can be written in
the form

stz + 1) = sita) _ sty + 1) = si(ty) _ uft, = 1), 1=1,23.
T T
Therefore, (3.2) is fulfilled for the functions s, with M; = M, = u,. Further, |s,(1)| <
< ((s4(1))* + (s2(0))* + (sa(1))*)""* = |A4(C; 1)] and thus the functions s, are bounded
on every compact interval K; < K and hence (3.1) holds on K. Therefore, by Theorem
3.1(d), (f), we obtain

si(to + o) = s,(to) + vito) 0 + due® if ty+o0eK, 6>0.

Thus, if we write to + 0 = t, v = (v,(t,), v5(to), v3(t,)), we obtain (3.14) in K for the
case 1 > 1g.
If t < t,, choose a number 7€ K, 7 > t,. Then we have

(3.15) Ap(C:T) = Ay(Cs to) + (T — to) v + 3(F — 15) u.
As t <ty < 1, there exists a vector # such that we also have
(3.16) Ao(Cs to) = A(Cs 1) + (1o — 1) B + (1o — 1) 1,
(3.17) A(C; 1) = A(Cs 1) + (T — 1) 5 + 4(T — 1) u.

From (3.16) and (3.17) we obtain
Ag(C; 1) = Ay(Cs tg) + (T — 10) & + Ju(i® — 1§ + 211y — 21i) ;
if we compare it with (3.15), we obtain
(T—to)v+ 4T —t0) u=(T—to) 8+ u(i® — 1§ + 211, — 211)

and therefore
F=v+(t—to)u.

If we substitute it into (3.16), we obtain (3.14) for 1 < t,. It is obvious that (3.14)
holds also for ¢ = t,.

4. CONSISTENCY OF THE SYSTEM OF AXIOMS

We will prove that the system formed by axioms I1.1—1.3, IL.1-—1I13, IIL1,
1IV.1—-1V.3, V.1-V.5, VI.I -=VL3 is consistent, if the thecory of real numbers and
the geometry of the three-dimensional euclidean space are consistent. We shall
carry this proof out if we construct, in terms of objects of the three-dimensional
euclidean space and real numbers, a model {ulfilling all these axioms.

First of all, given a three-dimensional euclidean space E; with the metric g, Iet us
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choose a cartesian reference system & in it. If U, V, W are vectors in E;, we shall
define that the force W is the resultant of forces U, V if and only if

(41) - W=U+V.

Let us choose a natural number n and n real positive numbers my, ..., m,. For
i =1,...,n we will define the particle «; as the couple of numbers {i, m;}. The
number m; will be defined as the mass of the particle «; = {i, m;}. Our system will
have n particles ay, ..., a,.

Further, let us choose 6n real numbers

(4.2) a,,v,; i=1,..,n; r=1273;
such that
(4.3) (aiy, @i, a;3) % (apy, aype ay3) for i h.

Moreover, let us choose a real number % > 0 and a real number 7. Let us consider
the system of differential equations?)

(4.9) mx, =Yy x —— T X)L p = uny r=1,2,3.
h=1

3
nei (Y (xp — x4)?)%?
1=1

This system has a solution in an open interval , containing the number 7, and this
solution is formed by functions Xx,,, ..., x,,; r = 1,2, 3; fulfiling the initial con-
ditions

(4.5) x(1) = a,, X,(7) = v,

and the inequality

(4.6)  (xi1(2), xi2(1), xi3(1)) * (x4s(2), x42(2), X43(2)) for i h, tes .

We will choose the interval 7 as the set of time instants. We define the position of
the particle o; = {i, m;} at instant t€ J to be the point of E; whose coordinates
in the reference system & are [x;, (1), x;.(1), x;3(1)].

If F is a vector whose coordinates in the reference system & are (fy, />, f3) and
if te 7, we define that the particle o, effects the particle o; at the instant t by the
force F if and only if i &= h and

4.7) fo = wmmy,—; (1) = x,1) ;o or=1,2,3.

(1;(’%(1) — x;(1))?)*?

Let us have an open interval ; < J,amap Y:J ; — Ejs, a positive real number
m and for every te 7 a system of vectors {Fj(1)},., (the set J being the same for

2) In the case n = 1 the system will be

mx,=0; r=1,273.
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all te7,). In the reference system & let Y(1) = [y,(t), yo(t), ya(t)], Fi(1) =
= (f11(1), £;2(2), f1(r)) for je J, t € T,. We will say that the motion of the material
point {Y(t), m} in the interval 7 { can be interpreted by the operation of the system
of forces {F(1)},., if and only if the following conditions take place:

(4.8a) the set J is finite;?)

(4.8b) the functions ijt for I = 1,2, 3 are continuous on J ;;
JjeJ

(4.8¢) the functions y;, ¥,, v3 have continuous derivatives of the second order on 7 ;

(4.8d) my =3y fy on J, for |=1273.

JjelJ

Theorem 4.1. The above described model fulfils all axioms 1.1—-1.3, 11.1-11.3,
L1, IV.1—-1vV.3, V.1-V.5, VI.1 -VIL3.

Proof. Axioms I.1 and I.2. Suppose that (see the begining of Chapter 2)

(4.9) F({B(1), m}, {F0)}jers 7 1),
(4.10) FUCW, m}, (D)o 0 160}, 7).
(4.11) G(1)=g(t)u, |ul=l, g(t) = 0 for ted,.

By (4.8a), the set J is finite. By (4.8b), the functions ) F,, gu + Y. F; and therefore
jeJ Jjel

also the function g are continuous on J ;. By (4.8¢c), the functions B, C have conti-

nuous derivatives of the second order on 77, and by (4.8d) we have

ml'?:ZFj, mC = gu + ) F; on 7,
and therefore . a
m(C—B)=gu on 7,.
If we choose a number #, € 7, we obtain by (2.1)
m Ap(C; 1) = m Ay(Cs 19) + mAy(C; 1) (t — o) + ‘v (jizg(dl) da,) do, u
to o

for teg,.
If now te 7,,1>0,t+ 1€J;, we obtain by (2.2)

t+t (5]
m Vy(C; t,7) = m Ag(C; 1) + 1 <j <J. 9(01)d01> do, u —
T

to to

t a2 . ] t+t az
——J ( g(al)dal> do, u) =mAy(C; 1y) + —.[ <J’ g(Ul)dal) do, u.
to \to TJt to

3) The empty set is also considered finite. If the set J is empty, we put 2 fji = 0.
. jeJ
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(ft,€7,,1>0,1; <1, t, + 1€ T, we obtain by (2.3) and the above relations

1 1 ta+1 02
mAy(C; 1, 15, 1) = ; ; {*J (j g(o'l)d‘H) do, —
=t (tJde to

1 ti+1 02 \
- —J (J g(al)dal) daz} u.
T J11 to

If we substitute 6; = 0, + t; — ¢, in the first integral and write o instead of o,
in the second one, we obtain

t+tT g3 t+tr—t;
(4.12) mALC; 1y, 15, 7) = — ! {lj. (j 9(01)(1‘71) doy —

t, =ty (TJu to

1 ti+t a3 1 1 ti1+t g3+ ta—1t1
_ ;J', (J g(o‘l)da]) da3} u = t t ;J <J g(a,)dm) do; u.
1 to [, — 14 ty o3

Thus, Axiom 1.1 is fulfilled with

1 1 1 th+t [ foztta—t,
k = ———-—J' (J g(al)dol> do,.
mit, — 1, T Jn J 73

Now, provided t; £ 03 < t, + 7 (i.e. 65 is within the limits of integration by o),
we have 63 < 03 + 1, — t{ = t, + 1, therefore (03,05 + 1, — t() = {ty, t, + T).
If we now have

P < G(t)| =yg(t1) < p, forall telty,t, + 1),
then
) o3ttt
P1(tz - 71) =< “ 9(0'1) do; = I’z(’z - tl)
v 03
and
1 ty+1 1 ty+t g3 t+tr—t;
Pl(fz —t) = ‘J Px(’z - ’1) = "J <J 9(02)d52> do; <
T Jt T Jt o3
1 t1+t
= ;J Pz(fz - 11) = Pz(fz - 11) s
1y
therefore, by (4.11) and (4.12), we obtain
) 1 1 ti+t G3tira—ty
P < mIAB’\C; t, 12 ‘r)l = —j <J g(a,)dcrl> doy £ p,.
t, — tl TJt a3

Thus, Axiom 1.2 is fulfilled.

Axiom L3. Suppose that (4.9), (4.10) and (4.11) hold. Then, by (4.8¢), the func-
tions B, C are continuous on J , therefore by (2.1) the function 7> Ay(C; 1) is
also continuous on S, and hence bounded on every compact subinterval of J ;.
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Axioms 1.1 and I1.2 are implied by (4.1) and (4.8).

Axiom I1.3. Suppose that (4.9) holds. Let G be a vector, let C(t)e E; if te T,
and let

mAyC;ty,1,,7) =G forevery t, €T, t;<t,, t>0,1,+1€T,.

Let the function ¢ — A,(C; f)be continuous on 7. Then the function ¢ |A(C; 1)
is bounded on every compact interval K; < 4 ; and therefore, by Theorem 3.2,
there exists a vector v such that

A(C; 1) = AY(Cs 1) + (t — o) v + %n (t— %) G forall ted,,
or, according to (2.1),
(4.13)
C(t) = B(t) + Ay(Cs to) + (t — 1o) v + E—l;n—(t — 1) G forall ted,.

Now, (4.9) together with (4.8) implies that the set J is finite, the function ¢
Y, Fj(t) is continuous on 7 ; and

Jjel
(4.14) mB=§ﬂ.
Je
(4.13) and (4.14) imply
mC=YF +@G,
jeJ

therefore Z({C(1), m}, {F(t)},., v {G}, 7,) holds by (4.8).

Axiom IIL1. Suppose that (4.10) and (4.11) hold and that the function ¢+
- ]G(t)l is continuous on 7 ,. Then, by (4.8), the set J is finite and the function 7 >
— G(1) + Y. F(1) is continuous on 7 ;. Because the function ¢ — |G(1)| is continuous

jeJ

on 7, as well, the function > g(f) u = G(t) and therefore also 7>y Ft) is
JjeJ
continuous on J . Define the function B by the differential equation
mB =3 F;.
JjeJ
In accordance with (4.8), the material points {B(t), m} fulfil (4.9). Thus Axiom IIIL1
is fulfilled.

Axioms IV.1-1V.3. If Z({B(1), m}, M, 7 ,} holds, where M is the empty system
of forces, then by (4.8d) we have B = 0 on 7, and therefore there exists a point Q
and a vector v such that .
B(f)y=Q + tv forall teJ,.

From this equality we easily deduce Axioms IV.1 and IV.3.
Axiom IV.2 follows from the fact that ) F; = 0 in the case of the empty J and
also in the case of the system {0}. Jel
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Axiom V.1. The formulae (4.4) and (4.6) imply the continuity of the functions
t > P,(1). Therefore, by (4.6) and (4 7),if %(a;, «;, t, F;(t)) for all t € 7, the functions
t— F,; (1) are continuous on 7. Thus, (4.4), (4. 7) and (4.8) imply Axiom V.1.

Axioms V.2—V.4 follow from (4.7).
Axiom V.5 follows from (2.1) and from the continuity of the functions ¢ — P,(t).
Axioms VI.1 and VI.2 follow from the definition of particles.

Axiom VI3 follows from (4.6).
We have proved Theorem 4.1 and therefore also the consistency of our system of
axioms. In fact, we have proved the following stronger

Theorem 4.2. Let us have three-dimensional euclidean space E; and a cartesian
reference system & in it. Further, let us have a natural number n and 6n real
numbers a;,, v;, (i =1,...,mr =1,2,3), areal number x > 0 and a real number 1.
Then there exists a model fulfilling all the axioms 1.1, ..., V1.3 with the following
properties:

(a) There is exactly n particles oy, ..., , in the model.

(b) The set I of time instants is an open interval containing T.

(c) For every t € 7, the position P, (1) of the particle o; is a point of the space Es.

(d) If [x:1(2), x;12(1), x:3(1)] are the coordinates of the point P,(t) in the reference
system &, then the functions X, have continuous derivatives of the second order,
fulfil the system of differential equations (4.4) and the initial conditions (4.5).

In the next chapters we shall see that the model constructed in this chapter is
essentially the single model fulfilling all axioms I.1, ..., VL.3.

5. THE EFFECT OF A FORCE OF A CONSTANT DIRECTION.
CONSEQUENCES OF THE AXIOMS OF THE GROUP I

In this section we shall use only Axioms I.1—1.3.

Theorem 5.1. Suppose that the motion of a material point {B(t), m} in an open
interval 7'y = I can be interpreted by the operation of a system of forces {Fj(t)} .,
the motion of a material point {C(t), m} by the operation of a system of forces

F(1)};., v {G(1)} and that all vectors G(1), te Ty, have a common direction u.
Let the function t— I(r t)! be bounded on every compact subinterval of I, (this
is certainly fulfilled if t+— G(t) is continuous on T 1). Then there exists a real
function s defined on I { and vectors v, w with the following properties:

(a) C(ry=B(t) + s(t)u+ tw+w forall teT,;

(b) the function s has a continuous derivative v = § on I y;
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(c) if toe Ty, te Ty, 1y £ 1, then
t Tt
(5.1) u(to) + —]—J' |G(0)] do < o(t) < (1) + —I—J‘ IG(O')I do,
m Jo m .,

where the symbols I, _f denote the lower and the upper Riemann’s integral;

(d) if the function t > IG(t)| is continuous on I, and tye T, then
(5.2) o(t) = olte) + if 1G(o)| do .
m Jto
Proof. Choose a cartesian reference system & such that in this system
(5-3) u=(1,0,0).
In the reference system & the vectors G(r) have the coordinates

(54) G(1) = (|G(1), 0,0).

In the system & let

(5:3) (1) = [ea()s ea(0), ex(D)] s B(1) = [ba(1), b2(1), bs(1)]

and denote
(5.6) si(t) = ¢t) = b(t); 1=1,2,3; teT,.

Ift,eg,,7>0,1; <t,,t, + 1€T 4, then, by Axiom I.1, there exists a number
k(ty, t;,7) = 0 such that

(5.7) Ay(Csty, ty, 1) = k(ty, th 7)1,

or, with regard to (2.3}, (2.2), (2.1), (5.6), (5.5) and (5.3), we have

B Y Y

(5.8b) _5_1(’2 +1) — 51(’2)__ _ st + 1) = s(th) —0: [=23.

T T

We will prove first of all that the functions s, have continuous derivatives on 7 .
It is sufficient to prove that they have continuous derivatives on every open bounded
interval 4, such that 7, = ;. Let 7, be such an interval.

The function t > [G(t)| being bounded on 7, (5.7), (5.3) and Axiom 1.2 imply
that there exists a number M such that

0 < |AKCs 1y, 1y, 7)| = k(ty, 1,7) S M if

theT,, 1 <ty, 1>0, t,+1€7,,
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and (5.8a) then implies

(59) =Mty — 1) = Szt D =nlt) st D =alt) e,y

Axiom 1.3 implies that the function t — |A4(C; #)| is bounded on 7. Since |s,(t)| <
< IAB(C; t)l by (5.6), (5.5) and (2.1), the functions s, are also bounded on J,, Now,
(5.9), (5.8b) and Theorem 3.1 (d), (¢) imply that the functions s, have continuous
derivatives on 7 ,. Therefore, they have continuous derivatives v, = §, on the
whole 7.

By passing to the limit t — 0+ in (5.8b), we now obtain
(5.10) 50 = o) = an,
sty =agt +w, forany reg,; 1=12;

where a,, a;, w,, wy are constant. If we now put (1) = s,(t), v = (0, a5, a3), w =
= (0, g,, g3), then (2.1),(5.5), (5.6) and (5.10) imply (a). As s; = s has a continuous
derivative, we have proved also (b).

Let us now have toe 7, te 74, t, < t. Choose a division
(5.11) o =T<T, <1, <..<T,=1
of the interval (¢, t)> and denote

(5.12) g; = inf )lG(a)

oe{Ti-1,T;

, Gi= sup \G(a)|; i=1,2,...,n
>

oe{ti-1,T

(9; and G; are all finite, as the function lG(t)I is bounded on every compact
subinterval of J ;). Axiom 1.2 implies

. G, .
9i < |AB(C;r1,t2,r)l < ~ni if tyedti—, 1), 1 <ty, 1>0,
m !

t, +1elti_q, T

and for these ty, 5, 7, (5.7) and (5.3) imply
9: < k(ty, 1, 1) §_.-_
m m

Consequently, from (5.8a) we obtain

8 (1, — gy s 2t D mall) s+ =alt) LG gy,
m

T T m

The function s, is bounded on {7;_y, 7,> and therefore Theorem 3.1(g) implies

i G;
g (Ti - Ti—l) = vl(Ti) - "1(Ti—1) £ — (Ti - Ti-1)~
m m
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Summing from i = 1to i = n, we obtain

n n

Z & (T,' - Ti~1) < Uj(t) - Ul(to) < Z % (z; = ri~1)-

i=1m i=1

These inequalities remain true, if we pass on the left hand side to the supremum,
on the right hand side to the infimum with regard to all the divisions (5.11). Thus

we obtain
. -
[ SO 45 < v(e) = 1(10) < J * 160 4,
J to m m

to
Because s = s; and therefore v = v,, we have proved (c) for 7, < 1. It is evident that
(c) is true for ¢ = 1, as well.

If the function ¢+ |G(t)| is continuous on 7, and 1, < 1, (5.2) is an easy con-
sequence of (5.1). If ¢ < t,, then by (5.1) we have

to
oto) = olt) + ij IG(c) do
m Jt
and this again implies (5.2), because [}, |G(0)| do = — [{°|G(c)| do.

Theorem 5.2. Suppose that the motion of the material point {B(t), m} in the open
interval I, < J can be interpreted by the operation of the system of forces
{F(1)} s> the motion of the material point {C(t), m} by the operation of the system
of forces {F1)} ., v {G}, the vector G being constant. Then the vector G is uniquely
determined. If t, e T, t; < t,,1>0,1t, + 1€ T4, then

(5.13) G=m.AyC;ty,15,7).

Proof. We can write G = |G| u, where Iul =1 Let t;,€e Ty, t; <t;, 1>0,
t, + 1€ 7 . Then, by Axiom I.1, there exists a real number k = 0 such that

Ay (Csty, 1y, 7) = ku .
Axiom 1.2 implies
m|Ay(C; ty, 15, 7)| = |G|
and therefore

1
k= |AyC;ty,13,7)| = —|G]|.
m
6. COMPOSITION OF FORCES. CONSEQUENCES OF THE AXIOMS

OF THE GROUPS I AND II

In this section we shall use only the axioms of the groups I, II and the following

Supposition E. If we have an open interval T | < J, then there exists a positive
real number m, points B(t)€ E; for any t€ J y, a finite set J (possibly empty)
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and a system of vectors {F{1)};,, 1€ 7y, such that the motion of the material
point {B(t), m} in the interval J, can be interpreted by the operation of the

system of forces {F(t)} ;.-

The supposition E is an evident consequence of the axioms of the groups V and VI.
Indeed, by Axiom VI.1, there exists a particle o. Put B(r) = P,(t), m = m,, J =
= . \{a}; by Axiom VI3, P,(t) + Py(t) for any fe J; therefore, by Axiom V.2,
for every fe ./, te T, there exists a vector Fy(t) such that %(x, B, t, Fy(t)). By
Axiom VL2, the set J is finite and by Axiom V.1, F({B(t), m}, {Fy(1)} ey T 1)-

Theorem 6.1. If F, G, H are vectors, then the force H is the resultant of forces
F,Gifand only if H=F + G.

Proof. Let us choose an open bounded interval , < . By the supposition E,
there exists a positive real number m, points B(r) € E5 for all te 7, a finite set J
and a system of vectors {Fj(1)};.,, t€ 7, such that Z({B(t), m}, {F{1)};c;» 7 1)-
Choose a number 7, € 7, and define

(6.1) C(t)=B(t)+2L(t—to)2F, te g,

(62) D(1) = C(1) + 2L (1 = 10)2 G = B(i) + 2i (t— 1) (F+G), 1e7,.

Ifty €T, 1, <t,7>0,1, + 1€ Ty, then by (2.3), (2.2) and (2.1) we obtain
mAyC;ty, t,,7)=F, mA(Dit,1,,7)=G.
Axiom I1.3 then yields
F({C(), m}, {F(0)}; v {F}, 7)),
63 F{D(e), m}, {F(0)}jes v {F} v {G}, 7).
But by (6.2), we also have

m AB(C; ty» tz,s) =F+ G,
and Axiom II.3 implies

FD(), m}, (F0)} s 0 (F + G} 7).

Now, by Axiom I1.2, there exists a vector H such that H = F @ G. By (6.3) and by
Axiom II.1 we obtain

F({B(t), m}, {F(1)}jer v {H}, T4) 5

and we conclude from Theorem 52 that H = F + G.
Theorem 6.1 and Axiom I1.1 imply

Theorem 6.2. Let us have an open interval 9 | < J and two systems of vectors
{F{(1)} i {G(1)}rex> 1 € Ty, where the sets J, K are finite, and let

Y Ft) =) G(t) forall teT,.
JjeJ keK
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Then the motion of a material point {B(t), m} in J | can be interpreted by the
operation of the system of forces {F(t)};., if and only if it can be interpreted by
the operation of the system {G(1)} k-

7. CONSEQUENCES OF THE AXIOMS OF THE GROUPS I, II AND III
NEWTON’S SECOND LAW

In this chapter we shall use the axioms of the groups I, II, III and the supposition E.

Theorem 7.1. Let us have an open interval 7, < , areal number m > 0 and
points C(t)eE3 for all te T ,. Suppose that the motion of the material point
{C(1), m} in T, can be interpr eted by the operation of a system of forces {G (1)} s,

where the set J is finite. Let the map t+ 'y Gt) be continuous on I, and let
JjeJ

to€ T ;. Then there exist vectors ue Vs, ve Vs and points B(t) e Es, te 7y, such
that the motion of the material point {B(t), m} in F | can be interpreted by the
operation of the empty system of forces and that

(7.1) C(1) = B{t) + u + 1w + —f (J G,(0,)doy do, fotall ted .

to jeJ

Proof. Denote G(f) = z G(1). Choose a cartesian reference system & and let
in &

G(1) = (94(1), 92(1): 95(1)) »

w, = (1,0,0), w, =(0,1,0), w, =(0,0,1).

wy = (—1,0,0), ws = (0, —1,0), ws = (0,0, —1).
Let us denote®)

h;=g; for i=1,2,3; h;=g;_ for i =4,5,6.
Then
6

(7.2) ZG,(r) = Z htywi, |w| =1, h(t)=0 for tes,

The functions h; are continuous on 7y, because the map ¢ Z (1) is continuous.

Theorem 6.2 implies that F({C(t), m}, {G|(¢)};.1, T 1) if and Only it #({C(1), m),
{h{t) w}1<ize> 7 1) Denote

M, = {h()w}icicy; v=0,1,...,6

(in particular, M, denotes the empty system of vectors).

4) If fis a real function, then

ft =max(£,0), f~ = —min(f0).
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Axiom I11.1 implies that if there exist points B,(f) such that #({B(r), m}, M,, 7),
v =1,2,...,6; then there exist points B,_,(¢) such that Z({B,_,(t). m}, M,_,, T,).
Therefore we deduce by induction that there exist points

B(t) = C(t), Bs(t), Bu(t), ..., By(t), Bo(t); teT,;

such that #({B(t), m}, M,, 7,); v=0,1,...,6. Theorem 5.1 now implies that
there exist vectors u,, v, and real functions s, such that

B/(t) = B,_(t) + s,(t) w, + tv, + u,; teT; v=1,..6;
where

(1.3) s(1) = % f (J:t‘.(a,) do'l) do, .

Therefore, we have

(7.4) C(t) = B(1) + 21si(t) w,+ to+ u,

6 6

where v =Y v, u =Y u, B(t) = By(t) and hence Z({B(t), m}, Moy, 7). Now,
i=1 i=1

using (7.3) and (7.2), we obtain

z () w, ﬁz J (J' h(a,)do’l)dazw -

_ L'r (J S o) w, d(;l) do, = —_[ <J' l)dal> do,.
m Jto to i=1 to _)E.’

Thus, (7.4) becomes (7.1).

8. NEWTON’S FIRST LAW

Axioms 11.3, IV.1, 1V.2, and IV.3 imply

Theorem 8.1. If the motion of a material point {B(t), m} in an open interval
Ty < T can be interpreted by the operation of the empty system of forces, then
there exists a point Q € E5 and a vector v such that

(8.1) ' Bl)=Q+1tv for ted,.

Proof. I. Let M, be the empty system of vectors and let F({B(t), m}, My, T ,).
Choose a number t; € 7 ; and a number 7 > 0 such that t; + 7€ J; and denote

(8.2) v, = B(t; + 1) — B(ty) .
If we now have t, € I, t, + 1€ J 4, denote
(8.3) v, = B(t, + 1) — B(1y).

We will prove first of all v; = v,.
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Indeed, Axiom 1V.1 implies {"1' = Iv;_l, ie.
(8.4) V.V =0y, 0,.
Let w be an arbitrary vector and define
C(t)=B(t) + tw for teT,.

Since A4(C; ts, 14, 7) = 0 provided ty€ 7, 1> 0, t3 <t4, t, + 167, Axiom
1.3 implies #({C(t), m}, {0}, 7). Now Axiom IV.2 implies #({C(t), m}, M,, T ;)
and Axiom IV.1 implies

. o(C(t; + 1), C(1,)) = o(C(1; + 1), C(12)),
- |B(t; + 7) + (t; + 7)w — B(t;) — 1,w] =

= |B(t; + 1) + (1, + ) w — B(1;) — 1,m] .
Using (8.2) and (8.3) we obtain

Iv1 + ‘(W! = ‘vz + TWI
or
(v + ™) (vy + W) = (v + ™) (v + W)
Therefore
(8.5) v, .0 +2T0 . W=10,.0, +2T0,.W.

Ast > 0,(8.5)and (8.4) imply »,w = v,w and because w has been an arbitrary vector,
we obtain v; = v,.

1. Let t,e T4, 71> 0,1, + 7€7; and let
(8.6) B(ty + ) = B(ty) + u.
Let n be a natural number, p an integer and let
p
to + 5 TE ,71 .
Then
(8.7) Bto+L 1) =B(t) + Lu.
2" 2"
Indeed, denote
\
Bty + = — B(ty) = u,.
2"/
Then we deduce from 1 that for every integer g such that

qg— 1

to + o

ted,, t,,+2—ane.9'1
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the following identity holds:

(8.8) B(to—}-%T)—B(to-i—q;lr):u".

If p > 0, we sum (8.8) from g = 1to ¢ = p obtaining

(89) B(ro +Z ) ~ Bto) = puy;

7
if p <0, we sum (8.8) from ¢ = p + 1 to ¢ = 0 obtaining
P\ =
B(1,) — B(z‘0 + o r> = |pl u,
and (8.9) holds as well. It is evident that (8.9) also halds for p = 0. If we put p = 2"

in (8.9), we obtain with regard to (8.2) that u = 2"u, and therefore (8.9) implies (8.7).

NI Let toe 74, 7> 0,1, + 1€ .7 and let (8.6) hold. If r is a real number such
that t, + rte 74, then

(8.10) B(to + r1) = B(ty) + ru.

Indeed, if r is of the form p/2", (8.10) is implied by (8.7) and Axiom IV.3 implies
that (8.10) is true for all r such that 1, + rte J ;.

IV. Put Q = B(t,) — (to/7) u, v = uft. Then, if 1€ 77, (8.10) implies
B(t) = B(tO 12k r) = B(to) +
T

and therefore (8.1) is true.

t'—to

u=0Q +tv
T

If we now use all axioms of the groups I, II, III and IV and the supposition E, we
deduce from Theorems 7.1 and 8.1:

Theorem 8.2. Let us have an open interval 7, < I, a real nhumber m > 0 and
points C(t)€ E5 for all te I ,. Suppose that the motion of the material point
{C(r), m} in T can be interpreted by the operation of a system of forces {G (1)} ;c;»

where the set J is finite. Let the map t+ Y G(t) be continuous on 7 | and let
JjeJ
to € 7 1. Then there exists a point Q € E; and a vector v € V; such that

(811) C(t)y=Q + v+ lJ-t (J ZGj(al)dcrl) do, forall ted .
mto

to jeJ

The function C is therefore twice differentiable and

(8.12) mC (1) = Y. G(1) forall teT,.
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9. GRAVITATIONAL LAW. EQUATIONS OF THE MOTION OF PARTICLES

We shall already use all the axioms. As we have seen in Chap. 6, the axioms of the
groups V and VI imply the supposition E.
From Axioms VI.3, V.2, V.3 and V.4 we deduce

Theorem 9.1. If o, f are two different particles and te T, then P,(t) & Py(1).
There exists one and only one vector Fa,,(t) such that the particle f§ effects the particle
a at the instant t by the force F,(t). There exists a real number x > 0 (independent
of a, B, t) such that

m,m
(o.1) Foy(t) = =50 Ap (Pys 1)
’ |8, (Pg, ) )

or, if we have a cartesian reference system with

(9.2) P(t) = [x1o X2 x3] 5 Pyl(t) = [v1, v2, 03] :

Fu(1) = <xmamp X%J , xm,mpg y—z; az , wm,mg b:3—)c3),
where
(9.3) r=((r; = %)% + (v — r2)? + (v3 — x3)%)2.

Now we can prove

Theorem 9.2. There exists a natural number n such that the system includes
exactly n particles ay, ..., o, If in a cartesian reference system &,

(9.4) P, (1) = [x;1(1), x;5(1), x;5(t)] for teT,

then

(a) the functions X;, are continuous and twice differentiable in 7 ;

(b) there exists a positive real number x such that the system of differential
equations

(95 Fm=xym——F0 12,05 h=123;

G (2 G = xu)?)
=1

is fulfilled in 7 .°)

Proof. By Axioms VI.1 and VI.2, the set .# of all particles contains n particles
o, ..., %, By Theorem 9.1, for two different particles o, a; and for every te I
there exists one and only one vector F; () such that %(a,, «;, t, F;(1)). Axiom V.1
implies #({P,(1), m}, {F{(t)i<j<m 7 ) for i = 1,2,..., n. By Axiom V.5, the func-

J¥i

5) If n = 1, then the sum means the function identically equal to zero.
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tions t > Ap, (P,,; 1) are continuous on 7, therefore, by (9.1), the functions F;;
are also continuous. Thus Theorem 8.2 implies

m P, (1) =Y F i) for teT; i=12..n;
j=1
JEiQ

which together with (9.2), (9.3) and (9.4) yields (9.5).

10. INDEPENDENCE OF THE SYSTEM OF AXIOMS

To prove the independence of a certain axiom (A) of all other axioms, we shall
construct a model fulfilling all axioms except (A), but not fulfilling the axiom (A).
However, we can imagine the following situation: If we have such a model (M1},
we can construct another model (M2) fulfilling all axioms which has the same
number of particles with the same masses, the same interval J as the set of time
instants and the same functions P, (i.e. the same trajectories of particles). Then
both the models coincide in quantities which can be experimentally measured,
differing only in notions which are fictive, i.e. in notions which are introduced only
for the easier description of the system (e.g., the two models can differ in the inter-
pretation of the relation F({B(t), m}, {F{1)};c;, 7)) Therefore, we introduce
a stronger notion of the physical independence.

We will say that the axiom (A) is physically independent of all other axioms, if
there exists a model (M1) fulfilling all axioms except (A), not fulfilling the axiom
(A), and if every model (M2) which fulfils all axioms (including the axiom (A)),
with the same number of particles as the model (M1), with the same masses of the
corresponding particles and with the same interval 4 of time instants, has at least
one function P, different from the corresponding function P, of the model (M1).

As we have proved that the functions P, have to satisfy the system of equations
(9.5) if the model fufils all axioms, it is sufficient for the proof of the physical in-
dependence of the axiom (A) to construct a model fulfilling all axioms except (A),
in which the functions P, do not satisfy the system (9.5).

11. INDEPENDENCE OF THE AXIOM I.1

Let us have an E; with the metric ¢ and choose a cartesian reference system &
in it. If U, ¥V, W are vectors in E;, we shall define that the force W is the resultant of
forces U, ¥ if and only if (4.1) holds.

Let us choose a natural number n > 1 and n real positive numbers my, ..., m,,.
Our model will have n particles oy, ..., &, With masses my, ..., m,. Further, let us
choose 6n real numbers (4.2) such that a;3 = v;3 = 0 for i =1,...,n and that
(4.3) holds; moreover, choose a real number » > 0 and a real number 7. Let us con-
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sider the system of differential equations
n
(11.1a) miy =Y amm,

h=1

B )
h%i (lzl(x,,, - x,-,)z)3”2
3 3 3
(xhz _5‘12)( Z (xhl __x”)z)s/z - 3(xh2_xi2)( Z (xhl - x”)2)l/2 Z (xht‘xil) (3.(;.1_5‘.'1)
1=1 =1 =1

X1 — Xiq +

+ 3
(l;("m - xy)*)?
(11.1b) miEiy = Y, wmgmy [— Xh2 — Xiz -

Wi (X (o = xa)?
(*m __)-(“)(‘;l(xh‘__x“)z)a/z - 3(Xh1 “xn)(’;(xm“xil)z)l/zl;(xm*xiz) (X}ll—xtl)
(xhl - x”)z) )

(11.1¢c) m;X;; =0.

IlMu

This system has a solution in an open interval 4 containing the number , and this
solution is formed by functions xi,, ..., X,; r = 1,2, 3; fulfilling (4.5) and (4.6).
We will choose the interval  as the set of time instants. We define the position of
the particle «; at an instant t e J to be the point of E; whose coordinates in the
reference system & are [x;(1), x;5(1), x;5(1)]-

If F is a vector whose coordinates in the system & are (fy, f5,f;) and if te I
we define that %(«;, o, t, F)if and only if i + h and (4.7) holds.

If Y(1) = [y1(2), v2(t), »3(6)), F(t) = (f;1(2). f;2(t), f15(t)) in the reference system
&, we say that F({Y(t), m}, {F{(1)};e» 71), 1 = 7 being an open interval, if
and only if the following conditions are fulfilled:

(11.2a) the set J is finite;

(11.2b) the functions Y. fj;; | = 1,2, 3; are continuous on 7 ;
jeJ

(11.2¢) the functions y;, y,, y3 have continuous derivatives of the first order on J ;
(11.2d) there exists a number ¢, € 7, and real numbers ¢, 45, g3 such that for all
te 7, the following identities are valid:

rr

() =4, + ;11 Zle(") do +— Z(fﬂ(t) fia(t0))

o ‘015

0= 02+ 2 [ %10 =L 57,0 - 1),

ya(t) = as + i > fis(o) de.

J to jeJ
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Theorem 11.1. The above described model fulfils all the axioms 1.1, ..., V1.3
with the exception of Axiom 1.1. The functions P, do not generally satisfy the

system (9.5) and therefore Axiom 1.1 is physically independent of all the other
axioms.

Proof. We shall prove only the validity of Axioms 1.2, 11.3 and III.1. The proof
of the other axioms can be left to the reader.

Axiom 1.2. Suppose that F({B(t), m}, {F}(t)};c. 7 1), F({C(1), m}, {F(1)},es ©
v {G(1)}, 7,) and let

B(1) = [y1(1). (1), y3(1)]»  C(1) = [24(2), 25(2), z5()]
G(t)=g(t)u, u=(ug,uy us), |u| =1, g()z0.

Then there exist numbers t, € I, 7o € 7 ; and real numbers ¢y, 42, 93> P1> P2> P3
such that (11.2) and

2()=rp + ij (9(0) uy +j§f’,1(a)) do +
(000 2 = gfeo) wz + T () = ()
2(1) = py + —J. (9(c) uy + Z/,z( ) do —
= (o)1 = o(z0) 1) + T (7300 = Sn(eo)

z3(t) = ps + ﬁ‘[ (9(o) us + Zfﬂ,(q)) do -

If we put

(pl —q, - mJ Y. fiu(0) do — — z(f,,(fo) 'sz(,o)),

P2 — 42— — Zjﬂ(a) do + Z(jjl(ro — filto)
m Jto jeJ
== 1| S flo)ao ),
mJto jeJ

W= (uZ’ _ul’o)s

we obtain
. . t a
C(t) - B(t) =0+ ij g(a) dou + _1_ (g(t) _ g("'o)) w for all te .
m Jo m
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Hence by (2.1) we obtain

1 t o2
Ay(C; 1) = Ap(C; 1) + o(t — 7o) + —J. (J g(al)dal) do, u +
m T0

To

1 t
+ ;J. (9(0) — g(ro))dow forall teT .

If now te 7, > 0,t + t€J 4, then (2.2) implies

1 1 t+1 (53 ] ] t+t
Vy(Cit.1)=v + —~ g(o,)do, ) doy u + e (9(c) — g(zo)) daw.
t 10 t

mT

If t,e7,, 1>0, 1t <ty t, + t€ T, then (2.3) with the above identity gives
(11.3) A Csty, 1, 7) =

1 1 1 t+tT (5 1 t1+t G2
= u— (—J‘ (j g(a,)da,) do, — ~J~ <J g(a,)dal> d02> +
mit, —t; \TJt 0 TJt 0
+ w—

s (5 ﬁ:“(g(o) = se)do =7 (6(0) - ofe0) da)-

If there exists a real number k = 0 such that Ay(C; t,, t,, 7) = ku, then either the
coefficient in (11.3) by w must be zero or w must be linearly dependent on u. In the
first case (11.3) becomes (4.12). In the latter case we have u = (0,0, 1), w = (0, 0, 0)
and (11.3) becomes (4.12) again. Therefore, in both cases

p < |G(t)’ <p, forall telt;,t, + 1)
implies
P1 é W’IAB(C- flr t2a T)I é P> -

as in Chap. 4. Consequently, Axiom 1.2 js fulfilled.

Axiom IL.3. Let 7, = 7 be an open interval and let’

B(1) = [v,(1), ya(1), ys(t)] € s, C(t) = [2,(t), 25(1), z5(1)] € E5 for te T, .
Suppose that

(1 14) ﬁ({B(t)’ m}’ {Fj(t)}je.h 5_1)
Let G = (g,, g5, g3) be a vector and let -
mAyC;ty,15,7) =G forevery eI, t; <t 1>0,1,+1€T

Let the function t - Ay(C; 1) be continuous on 7 ;. Then the function ¢ — |[A(C; 1)
is bounded on every compact interval K, € 7, and Theorem 3.2 thus implies that,
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if t, € 7, there exists a vector v = (vy, v, v3) such that

AHC5 1) = D(C5 1) + (t — 1) v + ZL (t—1,)>G forall teJ,
m

or, by (2.1),

(11.5)

C(t) = B(1) + Ay(Cito) + (1 — 1) v +.i (t— 1) G forall te 7.
Now, (11.4) and (11.2c) imply the existence of B and therefore (11.5) implies
C(t) = B(t) + v + l(z —1,)G forall ted,
or, G being constant, "
(1.6)  C(t)=B(t) + v + ijﬂ Gdo forall tes, if tyed,.
to

Therefore (11.2d) and (11.6) imply that there exists a number #,€ 7, and real
numbers ¢, 45, g3 such that for all 1€ 7,

Z.l(t) = (Q1 + vl) + ij: (91 + ;’fﬂ(a)) do + %(gz + ;sz(t) — 92 _J;sz(to)),
(1) = (¢, + v2) + ij‘: (92 + ;fn(‘f)) do — i(gx + ;fjl(t) = g1 —J_EZan(fo)),

20 = @1+ ) + - [ (024 B 1) oo

Therefore, by (11.2), #({C(t), m}, {F|(t)};; v {G}, 7,) holds. Axiom 113 is thus
verified.

Axiom IIL1. Let 7, = J be an open interval and suppose that there exist (for
all te 7,) points C(r) such that F({C(t), m}, {F(t)};; v {G(t)}, 7). Then, by
(11.2a), the set J is finite, and, by (11.2b), the map ¢ — G(f) + Y F/(t) is continuous

JjeJ

on 7. If G(t) = g(t) u, where |u| = 1 and g is continuous on J ,, then the map

t+—Y Fjr)is continuous on 7, as well and we can define the functions y;. y,, v,
JjeJ

by (11.2d). If we now put B(t) = [y,(t), y(t), ys(t)], we easily see that F({B(t), m},

{F(1)}c5» 71)- Hence Axiom 1111 is fulfilled.

12. INDEPENDENCE OF AXIOM 1.2
Let us have an E; with the metric ¢ and choose some cartesian reference system %
in it. If U, V, W are vectors in E;, we shall define that the force W is the resultant of
forces U, V¥ if and only if (4.1) holds.
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Let us choose a natural number n > 1 and n real positive numbers my, ..., m,.
Our model will have n particles o, ..., o, with masses m,, ..., m,. Further, let us
choose 6n real numbers (4.2) such that (4.3) holds; moreover, choose a real number
% > 0 and a real number 7. Let us consider the system of differential equations

n . -
" Xpp — Xip + Xpp — X;
(12.1) mx, =Y xmm, h’s i hr o
h=1

e (2 (0 = xa)"

3(xlir - xir)l‘;(xm - xu) ()'Cht - 5‘.*1) .

3 ;oi=1,...,n; r=1,2,3.
Xy — x3,)?)/
(3 (o = x?)

This system has a solution in an open interval 4 containing the number 7, and this
solution is formed by functions x,, ..., x,,; r = 1,2, 3; fulfilling (4.5) and (4.6).
We will choose the interval 7 as the set of time instants. We define the position of the
particle o; at an instant 7€ J to be the point of E; whose coordinates in the reference
system & are [x;4(1), x:5(2), xi3(1)]-

If Fis a vector whose coordinates in the system & are (fl,fz,f3) and if te T,
we define that %(«;, oy, t, F)if and only if i + h and (4.7) holds.

I Y(1) = [4(1), p2(1), y3(0)], FA(£) = (F51(8), £32(1), £35(t)) in the reference system
&, we will say that Z({Y(t), m}, {F(1)};.;» 7 1), 7, = 7 being an open interval,
if and only if the following conditions are fulfilled:

(12.2a) the set J is finite;

(12.2b) the functions gfj,; I =1,2,3; are continuous on 7 ,;

(12.2¢) the functions ;, ¥,, ¥3 have continuous derivatives of the first order on 7 ;
(12.2d) there exists a number t, € 7, and real numbers ¢q;, q,, g3 such that for all

te I 4,

»(1) =g, + ij. ij,(a) do + i .Z;(ff'(t) = falto)); r=1,2,3.

m Jto je

Theorem 12.1. The above described model fulfils all the axioms 1.1,..., VL3
with the exception of Axiom 1.2. The functions P, do not generally satisfy the
system (9.5) and therefore Axiom 1.2 is physically independent of all the other
axioms.

Proof is analogous to that of Theorem 11.1 and we leave it to the reader.
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13. INDEPENDENCE OF AXIOM 1.3

Let us have an E; and a cartesian reference system & in it. If U, V, W are vectors
in E;, we shall define that W = U @ V if and only if (4.1) holds.

Our model will have 2 particles o, a,, the mass of each particle will be 1. The set
of time instants will be an open interval  containing the number 0 in which there
exists a solution of the system of differential equations

(13.1) = (xy —x0)7%, K= —(x, — x)7?
satisfying the initial conditions x,(0) = —1, x,(0) = 1 and such that
(13.2) x,(f) # x,(1) for ted .

Let A be a discontinuous real function such that

(13.3) Mty + 1) = Mty) + A1;) forall real ¢, 1,

(see [11]). We set (in the reference system )

(13.4) P, (1) = [x{(t) + A(1),0,0] for i=1,2; teT .
We say that %(a,, o, t, F) if and only if i # h and

(13.5) F = <L(t)—_—xi(t—)5 , 0, O) (in the reference system ).
(1) — x(1)]

1Y) = D(0) 3200 7)) F0) = (a0 1) S (1) im the reference system
&, we say that Z({Y(t), m}, {F{1)}jes» 7 1), 71 <  being an open interval, if and
only if the following conditions are fulfilled:
(13.6a) the set J is finite;
(13.6b) the functions Y. f;;; | = 1,2, 3; are continuous on J ;;

JjeJ

(13.6c) there exists a number 7, € 7 and real numbers ay, a,, as, 4y, 45, 43 such

that for all te 74,

1 t a1
yi(t) = a, + qit + & A1) + ——f (J' fifo2) daz) do,; 1=1,2,3;
m 7

to to Jje.
where
g =0 if Y f; isconstanton I,
JjeJ
g =1 if ) f; isnotconstanton .
jeJ

Theorem 13.1. The above described model fulfils all the axioms 1.1, ..., VI.3
with the exception of Axiom 1.3. As the functions P, do not satisfy the system (9.5),
Axiom 1.3 is physically independent of all the other axioms.
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Proof. Axioms L1 and 1.2. Suppose that (4.9), (4.10) and (4.11) hold, where

(13.7) B(t) = [y:(1), y2(0), ya()] . C(1) = [2a(1), 22(1), 25(1)]

(139 F0) = (0 S0 Fa(0) s = (g, 0).

Then the set J is finite, the functions Y. f;, and gu, + Y f}; are continuous and we
have (13.6c) and Jed je

(13.9)

() = @ + @t + &A1) + ;H G CCAREWHCH da3)) do,

(where 14 € 4, @;, g, are real numbers and either & = 0 or ; = 1) forl=1,2,3
and all te 7 ;. From (13.9) and (13.6¢) we deduce that

2t) — wi(1) = 8 3(0) + J < j o) d%) do, u,.

where

. B 1 to [} .

a=a —a; + ;lj‘ (J’ (g(oz) u, + ijl(()'z)) d”z) do, —

=2 "o + S o) o,
di=q —q, + _J (9(o5) u, + iji(al)) do,,
m Jto jeJ
E =& —¢.

If we put

A= (ﬁl’ dz 53) ’ (Qb dzs Q3) (31, &, 33)
we obtain by (2.1) forall te 7 ;:

Ap(Cs1) = A + Ot + E Nt) + —J (j g( o’z)dtz) do, u

By applying (2.2) and (13.3) we now obtain (if te 7y, v > 0,1 + 1€ .7 )

Vi (Ci1.7) = + EJ(’JLT) —A) J (J' g(az)dc)'z) do, —

] ()oK L[t

and by (2.3), provided 1, € 7, t; < t,, t, + t€ T4, we have

1 ta+t )
AB(C; t, 12, T ) =— { J j g(oz) d()'z) do, —
mt, — 1,

1 ty+1 Gy
- —j (J. (o2) d02> do, u.
T Jt
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Hence we easily obtain (4.12) and we can verify Axioms I.1 and 1.2 as in Chap. 4.

Axiom IL.3. Let 7, = 7 be an open interval and let us have (13.7) for all t e 7.
Let G = (g;, g2, g3) be a vector and let

mAgC;ty,t,,7) =G forevery t, €T, t;<t),1>0,t,+1€7,.

If the function ¢ +— Ay(C; 1) is continuous on 7 {, we obtain as in Chap. 11 that, if
to € T4, there exists a vector v = (v, v,, v3) such that (11.5) holds. The vector G
being constant, we can write (11.5) with regard to (13.7) in the form

(13.10)
1 t a1
z/(1) = y(t) + (2(to) — yite) — vite) + vyt + ;J <J. g, daz) do,; 1=1,2,3.
to to

If now F({B(t), m}, {F(t)} s, 7,) with F(t) = (f;4(t), f;2(1), f,5(1)), then (13.6a,
b, ¢) holds. From (13.10) and (13.6c) we obtain

(13.11) z(t) = (a, + z(to) — yite) — vito) + (q, + v)) t + & A1) +

't g1
+ lJ' (j (9, + X filo2)) d02> do, forall teZ,; [=1,23.
mJewo to jeJ

The functions ¢+ f;(t) and t+> g, + Y f;(t) are either both constant or both
jed jel

non-constant in 7, and therefore, if we compare (13.11) and (13.6), we obtain
F({C(t), m}, {F(t)};e; v {G}, 7). Axiom IL3 is thus verified
We leave the verification of the other axioms to the reader.

14. INDEPENDENCE OF AXIOM II.1

Let us have an E; and a cartesian reference system & in it. If U, ¥V, W are vectors
in E;, we shall define that W = U @ V if and only if (4.1) holds.

Our model will have 3 particles a4, a,, o3, the mass of each particle' will be 1. The
set 7 of time instants will be the set of all real numbers. The positions of the particles
will have in the system & the coordinates

(14.1) P, (1) =1[0,0,0], P,(1)=[1,10], P, ()=[-12,0].
Define the vectors

(142)  G(ay, 0y, 1) = =G0y, ay, 1) = (1 + £2)7%72, 1(1 + 1?)7%2,0),

(14.2b)  G(oy, a3, t) = —Glog, oy, 1) = (—(1 + 42)732, 2(1 + 417)732)0),

(14.2¢)  G(og, 3, t) = —G(o3, %z, 1) = (—2(4 + 12)73%, 1(4 + 12)7%/%,0).

We will say that %(a;, a;, t, F) if and only if i & j and F = G(;, o, ).

Let I, = J be an open interval and for te ., let us have material points
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{Y(t), m} and a system of vectors {F(t)};,. Let J = J; U J,. Suppose that the
vectors Fj(t) have a constant direction for te 7, if je J, and that Fj(t) have not
a constant direction for 1€ 7, if je J,. Then we shall define that #({Y(t), m},
{F(1)} .5 7 ) if and only if the following conditions are fulfilled:

(14.3a) the set J is finite;

(14.3b) the functions t — F/(t) are continuous on 7 ;

(14.3¢c) the function  — Y(t) has a continuous derivative of the second order on 7 ;
(14.3d) mY=YF;, on 7,.

jedy
Theorem 14.1. The above described model fulfils all the axioms 1.1, ..., VI.3
with the exception of Axiom 11.1. As the functions P, do not satisfy the system (9.5),
Axiom 11.1 is physically independent of all the other axioms.

Proof. The relations W = U @ ¥V and g(oci, o, 1, F) are defined in the same way
as in Chap. 4. The relation F#({Y(1), m}, {F{(1)}c;» 7 ) is defined analogously as
in Chap. 4, only vectors with non-constant directions are considered as null vectors
in Chap. 14. All axioms with the exception of Axioms I1.1 and V.1 can be therefore
verified as in Chap. 4. Moreover, Axiom V.1 is implied by the fact that the forces
G(a;, o, 1) have not constant directions in 7, and that P,(t) =0in7 fori=1,2,3.

15. INDEPENDENCE OF AXIOM I1.2

Let us have an E; and a cartesian reference system & in it. We shall define that
the relation W = U @ V is fulfilled for no three vectors W, U, V.

Our model will have 3 particles «y, a5, o3, the mass of each particle will be 1. The
set 7 of time instants will be the set of all real numbers. The position of the particles
will be defined by (14.1). The relation %(u;, «;, 1, F) will be defined as in Chap. 14.
The relation Z({Y(t), m}, {F(t)}e;» 7 ,) will be defined by (14.3) as in Chap. 14.

Theorem 15.1. The above described model fulfils all the axioms 1.1, ..., VL3
with the exception of Axiom 11.2. As the functions P, do not satisfy the system
(9.5), Axiom 11.2 is physically independent of all the other axioms.

Proof. Axiom II.1 is fulfilled trivially, Axiom II.2 is not fulfilled. The other axioms
can be proved as in Chap. 14, because in these axioms the relation W= U® V
does not occur.

16. INDEPENDENCE OF AXIOM II.3
Let us have an E; and a cartesian reference system & in it.

Our model will have 3 particles a,, o5, 23, the mass of each particle will be 1. The
set 7 of time instants will be the set of all real numbers. The position of the particles
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will be defined by (14.1). The relation %(x;, a;, t, F) will be defined as in Chap. 14.
The relation W = U @ V will be defined in a rather more complicated way. First
of all, denote by 9 the set of all non ordered pairs (U;, U,), where U,, U, are unit

vectors of E; (the case U; = U, is not excluded). Then denote
(16.1) u(oy, o, ) = G(x,, o, t)/|G(oc,-, T

where i,j = 1,2,3; i # j; and G(a;, o, 1) are defiued by (14.2). Then define the set
of non ordered pairs of unit vectors

(16.2a) My = {u(oy, as, 1), w0y, o3, 1)}1esr
(16.2b) M, = {u(oy, xy, 2), wloy, o3, 1)}y
(16.2¢) My = {u(os, 5, 1), w(os, g, 1)} es s
(16.2d) M, = WM (M, UM, UMy).

The sets Wi, M, M5, P, are pairewise disjoint, each of them contains a continuum
of elements and

4
(16.3) M= M,.

i=1
Then, denote by 9t the set of all unit vectors of E; and by 9, the set
(164) iRO = {u((xla 02, t)}re.‘/_ v {ll(O(l, o3, t)};ef v
Y {u(aZ’ Oqs t)}teﬁ' U {"(az, o3, t)}le.“f Y
Y {"(“.% Oy t}lefl_ v {”(“3: %z, r)}teff .

Now, choose pairewise disjoint sets 9y, N,, Rs, Ry, N, each of them consisting

of a continuum of unit vectors, such that
5

(16.5) N\, :.U 9N, .

Then define one-to-one maps i

(16.6) QM ->N,; i=1,23,4;
(16.7) v N - N5,

Now, if U,V are vectors of E;, we will define a vector ¥ satisflying the relation
W = U @ V. The vector W will be defined in the following way:

(16.8a) if U=V=0, then W =20;

(16.8b) if U=0, V+0, then W=[V|.y(V||V));
(16.8c) if U£0, V=0, then W=|U|.y(U/|U|);
(16.8d) it U0, V0, (UV)eM, then

W= (0] + V) o], V¥
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The relation W = U @ V has the following properties (we denote by dir v a unit
vector u such that v = |v] . u):

(16.9a) To each pair of vectors U,V there exists one and only one vector W such
that W=U®YV.

(I6.9b) If W is a vector, then there exist vectors U, V such that W = U @ V if and
only if W= 0 or dir We Jt\N,.
(16.9c) Let W= U, @V, and W= U, ®V,. Let U, 0, V{ + 0. Then also

U, + 0, V, = 0. Moreover,

dir U, =dir U,, dir¥, =dirV,
or
dir U, =dirV,, dirV,=dirU,.

Indeed, if U; 0, ¥V, + 0, then {dir U, dir¥;} eM;, 1 < i <4, therefore,
by (16.8d) and (16.6), W = 0 and dir W € ;. On the other hand, if U, = Oor ¥V, = 0,
then, by (16.8a, b, c) and (16.7), W = 0 or dir WeN;. But N, nN; = 0 for i =
=1,2,3,4. As ¢, are one-to-one maps IM; — N;, we obtain the second assertion
of (16.9¢).

(16.9d) Let 7, = 7 be an open interval. For every te 7, let us have vectors
H(1), U(1), V(t) Let H(1) = U(t) @ V(1) and H(t) = G(x;, o), t) ® G(a;, 0y, t) for
all te 7, where i,j, k is a permutation of the numbers 1,2, 3. Then neither
dir U(t) nor dir V(t) are constant in T ;.

Indeed, by (14.2), G(a;, o, t) = 0, G(Ot,, . t) * 0 for all te 7y, therefore, by
(169c), U(t) & 0, V(1) + 0 for all te 7, as well. (14.2) implies also that there exist
numbers t; € T, t,€J, such that dir G(o;, o, 1,) =% dir Gy, o, 1,). It is also
dir G(o;. o, ty) *+ dir G(o;, o), 1), dir G(o;, o, 1,) == dir Go;, o, 1,). From (16.9¢) we
now obtam that U(t,) + U(tz) and ¥ (t,) =+ V(t,).

(16.9¢) Let Iy = 7 be an open interval. For every te 7 let us have vectors
H(t) such that H(t) = G(x;, o), 1) @ G(o;, o, 1), whe;e i, ], k is a permutation of
the numbers 1,2, 3. Then dir H(t) is not constant in I
This is implied by (14. 2) and by the fact that ¢; are one- to -one maps.

If now 7y < 7 is an open interval, we shall define that Z({Y(1), m}, {F(t)} ;;» 7 1)
if the followmg conditions are fulfilled:

(A) There exists a point B e E; and a vector u such that
(16.10) Y(t)= B+ tu.

(B) The system {F/(1)},., is one of the following systems:
(16.11a) empty system; ’

(16.11b) the system {0};

(16.11c) the system {H(t)}, where H(t) = G(a; 0, 1) ® G(o;, oy, 1), i,j, k being
a permutation of the numbers 1, 2, 3;
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(16.11d) the system {U(1)} U {¥(t)}, U(t), V(1) being such vectors that for all te T,
there exist vectors H(r) such that
H(i)= UM eV,
H(1) = G(o, ), 1) @ G0y, 0, 1)

where i. j, k is a permutation of the numbers 1, 2. 3.

Theorem 16.1. The above described model fulfils all the axioms 1.1, ..., VL3
with the exception of Axiom 11.3. As the function P, do not satisfy the system (9.5),
Axiom 11.3 is physically independent of all the other axioms.

Proof. Axioms L1, 1.2 and 13. Suppose that F({B(t), m}, {F{(t)};cs» 71)s
F({C(1), m}, {F{1)} oy v {G(1)}, 7). Let the direction of all the vectors G(t), t€ T,
be constant. Then, by (16.9d) and (16.9¢), neither (16.11c) nor (16.11d) occurs for
the system {F;(1)},., U {G(1)}, therefore, as we can easily see from (16.11),

(16.12) J=0, Gt)=0.
By (16.10), there exist points By, C, and vectors u, v such that
(16.13) B(t)y =B, + tu, C(t)=Co+ tv.

From (16.12) and (16.13) we obtain the validity of Axioms I.1—1.3.

Axiom IL1 is implied by (16.8), (16.11) and (16.10).

Axiom 112 is implied by (16.9a).

Axiom HLL If F({C(1), m}, {F{1)};c; v {G(1)},(7,) and the vectors G(t) have
the same direction for all te .7, then, by (16.9d), (16.9¢) and (16.11), we have

(16.12) and we can define B(z) by (16.13).
The verification of the other axioms can be left to the reader.

17. INDEPENDENCE OF AXIOM III.1

Let us have an E; and a cartesian reference system & in it. If U, V, W are vectors
in E3, we shall define that W = U @ V if and only if (4.1) takes place.

Our model will have 3 particles o, «,, «3, the mass of each particle will be I.
The set J of time instants will be the set of all real numbers. The position of the par-
ticles will be define by (14.1).

Define the vectors G(x;, o, t) by (14.2). We will say that %(u;, o, 1, F) if and only
if i #jand F = G(a;, o, 1).

Define vectors

(17.1a) Hy(t) = G(oy, as, t) + G(oty, 03, 1),
(17.1b) H,(1) = G(0y, 04, 1) + G(0ty, 03, 1),
(17.1¢c) Hiy(t) = G(03, 0y, 1) + G0z, 005, 1) .
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If 7, = 7 is an open interval, we shall say that Z({Y(t), m}, {F(1)};c;, 7,) if
and only if the following conditions are fulfilled:
(17.2a) the set J is finite;

(17.2b) the function ¢ — Y(¢) has a continuous derivative of the second order in 7 ,:
(17.2¢) Y F(t)=H(t)+u for teT,
jeJ
where k == 1 or k = 2 or k = 3 and u is a constant vector;
(17.2d) m¥=u in 7.

Theorem 17.1. The above described model fulfils all the axioms 1.1, ..., VL.3
with the exception of Axiom 1II.1. As the functions P, do not satisfy the system
(9.5), Axiom 111.1 is physically independent of all the other axioms.

Proof. Axioms 1.1, 1.2 and 1.3. Suppose that F({B(t), m}, {F{1)},.;, T1),
F({C(1), m}, {F(1)} v {G(t)}, 7,) and that G(r) have a constant direction in 7.
Then by (17.2a), the set J is finite, and by (17.2¢). there exist natural numbers m, n;
1 <m<3;1< n £ 3; and vectors #,, u, such that

Y F(t) = H,(1) + u, in 7,
JjeJ

Y F(t)+ G(t) = H(t) + u, in 7,
jeJ

therefore
G(t)=H(t) — H,(1) + u, — u; in T,.

Because the function ¢+ H,(1) — H,(t) has not a constant direction in 7, for
m = n, it must be m — n and
G(t)=u, — uy.
By (17.2d), we obtain
mB(t)=u,, mC(t)=u, in 7T,

therefore there exist points B, e E5, Cy € E5 and vectors v, € V3, v, € V; such that
m B(t) = fu > + vt + By, mC(t) = u,t* + vyt + Co,
or, by (2.1),
mAR(C; 1) = Huy — w)) > + (v; — v,) 1t + (Co — By) forall ted .

This equality implies Axiom 1.3. By (2.2) and (2.3) we obtain

mABALC;ty, t5,7) = uy — uy = G(t) for ty,eT, t; <t, 1>0,t, +1€7,.
This equality implies Axioms 1.1 and 1.2.

Axiom II.3. Suppose that

(17.3) F({B(t), m}, {Ft)}jer» 71)
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and that the points C(t) satisfy
(17.4) mALC;ty,t,,71) =G if ,eT,, t;<t, 1>0, 1, +1€T,.

Suppose that the function ¢ +> Ag(C; ) is continuous on J | and therefore bounded
on every compact subinterval of 7 ;. Then, by Theorem 3.2, there exists a vector v
such that, if 7, € 7 ,, we have

A(C; 1) = Ay(Cs to) + (1 — 1) v + Zi(t — 1) G forall ted,
m

or, by (2.1),
(17.5)
C(r) = B(t) + Ay(Cs to) + (t — to) v + 51— (t — 1,2 G forall ted,.
m

Now, (17.3) and (17.2a, c) imply that the set J is finite and that there exists a natural
number k; 1 £ k £ 3; and a vector # such that

(17.6) Y Fft) = Hft) + u forall teT,
JjeJ

(17.3) and (17.2d) imply that

(17.7) mB(t)=u in 7,.

We obtain from (17.5) and (17.7) that
mC(t)=u+G.

Because
' YF(t)+ G=H(t)+ u+G
jeJ

by (17.6), we deduce from (17.2) that Z({C(t), m}, {F(1)};o; v {G}, 7 ;). Axiom IL3
is therefore fulfilled.

Axioms IV.1, IV.2, IV.3. If 9 is the empty system of vectors or if M = {0},
then, by (17.2c), the relation F({Y(t), m}, M, 7,) is never fulfilled. Therefore,
Axioms IV.1, 1V.2 and 1V.3 are fulfilled trivially.

The verification of the other axioms can be left to the reader.

18. INDEPENDENCE OF AXIOM I1V.1

Let us have an E; with the metric ¢ and a cartesian reference system & in it. If
U, V, W are vectors in E5, we shall define that W = U @ V if and only if (4.1) holds.

Choose a natural number n. Our model will have n particles ay, ..., o,, the mass of
each particle will be 1. Further, let us choose 6n real numbers (4.2) such that (4.3)
holds. Moreover, choose a real number 7. Let us consider the system of differential
equations

(18.1)  x,=1+Y T X s i=l,.,n; r=1,2,3.

o 3
mei (Y (e — x)2)?2
I=1
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This system has a solution in an open interval .7 containing the number 7, and this
solution is formed by functions x,,, ..., x,,,; ¥ = 1, 2, 3; fulfilling the initial conditions
(4.5) and such that (4.6) holds. We will choose the interval J as the set of time
instants. The position of the particle o; at an instant t € 7 is defined to be the point
of E; whose coordinates in the reference system & are [x;(1), x;5(1), x;3(1)]-

If F = (fy,faf3)is a vector, we define that %(o;, o, t, F) if and only if i % h
and (4.7) holds (with x = m; = m, = 1).

Let J, = J be an open interval and let Y(¢) = [y,(¢), y,(t), y5(t)] € E; for
te Ty, Ft) = (f1(1), f2(t). fis(t)) e V5 for jeJ, teT,. We will say that
F({Y(t). m}, {F{(t)},cs» 7 1) if and only if the following conditions are fulfilled:

(18.2a) the set J is finite;

(18.2b) the functions Y. f;, for I = 1,2, 3 are continuous on 7 ;
jeJ

(18.2c) the functions y;, y,, y; have continuous derivatives of the second order

on 7 4;
(18.2d) mj,=1+Yfy, on 7, for 1=1,23.

jeJ

Theorem 18.1. The above described model fulfils all the axioms 1.1, ..., VI.3
with the exception of Axiom IV.1. As the functions P, do not satisfy the system
(9.5), Axiom 1V.1 is physically independent of all the other axioms.

Proof. Axioms L1, 1.2, 1.3. Let (4.9), (4.10) and (4.11) be fulfilled with B(r) =

= [b4(1), ba(1), by(1)], C(1) = [ea(t), e2(2), es(O)], F(1) = (£1u(0), fr20): £5(1)), w =

= (uy, u3, u3). Then, by (18.2a), the set J is finite, by (18.2b) the functions Y. f;,

jeJ
gu, + Zf,-, are continuous on J ; and, by (18.20, d), we have
jed
mb, = 1 +ij,, mé, =1 + gu, +ij,; 1=1,2,3; on 7,

jel jeJ
and therefore
m(C —B)=gu on 7.

Hence we can deduce Axioms 1.1, 1.2, 1.3 as in Chap. 4.

Axioms IV.2, 1V.3. If B(r) = [by(t), by(t), bs(t)] and M is the empty system of
forces or M = {0}, then, by (18.2d), #({B(t), m}, M, 7,) if and only if there exists
a vector v = (vy, v,, v3) such that for 1, € 7, we have

b(t) = El(t — 1o ot = 1) + byfte); [=1,2,3; for ted,.
m .

Hence we can easily deduce Axioms 1V.2, IV.3.

The verification of the other axioms can be left to the reader.
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19. INDEPENDENCE OF AXIOM 1V.2

Let us have an E; with the metric ¢ and a cartesian reference system & in it. If
U, ¥V, W are vectors in E;, we shall define that W = U @ V if and only if (4.1) holds.

Choose a natural number n > 1 and n real positive numbers my, ..., m,. Our
model will have n particles «, ..., a, with masses m,, ..., m,. Further, let us choose
6n real numbers (4.2) such that (4.3) holds. Moreover, choose a real number % > 0
and a real number 7. Let us consider the system of differential equations (4.4). This
system has a solution in an open interval J containing the number 7, and this
solution is formed by functions xq,, ..., x,,; r = 1,2, 3; fulfilling the initial con-
ditions (4.5) and such that (4.6) holds. 7~ will be the set of time instants. The position
of the particle o; at an instant t € J is defined to be the point of E; whose coordinates
in the reference system & are

(19.1) P,(t) = [cos t + x;4(1), sint + x;,(t), xi3(1)] -

If F=(fy,f,f3)is a vector, we define that %(«;, o, t, F) if and only if i & h
and (4.7) holds.

Let 7, = 7 beanopzninterval and let Y(t) = [y,(t), y,(1), y3(t)] € Es forte 74,
F(t) = (f11(1). f;2(2), [;3(1)) € V5 for jeJ, te 7. We will say that F({Y(t), m},
{F{(t)}jes» 7 ) if and only if either
(19.2a) the set J is finite and non-empty:

(19.2b) the functions Y f;, for I = 1,2, 3 are continuous on J ;;
jeJ
(19.20) the functions y;, ¥,, y3 have continuous derivatives of the second order
on J ;
(19.2d) for all re 7,
. 1
(1) = —cost+—Y fu(t),

m jeJ

. . 1
X(t) = —sint + — Y f(1),
m jeJ

50 = - 5 1(0)

or
(19.3a) the set J is empty;

(19.3b) x(¢) = (cos 1, sin 1, 0) for all te 7.

Theorem 19.1. The above described model fulfils all the axioms 1.1,..., V1.3
with the exception of Axiom 1V.2. As the functions P, do not satisfy the system
(9.5), Axiom 1V.2 is physically independent of all the other axioms.
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Proof. We shall verify only Axioms 11.3 and 1V.1. The other axioms can be verified
in an analogous way as in the proof of Theorem 18.1.

Axiom IL3. Suppose that (4.9) holds, where B(t) = [b,(t), ba(1), b3(1)], F{t) =

= (fj1(1), f;2(1), f;3())- Then, by (19.2a) or (19.3a), the set J is finite, and, by (19.2d)
or (19.3b),

£19.42) Bu(f) = — cost + - Y £(0),
m jeJ
(19.4b) bat) = = sint + — Y £,(0).
m jeJ
(19.4¢) bat) = - Y 15(1).
m jeJ

Let G be a vector such that (4.11) holds, where u = (u,, uy, u3), and let C(1) =
= [c(1), e5(1), c5(2)] € E; satisfy
mAC;ty,1,,7) =G forevery t,€T(, t; <1, >0, 1, +1€T,.

Let the function ¢+ Ag(C; t) be continuous on J ;. By Theorem 3.2, there exists
a vector v such that (4.13) holds. Now, (19.4), (4.11) and (4.13) imply

60 = = eost+ — (g1 + L 1(0).
é@=—ﬁm+%QMM+§mM%

1
&) = — (9(’) us + foa(’))’
therefore, by (19.2), we have f({C(t m}, {F(1)} e v {G}, 7). Axiom 11.3 is thus
verified.

Axiom IV.1. Let 9 be the empty system of forces and let Z({B(t), m}, M, T ,),
where B(t) = [b,(1), by(¢), bs(r)]- Then, by (19.3b), we have

by(t) = cost, by(t)=sint, by(t)=0
and therefore, if t, € 7, t; <t,,7>0,1t, + €7, we have
o(B(t; + 1), B(1;)) = ((cos (t; + ) — cos t,)* + (sin (1, + ) — sin 1,)*)"/2 =
= (cos® (t; + t) + sin®(t; + 1) + cos’ t, +
+ sin® t; — 2 cos (t; + t)cos t; — 2sin (1, + 7)sin t,)"/? = (2 — 2 cos 7)"/?

and similarly
o(B(t, + 1), B(1;)) = (2 — 2 cos 7)/%.
Hence Axiom IV.1 is fulfilled.
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20. INDEPENDENCE OF AXIOM 1V.3

Let us have an E; with the metric ¢ and a cartesian reference system & in it. If
U.V,W are vectors in E;, we shall define that W = U @ V if and only if (4.1) holds.

As in Chap. 18, choose a natural number n > 1, n real positive numbers m,, ..., m,,
a real number x > 0, a real number 7 and 6n real numbers (4.2) such that (4.3) holds.
Our model will have n particles o, ..., @, with masses my, ..., m,. The set of time
instants will be an open interval J containing the number 7, in which the system
(4.4) has as a solution formed by functions xy,, ..., X,,; ¥ = 1,2, 3; fulfilling the

initial conditions (4.5) and such that (4.6) holds. The position of «; at the instant t € 7~
will be the point

P(t) = [A(t) + xis(t), A(t) + x,2(1), A1) + xi5(1)]
where / is a discontinuous real function such that (13.3) holds.

If F=(fy,f5f3)is a vector, we define that %(o;, o, t, F) if and only if i + I
and (4.7) is fulfilled.

Let J, = J be an open interval and let Y(r) = [y (1), »,(t), ys(t)] € E5 for
te Ty, Fft) = (fi(t), f12(1), f13(1)) € V5 for jelJ, teJ . Wewill say that
F({Y(1), m}, {F{(t)}es» 7 1) if and only if
(20.1a) the set J is finite;

(20.1b) the functions ) f;, for I = 1,2, 3 are continuous on 7 y;
jeJ

(20.1¢) the functions y, — A; I = 1,2, 3; have continuous derivatives of the second
order on 7 ;

(20.1d) Gi— 2 =LS7, in 7, for 1=1,23.
m jeJ

- Theorem 20.1. The above described model fulfils all the axioms 1.1, ..., VI.3
with the exception of Axiom IV.3. As the functions P, do not satisfy the system
(9.5), Axiom 1V.3 is physically independent of all the other axioms.

Proof is analogous to that of Theorems 4.1, 13.1 and 19.1 and can be left to the
reader.

21. INDEPENDENCE OF AXIOM V.1

Let us have an E; with the metric ¢ and a cartesian reference system & in it. The
interval 4 will be the set of all real numbers. The relations W = U @ V¥V and
F({Y(1), m}, {F(1)} jes» T 1) will be defined as in Chap. 4.

Our model will have 3 particles o, «,, a3 with the positions

P.(1) = [0,0,0], P,(1)=1[0,1,0], P,()=1[0,0,1].

The mass of each particle will be 1. If F is a vector and re J we will say
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that (o, j, t, F) if and only if
F = (P.,(1) = P (0)/(o(Pu (1), P (1)) -

Theorem 21.1. The above described model fulfils all the axioms 1.1,..., VL3
with the exception of Axiom V.1. As the functions P, do not satisfy the system (9.5),
Axiom V.1 is physically independent of all the other axioms.

We leave the proof of this theorem (as well as those of the subsequent ones) to the
reader.

22. INDEPENDENCE OF AXIOM V.2

The interval , the particles, their masses and positions and the relations W =
= U@V and Z({Y(t), m}, {F|(t)};.;, 1) will be defined as in Chap. 21. We will
define that the relation %(a;, «;, 1, F) is fulfilled for no vector F.

Theorem 22.1. The above described model fulfils all the axioms 1.1, ..., VL3
with the exception of Axiom V.2. As the functions P, do not satisfy the system
(9.5). Axiom V.2 is physically independent of all the other axioms.

23. INDEPENDENCE OF AXIOM V.3

Let us have an E; and a cartesian reference system & in it. If U, ¥V, W are vectors
in E;, we shall define that W = U @ V if and only if (4.1) holds.

Our system will have n particles o4, ..., «,, Where n > 1. The mass of each particle
will be 1. Choose a real number 7 and 6n real numbers (4.2) such that a;3 = v;; = 0
for i = 1,...,n and that (4.3) holds. Let us consider the system of differential
equations

n

(23.1a) g =y e
il (X (o = %))
(23.1v) %1 :,,Zl . Xip — Xpy ’
h#i (lzl(x,,, = xy)})*?
(23.1¢) K3 =0.

This system has a solution in an open intérval J containing the number 7, and this
solution is formed by functions xi,, ..., x,,; ¥ = 1, 2, 3; fulfilling the initial con-
ditions (4.5) and such that (4.6) holds. 7 will be the set of time instants. The position
of the particle «; at an instant t €  is defined to be the point of E; whose coordinates
in the reference system & are [x;(1), x;5(f), x;3(1)].
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If F = (fy, f,. /) is a vector, we define that %(a;, o, t, F) if and only if i + h and
Xia(t) — xia(t) [, = - xXia(t) = xp(2)

f1 =3 3
(l;(xm(t) - xil(t))2)3/2 (lgl(x,,,(t) — xil(t))2)3/2

» f3=0.

The relation Z#({Y(t), m}, {F{()};;» 7 ;) defined as in Chap. 4.

Theorem 23.1. The above described model fulfils all the axioms I.1,..., VL3
with the exception of Axiom V.3. As the functions P, do not satisfy the system
(9.5), Axiom V.3 is physically independent of all the other axioms.

24. INDEPENDENCE OF AXIOM V.4

Let us define a model as in Chap. 4, but instead of the system (4.4) let us use the
system

n
mmy(x,, — x; .
Y e X 2oooi=1,..,n; r=12,3;

—_ 3 ’
e (Y (% — x0)?)?
=1

mx;, =

and instead of the relation (4.7) the relation

fr = xmm, — () = (1) ;or=1,2,3.

(X (o) = %)

Theorem 24.1. The above described model fulfils all the axioms 1.1,..., VL3
with the exception of Axiom V.4. As the functions P, do not satisfy the system (9.5),
Axiom V.4 is physically independent of all the other axioms. '

25. INDEPENDENCE OF AXIOM V.5

Let us have an E; and a cartesian reference system & in it. The interval 7 will
be the set of all real numbers. If U, ¥V, W are vectors in E;, we shall define that
W = U® V if and only if (4.1) holds.

Define a real function p by
(25.1a) p(r) = 1 if t = 0 or ¢ is irrational;

(25.1b) p(r) = 1/q if t = p|q, where q is natural, p integer. p + 0, and the greatest
common factor of p, q is 1.
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For all t € 7, define vectors
(25.2) R(t) = (p(t), 0,0),
(25.3) H(t) = (X(p(r))” 2,0, 0).

Our model will have 2 particles o, f3, the ma\ss of each particle will be 1. The posi-
tion of the particles will be defined by

(25.4) P(1) = [—p(1),0.0], Put) =[p(r),0,0] forall tes .

We will define that %(x, B, t, F) or %(B, a, t, F)if and only if F = H(t) or F = —H(z),
respectively.

If 7, = 7 is an open interval, we will define that #({Y(t), m}, {F|(t)}c;, 7)
if and only if .

(25.5a) the set J is finite
and there exists a number ¢, ¢ = 0 or ¢ = 1 or ¢ = —1 such that
(25.5b) the function ¢ H(t) + Y. F,() is continuous in
JjelJ
(25.5¢) the function ¢+ Y(r) + ¢ R(r) has a continuous derivative of the second
order;

(25.5d) (Y(r) + e R(t))" = e H(t) + ) Ft) forall te 7.

Theorem 25.1. The above described model fulfils all the axioms 1.1,..., VI.3
with the exception of Axiom V.5. As the functions P, do not satisfy the system (9.5),
Axiom V.5 is physically independent of all the other axioms.

Proof. Axioms L1, 1.2, 1.3. Suppose that (4.9), (4.10) and (4.11) hold. Then,
by (25.5), the set J is finite and there exist numbers &, ¢,, equal to 0, 1 or —1, such

that the functions ¢, H + ) F;, ¢;H + G + ) F, are both continuous on 7.
jel jer

This is possible only if the function (¢, — &) H + G is continuous on J,. By

(4.11), (25.3) and (25.1) this can occur only in the two following cases:

(a) &, = &3
(b) G(1), H(t) are linearly dependent for all te 7.
Case (a). In this case (25.5d) implies
(B(t) + &, R(t)) = e, H(t) + Y. F(t) in T,
JjeJ
(C(1) + &1 R(1))

and therefore

e, H(t) + G(t) + z} F(t) in 7,
je

(C-B)' =G on 7,

and Axioms I.1, 1.2 and 1.3 can be verified as in Chap. 4.

49




Case (b). In this case (25.5d) implies
(25:6) (C—B+(e;—&)R)) =G+ (e, —¢&)H in T,.
Because G(r) and H(r) are linearly dependent for all 1€ 7, we deduce from (4.11),

(25.2) and (25.3) that
R(t) = np(t)u, H(t)=3n(p(t) > u,
where n = 1 or n = —1. Now, (25.6) yields
(C—B+n(e;—&)pu) = (9 +ine; — &) p ?)u in T,
if we choose a number t, € 9 ;, we obtain that there exist vectors v;, v, such that

C(t) — B(t) = v, + tv, + n(e; — &) p(t) u +

t 02
+J’ (J- (9(oy) + dn(e, — sl)(p(ol))‘z)dal) do,u forall ted,.
to to

Hence we easily deduce Axiom I.1.

Ifnowt, e 7 ,,7>0,t;, <1, 1, + 1€ T4, then, because the function (82 — 31) .
. H + G is continuous on 7, the function ¢ — |G(t)| can be bounded on the interval
{t,t; + ) only if &; = &,. We can therefore verify Axiom 1.2 as in the case (a).
Similarly, the function IG(t)I can be bounded on every compact subinterval
of 77, only if ¢; = ¢,, and Axiom 1.3 can be therefore proved as in the case (a).

Axioms IV.1, IV.2, IV.3. If Z({Y(1); m}, M, 7,), where M = {0} or M is the
empty system of forces, then, by (25.5b), the function 7 — ¢ H(t) must be continuous
on 7 ; but this can occur only if ¢ = 0. Therefore, by (25.5d), we obtain ¥ = 0
on 7, and from this equation we can easily deduce Axioms IV.1, IV.2 and 1V.3.

We leave the verification of the other axioms to the reader.

26. INDEPENDENCE OF AXIOM VI.1

Let us have an E;. The interval 4 will be the set of all real numbers. The relations
W=U®@®V and F({Y(t), m}, {F(t)};c;» ;) will be defined as in Chap. 4, The
model will have no particles. The relation {4(0:, B, t, F ) is therefore never fulfilled.

Theorem 26.1. The above described model fulfils all the axioms 1.1, ..., VI.3
with the exception of Axiom VI.1. Because any model fulfilling all axioms has
at least one particle, Axiom V1.1 is physically independent of all the other axioms.

We leave the proof of this theorem (as well as those of the subsequent ones) to the
reader.

27. INDEPENDENCE OF AXIOM VI.2

Let us have an E; with the metric ¢ and a cartesian reference system & in it. The
interval J will be the set of all real numbers. If U, V, W are vectors in E;, we shall
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define that W = U @ V if and only if (4.1) holds. Our model will have particles
weey Oy Oy, Olg, Oy, Olgy O3y -
the mass of each of them will be 1. The position of the particle «; will be
P, =[i,0,0], i=..-2,-1,012,...

We will define that %(«;, «;, t, F)if and only if

F = (P, (1) = P (0)/(o(Pu (1), P (1)) -

If 7, < 7 is an open interval, we shall say that Z({Y(t), m}, {F(t)};c;» 7,) if
and only if the following conditions are fulfilled:
(27.1a) the set J is countable®);
(27.1b) if J is infinite then Z;Ff(t) converges absolutely for all te J ;
(27.1c) the function tl——»ZJIE’j(t) is continuous on J ,;
(27.1d) the function tHJ;’J(t) has a continuous derivative of the second order;
(27.1¢) mY=YF, on J,.

JjeJ

Theorem 27.1. The above described model fulfils all the axioms I.1,..., VL.3
with the exception of Axiom V1.2. As any model fulfilling all axioms has a finite
number of particles, Axiom V1.2 is physically independent of all the other axioms.

28. INDEPENDENCE OF AXIOM VI3

Let us have an E; and a cartesian reference system & in it. The set 7 will be the
set of all real numbers. The relations W = U @ ¥ and F({Y(t), m}, {F{(1)},c;» 7 1)
will be defined as in Chap. 4. Our model will have 2 particles o, 8, the mass of each
of them will be 1 and their positions will be

P.(t) = Py(1) = [0,0,0] forall ted .

We will define that %(a, B, 1, F) or %(B, «, t, F) if and only if F = 0.

Theorem 28.1. The above described model fulfils all the axioms 1.1,..., VL.3
with the exception of Axiom V1.3. Because P,(t) + Py(t) for « & f and for all te T
in any model fulfilling all axioms, Axiom V1.3 is physically independent of all the
other axioms.

6) Finite sets and the empty set are also considered countable.
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