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In this paper, the question of describing the commutative Moufang loops of orders
< 728 is treated. This work was motivated by that of O. Chein [4] dealing with
(non-commutative) Moufang loops of small orders. Here we restrict ourselves to the
commutative case only which enables us to construct all non-associative commutative
Moufang loops of order lesser than 3°. The principal tool is the investigation of
commutative Moufang loops nilpotent of class at most two and their trilinear con-
structions. As a by-product, we obtain also a full constructive description of all
commutative Moufang 3-loops generated by three elements. Further, this approach
leads also to the description of the lattice of varieties of commutative Moufang loops
nilpotent of class at most two.

As is well known, the theory of commutative Moufang loops is very closely re-
lated to that of distributive groupoids and quasigroups. As the theory of distribu-
ive groupoids is now being intensively investigated (see e.g. the detailed treatment
of the topic in [7], where much further information can be found), we include also
the description of non-medial commutative distributive groupoids of orders 81 and
82 (every such groupoid of order <80 is medial) and of distributive quasigroups
of order £15. In this connection, it is also interesting to note that whereas there are
only 2 isomorphism classes of non-medial commutative distributive groupoids of
order 81, in the medial case there are at least 27° of them.

The paper is divided into 14 sections. The first three of them have an auxiliary
character. Section 1 contains the basic results concerning commutative Moufang
loops. For further information as well as for detailed proofs, the reader is referred
to [3]. In Section 2, several auxiliary assertions on finite abelian groups are presented.
Although these results seem to be well-known, the ‘authors were not able to
find them explicitly in the literature and hence their proofs are also included. Section
3 contains several easy facts concerning triadditive mappings of abelian groups.

In Section 4, a trilinear construction of commutative Moufang loops nilpotent of
class at most two is investigated. This construction had been implicitly employed
already in the first examples of non-associative commutative Moufang loops (see
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[1] and [2]). It was explicitly formulated in [11] and used also in [10]. Sections 5, 6
and 7 are devoted to the construction of particular types of non-associative commuta-
tive Moufang loops.

Section 8 deals with finitely generated commutative Moufang loops nilpotent of
class at most two. It is shown (Theorem 8.6) that such a loop (if it does not contain
elements of infinite order) can be constructed from an abelian group by means of
trilinear construction described in Section 4. This result leads to the explicit descrip-
tion of all non-associative commutative Moufang loops of order <728 (Corollary
9.3) and of all non-associative commutative Moufang 3-loops with three generators
(Theorem 9.5). As a corollary, we obtain the description of all finite non-associative
commutative Moufang loops generated by three elements (Corollary 9.6).

T. Evans.[5] has shown that there are only countably many varieties of nilpotent
commutative Moufang loops. In Section 10, we give a full description of the lattice
of varieties of commutative Moufang loops nilpotent of class at most two (Theorem
10.6).

The remaining sections are devoted to distributive groupoids and distributive
quasigroups. Section 11 contains the necessary general results concerning distributive
groupoids (for further material, see [7]) In Theorem 12.4, it is shown that there are
(up to isomorphism) only 6 non-medial distributive quasigroups of order <81 (they
are all of order 81) and among them only two commutative ones which are (Proposi-
tion 14.4) the only non-medial commutative distributive groupoids of order <S81.
Theorem 13.9 gives the description of all 45 distributive quasigroups of order <15.
Finally, in Theorem 14.7 all 6 non-medial commutative distributive groupoids of
order 82 are constructed.

1. PRELIMINARIES

Throughout the paper, m, n are non-negative integers, p is a prime, G(n) =
={0,1,...,n — 1} denotes the additive group of integers modulo n, F(p) =
= {0, 1,..., p — 1} is the field of integers modulo p and Z is the ring as well as the
additive group of integers. If G is an abelian group and x € G then Zx denotes the
subgroup generated by x.

In the following, let G be a commutative Moufang loop, i.e. a loop satisfying the
identity xx.yz = xy.xz. For all a, b, ce G, denote by (a, b, c) = (a, b, ¢); the
associator of a, b, ¢, i.e. (a, b, ¢) = (ab. c)(a. bc)™'. Further, we denote by C(G)
the centre of G, i.e. the set of all elements a € G such that (a, X, y) = 1forallx, y € G,
by A(G) the associator subloop of G (i.e. the subloop generated by all associators),
by J(G) the intersection of all maximal subloops (if there is no maximal subloop
then J(G) = G), by Soc (G) the subloop generated by all minimal subloops (if there
is no such subloop then Soc(G) = {1}) and we put B(G) = {xeG|x* =1},
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D(G) = {x* | x€ G}. G is said to be nilpotent of class at most n if 4,(G) = 1, where
A(G) are defined inductively by 44(G) = G and A(G) is the subloop generated
by all associators (g, x, y) with a € 4;_,(G), x, y € G. Thus G is nilpotent of class
at most two iff 4(G) = C(G). Further, G is nilpotent of class n iff G/C(G) is nil-
potent of class n — 1. In the rest of this section, we present for the convenience of
the reader several more or less standard results concerning commutative Moufang
loops which will be needed in the sequel. For further information as well as for
detailed proofs, the reader is referred to [3].

1.1. Proposition. (i) A(G), B(G), C(G), D(G), Soc (G) and J(G) are normal sub-
loops of G.

(i) A(G) = B(G)  Soc (G) and D(G) < C(G).

(iii) A subloop H of G is normal iff (a, x, y) € H for all ae H and x, y € G.

(iv) If a,b,ce G and a.bc = ab.c then the subloop generated by {a, b, c}
is a group.

Proof. See [3, Lemma VIL5.7, Lemma VII.3.3, Theorem VII.4.2:|‘ O
For a set M, |M I denotes the cardinal number corresponding to M. Further, we
put ¢(G) = min (|M|), M running through all generator sets of G.

1.2. Proposition. Suppose that q(G) = n. Then:

(i) G is nilpotent of class at most max (1, n — 1).
(ii) Every subloop of G is finitely generated.
(iii) Every proper subloop of G is contained in a maximal subloop and every
maximal subloop is normal.
(iv) A(G) = J(G).
(v)IfH < J(G) is a normal subloop of G and f denotes the natural homomorphism
of G onto G[H then a subset M of G generates G iff f(M) generates G[H.
(vi) q(G) = q(G/H) for every normal subloop H of G such that H < J(G).
(vii) 4(G) = 4(G[A(G)) = 4(G/J(G)).

Proof. For (i) and (ii), see [3, Theorem VIII.10.1] and [5]. The first part of (iii)
follows from (ii) by the trivial application of Zorn Lemma and the other may be
proved by induction on the nilpotency class of G. The rest is easy. [

If a € G, denote by o(a) the order of g, i.e. o(a) = |H l, where H is the subgroup
generated by a. The loop G is said to be a p-loop if o(x) is a power of p for every
x € G. By 1.1(ii), A(G) and G/C(G) are 3-loops. Further, if G is a p-loop and p * 3
then G is a group.

1.3. Proposition. If every element of G has a finite order then G is isomorphic
to the direct product of a 3-loop and p-groups for some primes p.

Proof. By l.l(ii), every element from G of order not divisible by 3 is contained

635



in C(G) and hence these elements form a subgroup H of C(G). On the other hand,
Hn K = {1} and G is generated by H U K, where K is the subloop of all elements
from G having a 3-power order. The rest is clear. []

1.4. Lemma. Let G be a 3-loop such that 4(G) = n. Then:
(i) B(G) = Soc (G) and D(G) = J(G).
(i) |G| = 3™ for some m = n, ¢(G|D(G)) = n and |G|J(G)| = 3".
(iii) J(G) is the subloop generated by A(G)u D(G).
(iv) If A(G) = D(G) then D(G) = J(G).
(v) If G = B(G) then D(G) = {1} and A(G) = J(G).
Proof. It follows easily from 1.2 and [3, Theorem VIIL.11.3]. [J

1.5. Lemma. Suppose that G is nilpotent. Then:
(i) H n C(G) = {1} for every non-trivial norlﬁallsubloop H.
(ii) G is subdirectly irreducible iff C(G) is so.

Proof. The assertion (i) can be proved by an easy induction on the nilpotency
class of G and (ii) follows immediately from (i). [

G/C(G)| = 27 and
[G[ > 81.
(ii) If G is not nilpotent of class at most two then |G[ = 729.

Proof. (i) If g(G/C(G)) < 2 then G is generated by C(G) U {a, b} for some a, be G
and so G is a group, a contradiction Thus g(G/C(G)) = 3 and |G/C(G)| = 27 by
2 2 and hence |G| = 54. If A(G) = C(G)
then |C(G)| = |4(G)| = >3 and |G| > 81. In the opposite case, G/C(G) is not as-
sociative, hence |G/C( G)I > 54 and |G] 108.

(ii) By 1.2(i) and 1.4, q(G) = 4 and |G/A(G)| = 81. Suppose that G is finite and
A(G)| = 8. Then |4(G)| = 3 and A(G) = C(G) by 1.5(i), a contradiction. Thus
AG)| 29 and |G| 2 729. [T

1.7. Lemma. If G is directly irreducible then C(G) n B(G) < J(G).

Proof. Let x € C(G) n B(G) and x ¢ J(G). Denote by H the subgroup generated
by x. Then |H| = 3 and Hn K = {1} for some maximal subloop K of G. Thus G
is isomorphic to H x K. [J

Let k be an integer and f a transformation of G. We shall say that f is k-central
if x* f(x) € C(G) for every xe G.

1.8. Lemma. Let k be an integer and k = 3i + j, je€{0,1,2}. Then:.

(i) The transformation x — x* of G is a (—j)-central endomorphism of G.
(i) If f is a k-central transformation of G then f is j-central.
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Proof. Use 1.1(ii). [

We denote by ¢ the identical mapping of G. Further, we put ¢g(x) = x !, v4(x) =
= x? for every x € G. Thus &g, v are endomorphisms of G. Moreover, if v; is an
automorphism, we denote by ng the inverse automorphism. Finally, if f is a trans-
formation of G, we define 7 by f(x) = x f(x™") = xf &(x).

1.9. Lemma. (i) If f is an i-central endomorphism and g is a j-central endo-
morphism then fg is a (-—ij)-central endomorphism and f + g is an (i + j)
central endomorphism, where (f + g) (x) = f(x) g(x) for all xe G.

(ii) If f is an i-central automorphism then ! is an i-central automorphism.

(iii) tg is a 2-central automorphism, ¢ is a 1-central automorphism and v is a 1-
central endomorphism of G.

(iv) If vg is an automorphism then g is a 1-central automorphism of G.

\v) If f is a 1-central endomorphism of G then f is a 1-central endomorphism of G.

Proof. (i) Let a,beG, x =f(a) ' a™ ', y=gla)y a7/, u=f(b)"' b7}, v=

= g(b)~' b™7. Then x, y, u, ve C(G) and we can write (f(a) g(a) . f(b) g(b)) (xyuv) =
=a"'a . b7 =a b7 . a7 Ib7T = (f(a) £(b) . g(a) g(b)) (xyuv). Hence f + g
is an endomorphism. Further, a'*/(f + g) (a) . xy = 1, however xy € C(G) and so
f+g is (i + j)central. Finally, g(a)'fg(a)e C(G) and a7 g(a’)™' e C(G),
so that a~/'f g(a) € C(G).
(ii) By 1.8(ii), we can assume that i € {0, 1, 2}. If i = 0 then G is a group and there
is nothing to prove. If i = 1 then a f(a) € C(G) and so f~'(a) a € C(G). Finally, if
i =2 then a™>a? f(a) € C(G), hence a~* f(a), af~*(a™'), a™' f~'(a) and a* f~'(a)
belong to C(G).

The rest easily follows. [J

1.10. Lemma. Let f be a 1-central endomorphism of G and put f(x) = x f(x) for
every x € G. Then:

(i) fis a O-central endomorphism of G and A(G) < Ker f.
(i) f(x) = x~* for every x e A(G).
Proof. By 1.9(0). O
A 1-central automorphism f of G is said to be complete if f is an automorphism.
1.11. Lemma. (i) & = vg and Vg = ¢
(ii) If vg is an automorphism then fig = pg and g, vg, U are complete.
Proof. Evident. [J

1.12. Lemma. Suppose that G is finite and let f be a 1-central automorphism of G.
Then:

(@) f is complete iff x + f(x) for every 1 #+ x € G.
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(ii) If G is subdirectly irreducible and not associative then f is complete.
(iii) If D(G) = A(G), G is directly irreducible and not associative then f is complete.

Proof. (i) is clear.

(ii) and (iii). By 1.3, G is a 3-loop. Suppose on the contrary that f is not complete.
Then f(x) = x for some 1 # x € G, hence x f(x) = x* € C(G) and x € C(G). Without
loss of generality, we can assume that x € B(C(G)). If (ii) holds then B(C(G)) = A(G),
hence f(x) = x~* by 1.10(ii) and x = 1, a contradiction. If (jii) holds then x € J(G)
by 1.7, however J(G) = A(G) by 1.4(iii) and hence x € A(G), a contradiction. []

An automorphism f of G is said to be simple if no non-trivial proper subloop of G
is invariant under f. Obviously, if f is a complete 1-central automorphism then f is
simple iff fis. Two automorphisms f and g of G are said to be equivalent if fh = hg
for some automorphism & of G, i.e. if f and g are conjugated in the automorphism
group of G.

1.13. Lemma. (i) Every automorphism equivalent to a 1-central automorphism
is 1-central.

(ii) Every automorphism equivalent to a simple automorphism is simple.

(iii) Let f, g be two complete 1-central automorphisms. Then f and g are equivalent
iff f and g are equivalent.

(iv) Let k be an integer such that f(x) = x* is an automorphism of G. Then f is the

only automorphism equivalent to f.

Proof. Obvious. [

1.14. Lemma. Let G be nilpotent of class at most two and let M = {al, N 3
n 2 3, be a generator set of G. Then A(G) is generated by N = {(a;, a;, ak)l 1<
Si<j<kzgnl

Proof. Let H be the subloop generated by N. Then H = A(G) = C(G) and H
is a normal subloop of G. Denote by f the natural homomorphism of G onto G/H.
Then K = {f(a,), ..., f(a,)} generates G/H and by 1.1(iv) x.yz = xy .z for all
x, y, z € K. By [3, Theorem VIL.4.1], G/H is a group and hence A(G) =< H. []

1.15. Corollary. (i) If G is generated by {a, b,c} then A(G) is generated by
(a, b, ¢).
(i) If q(G) < 3 then q(A(G)) < 1 and either G is a group or lA(G)| =3 O

1.16. Lemma. Let G be a non-associative 3-loop and q(G) = 3. Then G is directly
irreducible.

Proof. Suppose on the contrary that G = H x K, |K| > 1 and H is not a group.
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Since |A(G)| = 3, A(H) = A(G) < H and K is a group. Then H/C(H) = G(3)
and K has a factor isomorphic to G(3), K being a 3-group. Thus G has a factor iso-
morphic to G(3)*, a contradiction with ¢(G) = 3. O

2. SOME TECHNICAL RESULTS ON FINITE ABELIAN GROUPS

Let G = G(+) be a finite abelian p-group. A subset M = {x,,...,x,} of G is
said to be independent if for all integers Ay, ..., 4,, A;x{ + ... + 4,x, = O implies
Aixy = ... = Ax, = 0, ie. if the subgroup generated by M is the direct sum of the
cyclic subgroups Zx,, ..., Zx,. Further, M is said to be a basis of Gif 0 ¢ M and M
is an independent generator set of G. Obviously, G has at least one basis (the empty
set if G is trivial) and the number of elements of each basis is equal to g(G).

In the sequel, we shall assume that G is non-zero and N = {ay, ..., a,} is a basis
of G such that o(a,) < o(a,-,) £ ... < oa,). For each 0 # a € G, denote by e(a)
the exponent of a, @ = p“®~'a and by h(a) the p-height of a. Further, we choose
and fix an element de G with a = p"“d. Evidently, 0 % a € Soc (G), h(d) = 0,
e(a) = e(a) + h(a) and @ = @. Finally, we put 0 =0 =0 and § = {%X|xeS},

= {&| x e S} for every subset S of G.

I A

2.1. Lemma. A4 subset S of G is independent iff S is.

Proof. If S is independent then clearly S is independent. Conversely, suppose
that S is independent and proceed by induction on m = |S|. For m < 1 there is
nothing to prove. If m = 2, S = {xy, ..., x,,} and x € Zx, 0 (Zx, + ... + Zx,,) then
XeZx, nSoc(Zx, + ... + Zx,) = ZX, 0 (ZX, + ... + Z%,,), since {x5, ..., X,
is independent with respect to the induction hypothesw Thus X = 0 and x = 0 O

2.2. Corollary. A subset S of G is independent iff S is. [

2.3. Lemma. Let S = {x,,...,x,} be a generator set of G such that e(x,) <
< eay), ..., e(x,) < e(a,). Then S is a basis of G.

Proof. Put H = Zx, X ... X Zx, and define f: H —» G by f((yl,. o V) =
=y, + ... +y, Then f is a surjective homomorphism and |G| \HI however
|H| = p’ < p* =G|, where I =e(x;) + ... + ¢(x,) and k = e(al) + ... + ¢a,),
consequently |G| = |H |, hence f is injective and S is independent. Fmallv, it is easy

to see that 0¢ S. [

2.4. Lemma. The following conditions are equivalent for 0 % a €G:

(i) Za is a direct summand of G.
(ii) h(a — b) = O for every be G with e(b) < e(a).
(iii) Thereis1 < i < nsuchthat{ay,...,a,_;,a,0;,1, ...
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Proof. (i) = (ii). There is a subgroup H of G such that G = Za @ H. If ¢(b) <
< e(a) then b = Aa + h for some A€ Z, he H, and p divides A. If a — b € pG then
a — h e pG, hence a = paa for some o € Z, a contradiction.

(ii) = (iii) Leta = Aa; + ... + A,a,. Obviously, if e(a) < e(a;) then 4, is divisible
by p. It suffices to show that there is i such that e(a) = e(a;) and 4, is not divisible
by p, since then the set S = {ay, ..., a;_y, @, a;41, ..., a,} generates G and S is a basis
by 2.3. Suppose on the contrary that such i does not exist. Let j be the least with
e(a;) < e(a) (if such j does not exist then a — 0 = a € pG, a contradiction) and k
be the greatest with e(a,) = e(a;). Put m = j if e(a;) < e(a) and m = k + 1 other-
wise. Then, for b = 4,a,, + ... + 2,a, (b =0if m > n), ¢(b) < e(a) and a — be
€ pG, a contradiction.

(iii) = (i). This is trivial. [J

2.5. Lemma. Let S = {x,, ..., x,} be an independent subset of G such that 0 ¢ S
and, for each i, h(y) < h(x;) for all0 % y € Zx; + ... + Zx,. Then S is a basis of G.

Proof. Let f denote the natural homomorphism of G onto ¥ = G/pG. Obviously,
V is a vector space over F(p) and dim V = n. Let 4;%; + ... + 4,%, = pz. Denote
Bi=h(x;)and u = p"* 'z = A;x; + 20" Px, + .o + 4,07 Px,. If u & O then
h(x,) + 1 < h{u), a contradiction. Hence u = 0 and p divides 4,. Similarly we can
show that p divides 4,, ..., 4,. Now it is easy to see that f(§) is independent in V
and | f(S)| = n. Thus f(S) is a basis of ¥ and S generates G by 1.2(v). Finally, 0 ¢ $
and S is independent by 2.2. [

2.6. Lemma. Let 0 + K, €K, ... K,, =K, = Soc(G) and H + 0 be
subgroups of Soc (G). Then there is a basis S = {xy,...,x,} of Soc(G) with the
following two properties:

(i) For every 1 < i < m + 1 there is 1 £ j; < n such that {x, ..., x;} is a basis
of K;.
(ii) There is a subset of S which is a basis of H.

Proof. Soc (G) is a vector space over F(p) and dim Soc (G) = n. For k = 1, ...
...m + lput L, = K, n H. A basis Y, of K, is said to be admissible if it has proper-
ties (i) and (ii) with m + 1 replaced by k and H by L,. We are going to show by induc-
tion on k that K, has at least one admissible basis. For k = 1, the assertion is obvious.
Let k=1 and let {zl, e zj} be an admissible basis of K,. We can assume that k<m
and K; # K,,;. We have L, =L, ®P, PnK, =0 and K;,, = K, ®R,
where P < R. There are z;, 4, ..., z, such that T = {z;,,, ..., z,} is a basis of R and
a subset of T'is a basis of P. Obviously, {zy, ..., z,} is an admissible basis of K, ;. [J

2.7. Proposition. Let H = 0 be a subgroup of G such that at least one of the
following conditions is satisfied:
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(i) H is a direct summand of G.
(ii) pG < H.
(iii) H = Soc (G).

Then there are a basis {by, ..., b,} of G and integers Ay, ..., A, such that {A1by, ...
. )L,,b,,} is an independent generator set of H.

Proof. (i) is trivial.

(if) We shall proceed by induction on n. The assertion is obvious for n = 1. Now
let n > 2. If there is 0 % a € H such that G = Za @ R then H = Za ® (R n H),
PR =< Rn H, ¢(R) = n — 1 and we can use the induction hypothesis. In the oppo-
site case, suppose first that Soc (G) = pG. By induction on e(a) we shall show that
each a € H belongs to pG. If e(a) = 1 then a € Soc (G) = pG. Now let e(a) = 2. By
2.4, a — b e pG for some b € G with e(b) < e(a). Since pG = H, we have b e H. Thus
b e pG by the induction hypothesis and a € pG. Hence H = pG and {pay, ..., pa,}
is an independent generator set of H. Finally, let x € Soc(G)\ pG. With respect
to 2.4, Za is a direct summand of G fore ery 0 = ae Hn Zx. Hence Hn Zx = 0
and there is a subgroup L of G such that H < L and L is maximal with respect to
LnZx = 0. Clearly pL < H and it suffices to show that Zx + L= G. Suppose
on the contrary that a¢ Zx + L and put P= L+ Za. If be L, AeZ are such
that ¢ = b + Aa € Zx then Alae K + L, hence p divides 1 and Aae pG = H < L.
Thus ce Ln Zx = 0 and P n Zx = 0, a contradiction.

(iif) Let m = max h(x), 0 # x € Soc (G), K; = Soc (G) n p"*'17iG,i=1,...,m+ 1,
and let S = {x;,...,x,} be a basis of Soc(G) having properties (i), (ii) from 2.6.
For each i, if y e Zx; + ... + Zx, and h(y) > h(x;) then x, e K;\K;_, for some
j22 yeK;_yand K;_; 0 (Zx; + ... + Zx,) = 0. Thus § satisfies the hypothesis
of 2.5, hence S is a basis of G and we are through. []

3. TERNARY RINGS

Let G = G(+) be an abelian group. A mapping Tof G3> = G x G x G into G is
said to be triadditive if the mappings T(—, u, v), T(u, —, v), T(u, v, —) are endo-
morphisms of G. Some obvious observations concerning triadditive mappings are
formulated in the following five lemmas.

3.1. Lemma. Let T be a triadditive mapping of G* into G. Then:

(i) T(Ax, y, z) = T(x, 4y, z) = T(x, y, Az) = A T(x, y, z) for all x,y,z€ G and
every integer A.

(i) T(0,x, y) = T(x,0,y) = T(x, y,0) = 0 for all x, ye G. O

641



3.2. Lemma. Let M be a generator set of G and T, S triadditive mappings of
G*into G. Then T= S iff T| M*> = S| M*. [J

3.3. Lemma. Let M be a generator set of G and t a mapping of M? into G.
Then t can be extended to a triadditive mapping iff £4; t(a;, b, ¢)=ZA t(b, a,c) =
= %A, t(b, ¢, a;) = O whenever b, c, ay, ...,a,e M and 1y, ..., A, are integers with
Yla; =0. O

3.4. Lemma. Let M be an independent generator set of G and t be a mapping
of M3 into G. Then t can be extended to a triadditive mapping iff for all a, b, ce M
the number o(1(a, b, c)) divides the numbers o(a), o(b), o(c). O

3.5. Lemma. Suppose that G is a 3-group and M is a basis of G. Then every
mapping of M* into B(G) = Soc (G) can be extended to a triadditive mapping. [

Consider the following five conditions for a triadditive mapping T of G? into G:
(1) T(x, y,z) = —=T(y, x, z) forall x, y,z€G.
(2) 3T(x,y,z) =0 forall x,y,zeG.
(3) T(x,x,y) =0 forall x, yeG.
4) T(T(x, y, z), u, v) = T(u, T(x, y, z), v) = T(u, v, T(x, y, z)) = 0 for all

X, y,z,u,veG. )

(5) T(x, y,z) + T(y, z,x) + T(z,x,y) = 0 forall x,y,z€G.

Further, put T(x, y, z) = T(x, y, z) + T(y, z, x) + T(z, x, y).

3.6. Lemma. Let T be a triadditive mapping of G* into G. Then:

(i) Tis a triadditive mapping.

(i) T(x, y, z) = T(y, z, x) = T(z, x, ) for all x,y,z€G.

(iii) If T satisfies (1) then T satisfies (1), T(x, x, y) = T(x, x, y) and 2 T(x, x, y) = 0

for all x, yeG.

(iv) If T satisfies (2) then T satisfies (2) and (5)

(v) If T satisfies (1) and (2) then T satisfies (3).

(vi) If T satisfies (3) then T satisfies (1).
(vii) If T satisfies (3) then T(x, x, y) = T(x, y, x) = T(y, x, x) = 0.

Proof. Evident. []

3.7. Lemma. Let T be a triadditive mapping of G* into G and M a generator
set of G. Then:
(i) T satisfies (5) iff T(a, b, ¢) = 0 for all a, b, ce M.
(ii) T satisfies (1) iff T(a, b, ¢) = —T(b, a, c) for all a, b, ce M.
(iii) T satisfies (2) iff T(M?) = B(G).
(iv) If T satisfies (2) and T(M?) = D(G) then T satisfies (4).

Proof. Evident (for (i) and (ii) use 3.2). [J
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3.8. Lemma. Let T be a triadditive mapping of G* into G and M a generator
set of G. Then:
(i) T= 0 provided G is cyclic and T satisfies (3).
(i) T satisfies (5) provided T satisfies (3) and T(a, b, ¢) = O for any three pairwise
different elements a, b, ce M.
(iii) T satisfies (5) provided T satisfies (3) and q(G) < 2.

Proof. Use 3.6 and 3.7. [

3.9. Proposition. Let M be a basis of a 3-group G and t a mapping of M?>
into B(G) such that t(a, b, ¢) = —1(b, a, c) for all a, b, c € M. Then t can be extended
to a triadditive mapping T of G* into G such that T satisfies (1) and (2). Moreover,
T satisfies (4) provided M?) < D(G) and T satisfies (5) provided t(a, b, c) +
+ 1(b, ¢, a) + (c, a, b) = O for any three pairwise different elements a, b, ce M.

Proof. Apply 3.5, 3.7 and 3.8. []

By a ternary ring we mean an algebra G(+, T), where G(+) is an abelian group
and T is a triadditive mapping of G* into G. We put An (T) = {ae G| T(a, x, y) =
= T(x, a, y) = T(x, y,a) = 0 for all x, ye G}. Clearly, An(T) is an ideal of the
ternary ring.

Let G(+, T) and H(+, S) be ternary rings. A mapping f of G into H is said to be
a weak homomorphism if f(x + y + T(x, y, x — y)) = f(x) + f(¥) + S(fx), /(»),
f(x) = f(»)) for all x, y e G. Obviously, every homomorphism of ternary rings is
a weak homomorphism.

3.10. Lemma. Let [ : G(+, T) —» H(+, S) be a weak homomorphism of ternary
rings. Then:

() f(0) = 0 and f(2x) = 2 f(x) for every x€G.

(i) If T and S satisfy (3) then f(Ax) = A f(x) for every x € G and every integer .
Moreover, if f(Im T) = An (S) and both T and S satisfy (4) then:
(i) f(x + y + T(x, y,x — »)) = f(x + y) + [(T(x, y, x — y)) for all x, yeG.
(iv) f(x + y) = f(x) = f(») € An(S) for all x,yeG.

(V) S(f(x + y)u,v) = S(f(x) + f(»), u,v) for all x, ye G, u,ve H.
(vi) f is a homomorphism of ternary rings iff f(T(x, y, z)) = S(f(x), f(), f(2))
for all x,y, z € G.

Proof. Only (ii) is not immediate. For 2 = 1, the proof is straitghtforward by
induction on 1 and we also have f((2 —1)x)= (1 —1)f(x) =f(Ax — x) =
= 1f(x) + f(=x) + A((A — 1) S; + S,), where S; = S(f(x),/(—x),/(x)), S, =
= S(f(x), f(=x), f(x) = f(—=x)). Thus i((2 —1)S; + S;) = —f(x) — f(—x) and
taking A =1, 2,3, we get S, = 2S; + 25, = 6S; + 3S,. Thus S, =0 andf(—x) =
= —f(x). The rest is clear. [J
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4. TERNARY CONSTRUCTIONS OF COMMUTATIVE MOUFANG LOOPS

Throughout this section, let G(+, T) be a ternary ring satisfying (1), (2) and (4).
Weputxoy =x+y+ T(x, y,x — y) forall x, ye G.

4.1. Proposition. (i) G(o) is a commutative Moufang loop nilpotent of class at
most two.

(i) G(o) is a group iff T satisfies (5).

(iii) G(+) and G(o) have the same neutral element.
(ivyia=a+..4+a=aoc...0a= a* for every a e G and every integer ).

(v) Every element from G has the same order in G(+) and in G(o).

(vi) Foralla,b,ceG,(a, b, c) = T(a, b, c).

(vii) A(G(o)) is just the subgroup of G(+) generated by Im T.
(viii) €(G(o)) = An(T) and A(G(-)) = An(T) = C(G(5)).

(ix) B(G(-)) = B(G(+)) and D(G(s)) = D(G(+)) = An (T).

Proof. The proof needs just a tedious checking. [

4.2. Lemma. (i) If H < An (T) then H is a subgroup iff it is a subloop. In this
case, H(o) is a normal subloop and the corresponding congruences of G(+ ) and G(o)
coincide.

(i) If Im T < H then H is a subgroup iff it is a subloop. In this case, H(o) is
a normal and G(-)[H = G(+)/H.

(iii) If M is a generator set of G(+) and N is a subset of An(T) such that Im T
is contained in the subgroup generated by N then M U N is a generator set
of G(o).

(iv) If G(o) is finitely generated and Im T < A(G()) then every generator set of
G(+) generates G(o).

Proof. (i) This is clear, since x o h = x + h forall xe G, he H.
(i) If H is a subloop and a,be H then ¢ = bo(T(a,b,a — b))™' =b —
— T(a,b,a — b)e H and a + b = a . ce H. Now suppose that H is a subgroup
and denote by r the corresponding congruence of G(+). Then clearly H is a subloop,
r is a congruence of G(o) and (x + y) r(x o y) forall x, ye G.
(iii) This is an easy consequence of (i) and (ii).
(iv) Use (i) and 1.2(iv). []

4.3. Proposition. The loop G(s) is finitely generated iff the ternary ring G(+, T)
is finitely generated.

Proof. First, let M be a finite generator set of G(+, T) and N = T(M?). Denote
by K the subgroup generated by N. Since N = An (T), K is an ideal of G(+, T)
and it is easy to check that Im T < K. With respect to 4.2(iii), this implies that G(o)

644



is generated by M U N. Conversely, let M be a finite generator set of G(o) and H
be the subring generated by M. Then H is a subloop of G(o) andso H = G. [

In the remaining part of this section, we shall assume that G(+) is a non-zero
3-group and n = ¢(G(+)). A basis {ay, ..., a,} of G(+) is said to be T-admissible
(T-special) if there are integers Ay, ..., 4, such that {i,a,, ..., 4,a,} is a generator set
of An (T) (A(G(<))). Such a basis always exists by 2.7.

4.4. Lemma. Every T-admissible basis of G(+) is a generator set of G(o). In
particular, 4(G(-)) < n = q(G(+)).

Proof. If S is a T-admissible basis of G(+), denote by H the subloop generated
by S. By 4.1(iv), Im T < An (T) < H and 4.2(ii) yields the result. [J

4.5. Lemma. Suppose that T satisfies (5) and let M = {ay, ..., a,} be a T-admis-
sible basis of G(+). Then G(o) is an abelian group, M is a basis of G(o) and there
is an isomorphism f of G(+) onto G(5) such that f(x) = x for every xe M U An (T)
and f(T(u, v, w)) = T(u, v, w) = T(f(u), f(v), f(w)) for all u,v,weG.

Proof. By 4.1(ii), G(o) is an abelian group and by 4.4, M generates G(o). With
respect to 4.1(iv), the cyclic subgroups of G(+) and G(o) coincide and g : H — G(o),
h:H — G(+), where H = Za; x ... x Za,, defined by g({xy, ..., X,») = X;0...
..ox, and h({xy,...,x,») = x; + ... + x,, are surjective homomorphisms. How-
ever, M is a basis of G(+), hence |H| = |G| and g, h, f = gh™" are isomorphisms.
Obviously, f (x) = x for every x € M. Since M is T-admissible and xoy = x + y
for all x, ye An(T), f(z) = z for every ze M U An (T). Finally, denote by L the
set of all xe G with x — f(x)e An(T). Then M = Land x + y — f(x + y) =
=x—f(x) +y - f(y) = T(f(x), f/(»). /(x) — f(¥)) € An(T) for all x, y € L. Thus
L= G and T(f(u), f(v), f(w)) = T(u, v, w) = f(T(u, v, w)) for all u,v,weG. [J

4.6. Lemma. Let S be a triadditive mapping of G into G such that S satisfies
(1), (2), T— S satisfies (5) and Imn TuIm S = An (T) 0 An(S). Then there is
a weak isomorphism f of G(+, S) onto G(+, T) and consequently G(o) is isomorphic
to G(x), where G(x) is the commutative Moufang loop corresponding to G(+, S).

Proof. Obviously, T — S satisfies (1), (2), (4) and (5). By 4.5, there are a generator
set M of G(+) and a permutation f of G such that f(x) = x for every xe Im Ty
vImS UM and f(u + v) = f(u) + f(v) + T(f(), f(v), f(u) —f(v)) = S(f(u),
f(v), f(u) = f(v)) for all u, v e G. Proceeding similarly as in the proof of 4.5, we can
ShOW that f(T(x: Vs Z)) = T(x’ Y, Z) = T(f(x)s f(y)! f(Z)) and f(S(X, Vs Z)) =
= S(x,y,z) = S(f(x), /(»), f(z)) for all x,y,ze G. Finally, we have f(u + v +
+ S(u, v,u — v)) = f(u + ) + (S, v,u = v)) = f(u) + f(v) + T(u, v, u — v) —
— S(u, v, u — v) + S, v,u — v) = f(u) + f(v) + T(f(u), f(v). f(u) — f(v)). O
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4.7. Lemma. If Im T < A(G(c)) n D(G(+)) then a subset M of G generates
G(+) iff it generates G(o).

Proof. By 4.2(ii), G(-)/4(G(-)) = G(+)/A(G(-)) and G(-)/D(G(+)) =
= G(+)/D(G(+)). Now it suffices to use 1.4(i) and 1.2(iv). O

4.8. Lemma. (i) g(G(-)) = q(G(+)/A(G(-))).
(ii) If A(G(c)) = D(G(s)) then g(G(s)) = q(G(+)).

Proof. (i) Put H = G/r, where r is the congruence of both G(+) and G(o) cor-
responding to A(G(s)) and let f : G — H be the natural projection. Define S : H*> - H
by S(f(x), f(»), f(2)) = f(T(x, y, z)) for all x, y, ze G. It is easy to check that S is
a triadditive mapping satisfying (1), (2), (4) and (5) and xoy = x + y + S(x, y,
x — y) for all x, ye H. Now, by 4.5 and 1.2(vii), q(H(+)) = q(H(-)) = q(G(-)).
(i) By 1.2(iv) and 1.4(i) for G(+), q(G(+)[A(G(-))) = q(G(+)). O

4.9. Proposition. Let M = {ay, ..., a,} be a T-admissible basis of G(+). Then
there is a triadditive mapping S of G* into G such that the following conditions
hold:
(i) S satisfies (1), (2) and (4), T — S satisfies (1), (2), (4), (5) and InTuIm S =
< An(T) < An(S).

(ii) G(c) is isomorphic to G(*), where G(*) is the commutative Moufang loop
corresponding to G(+, S).

(i) If S(ai, aj, a;) + O then S(a;, aj, a;) = S(a;, a;, a;) and either i <j <k or
j<i<k

(iv) Im S = A(G(G(*)) and A(G(*)) is just the subgroup generated by Im S.

(v) Every generator set of G(+) generates G(*).

Proof. Define a mapping r:M>— B(G(+)) as follows: r(a; aj, a;) =
= —T(a;, &, a;) — T(ay, a;, a;) provided either i <j <k or j<i<k, and
r(a,-, a; a) = T(ai, aj, a,‘) otherwise. According to 3.9, r can be extended to a triad-
ditive mapping R of G* into G satisfying (1), (2) and (5). Since M is a T-admissible
basis, An (T) = An(R). Put S = T — R. Then S is a triadditive mapping satisfying
(1), (2) and (4), InT< UImS = An(T) < An(S) and R=T— S. By 4.,
G(o) is isomorphic to G(*). The rest follows easily from 4.1 and 4.2(iv). O

4.10. Lemma. Suppose that T does not satisfy (5), q(G(-)) = 3 and q(G(+)) = 4.
Then q(G(+)) = 4 and there is a T-special basis {a, b, c, d} of G(+) such that
o(a) = 3 and A(G(.)) = Za.

Proof. Let {ay, ..., a,} be a T-special basis. Then n = 4 and there are integers
Aty .. Ay such that {i,a,, ..., 4,a,} generates A(G(o)). If A(G(c)) = D(G(s)) then
4(G(+)) = 3 by 4.8(ii), a contradiction. Therefore 4(G(.)) ¢ D(G(-)) and we can
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assume that 2,a, ¢ D(G(s)). Then A,a, * 0, 1, is not divisible by 3 and a, € A(G()).
By 1.15, A(G(s)) = Za,. Further, A(G(-)) is a direct summand of G(+) and
q(G(“}')I/A(G(o))) = 3 by 4.8(i). Thus q(G(+)) =4 O

4.11. Lemma. Suppose that T does not satisfy (5), Im T < A(G(-)) and {a, b, ¢, d}
is a basis of G(+) such that o(a) = 3 and A(G(-)) = Za. Then {b, c, d} generates
G(o) and either a = T(b, ¢, d) or a = T(c, b, d).

Proof. By 4.2(iv), {a, b, ¢, d} generates G(o). Since a € An(T) = An(T), by 3.9
T(b, ¢, d) = —T(c, b, d) + 0. However, Im T = A(G(c)), hence Im T < 4(G(-)) and
either a = (b, ¢, d) or a = (¢, b, d). [J

5. THE LOOP L(n, m, k, 1)

Throughout this section, let G(+) = G(3) x G(3") x G(3™) x G(3"), where 1 <
Sn=<m=k. Put a=<1,0,0,0), b =<0,1,0,0), ¢ =<0,0,1,0> and d =
=0,0,0,1). Then M = {a, b, ¢, d} is a basis of G(+).

Define a mapping t, : M®> - B(G(+)) by t,(b,c,d) = a, t,(c, b,d) = 2a and
t(x, y, z) = 0 otherwise. By 3.9, ¢, can be extended to a triadditive mapping T}
of G* into G satisfying (1) and (2). Clearly, Im T; < Za and it is easy to see that T}
satisfies (4). Hence G(o) is a commutative Moufang loop nilpotent of class at most two,
where x oy = x + y + Ty(x, y, x — y) for all x, y e G. We shall use the notation
G(o) = L(n, m, k, 1), L(1) = L(1, 1, 1, 1) and L(3) = L(1, 1,2, 1).

5.1. Proposition. (i) G(o) is a commutative Moufang loop nilpotent of class 2.
(i) AG(:)) =ImT, =ImT, = Za and C(G()) = An(T,) =Za ® Z3b ®
D Z3c¢®Z3d.
(ii) g(G(o)) = 3, {b, ¢, d} is a generator set of G(o), G(o) is directly irreducible,
and G(o) is subdirectly irreducible iff n = m = k = 1.

(iv) G(o) is given up to isomorphism (as a commutative Moufang loop) by three

. k
generators x, y, z and relations x>" = y3" = 23 = 1.

Proof. The assertions (i) and (ii) easily follow from 4.1. By 4.11 and L.1(iv),
{a, ¢, d} generates G(o) and g(G(-)) = 3. By 1.16, G(o) is directly irreducible and by
1.5(ii), G(o) is subdirectly irreducible iff n = m = k = 1. Finally, let Q be a com-
mutative Moufang loop given by three generators x, y, z and relations x*" = y*" =
= z* = 1. By 1.15, |4(Q)| £ 3. On the other hand, clearly |Q/4(Q)| < 3"*™"* and
hence |Q| < 3"*"**¥*! = |G|. By 4.11, G(-) is a homomorphic image of Q and thus
G(o) is isomorphic to Q. []

5.2. Remark. Each u € G can be expressed as u = ) u;i. One may easily check
ieM
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that for all x,y,ze G, T(x, y, z) = (x). — X)) z4a. Hence xoy = (x, + y, +
+ (xbyc - xcyb) (xd - yd)) a + (xb + J’b) b+ (xc + yc) ¢+ (xd + Yd) d.

5.3. Proposition. Let S be a triadditive mapping of G* into G satisfying (1), (2)
and (4), but not (5). Denote by G(x) the corresponding commutative Moufang loop.
If 4(G(x)) = 3 then G(x) is isomorphic to G(o) = L(n, m, k, 1).

Proof. According to 4.9, we can assume that Im S = A(G(x)). Now the result
immediately follows from 4.10, 4.11 and 5.1(iv). [

In the rest of this section, we shall assume that n = m = k = 1, i.e. G(o) = L(1),
and we put ¢ = 15, & = £g(o)-

5.4. Lemma. Let {a, b, ¢, d’} be a basis of G(+). Then there is an automorphism
h of L(1) such that h(a) = a, h(d) = d’ and either h(b) = b', h(c) = ¢' or h(b) = ¢,
h(c) = b'. ‘

Proof. By 4.11, {b’, ¢/, d'} generates G(o) and we can suppose T(b', ¢, d’) = a,
the other case being similar. With respect to 5.1(iv), there is a homomorphism h of
G(-) onto G(o) with h(b) = b’, h(c) = ¢’ and h(d) = d. Finally, h(a) = h((b, c, d)) =
= (h(b), h(c), h(d)) = (b, ¢',d’) = a. 3

5.5. Lemma. Let f, g be 1-central automorphisms of L(1). Then f and g are
equivalent iff either f = gorf ¢ * g.

Proof. Suppose that f # ¢+ g and put p(x) = x + f(x), q(x) = x + g(x)
for every x € G. Then p and ¢ map G into C(G(-)) = A(G(c)) = Za. Further,
) € An (T), T(x, /(=) x — J(3) = T(x = p(x) S — F(2) =~ T(/(3). 1),
x — f(x)) = 0 and p(x) = x o f(x). Similarly g(x) = x - g(x) and by 1.9(i), p and g
are endomorphisms of G(o). Moreover, since f # & # ¢, Im p = A(G(c)) = Im q.
Put H = Ker p and K = Ker g. Since Im p = Im g is a three-element group,
A(G(-)) € H n K and H, K are maximal subloops of G(), however Im T < H n K
and so H, K are maximal subgroups of G(+) as well. The group G(+) is a vector
space of dimension 4 over F(3) and there are bases {a, by, ¢y, dy}, {a, b,, ¢;. d,} of
G(+) such that {a, by, ¢} is a basis of H(+) and {a, b,, ¢} a basis of K(+). If
p(d,) * q(d,) then p(d,) = q(—d,) (we have p(d,), q(d,) € {a, 2a}) and hence we
can assume that p(d,) = g(d,). By 5.4, there is an automorphism h of G(s) with
h(a) = a, h(b,) = by, h(c;) = ¢, and h(d;) = d,. We have h p(a) = 0 = q h(a),
hp(by) = 0 = q h(by), hp(c;) =0=qh(c;) and h p(d;) = p(d,) = q(d,) =
= g h(d,). Since {by, ¢,, d} generates G(o), hp = gh. Finally, for each xe G,
f(x) = p(x) = x = p(x) o (—x) (since p(x)e An(T)), g(x) = q(x) . (—x) and
hf(x) = h p(x) o h(—x) = q h(x) o h(—x) = g h(x), so that f and g are equivalent.
The converse implication is obvious. []

Define a transformation ¢ of G by ¢(x) = (X, — X,) @ — Xpb — x.c — x,d.
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Using 5.2, it is easy to check that ¢ is a 1-central automorphism of G(o). Moreover,
#(x) = x — o(x) = (—x, — x,) a — xb — x.c — x,d for all xe G and ¢ is a I-
central automorphism.

5.6. Corollary. (i) ¢ and ¢ are complete 1-central automorphisms of L(1).

(i) ¢ and @ are not equivalent.
(iii) Every 1-central automorphism of L(l) is equivalent either to € or to ¢. []

6. THE LOOPS L(n, m, k, 2), L(n, m, k, 3), L(n, m, k, 4)

Throughout this section, let G(+) = G(3") x G(3") x G(3*), where 1 <n <
<m<k Put a=<1,0,05 b=<0,1,0), c=<0,0,1>. Then M = {a, b, c} is
a basis of G(+).

If n = 2, define a mapping ¢, from M?* into B(G(+)) as follows: t,(a, b, ¢) =
= 3""1a, ty(b, a, ¢) = 3"~ . 2a and t,(x, y, z) = 0 otherwise.

If m = 2, define 15 : M® — B(G(+)) by t3(a, b, ¢) = 3" 'b, t3(b, a,c) = 3" ' .2b
and f5(x, y, z) = 0 otherwise.

Finally, if k = 2, define 1, : M*> — B(G(+)) by ty(a, b, c) = 3*"'c, 14(b, a, c) =
= 371 . 2¢c and 1,(x, y, z) = 0 otherwise.

According to 3.9, these mappings can be extended to triadditive mappings T,, T,
T, satisfying (1), (2) and (4). The corresponding commutative Moufang loops we
denote by L(n, m, k,2), L(n, m, k, 3) and L(n, m, k, 4), respectively. We also put
L(2) = L(1,1,2,4), L(4) = (1, 1,3, 4) and L(5) = L(1, 2, 2, 4).

6.1. Proposition. Let n = 2 and G(o) = L(n, m, k, 2). Then:

(i) G(s) is a commutative Moufang loop nilpotent of class 2.

(i) AGC) =ImT, =ImT, = Z3 'a and C(G(-)) = D(G(s)) = An (T3) =
=Z3a®Z3b® Z3c.

(iii) q(G(s)) = 3, {a, b, ¢} generates G(s), G(o) is directly irreducible and G(s) is
not subdirectly irreducible.

(iv) G(o) is given up to isomorphism by three generators X, y,z and relations

3n’_ 3m 3k ) _ .3nmt
=y =z =1, (x,p,2) = x>

Proof. Similar to that of 5.1. [

6.2. Proposition. Let m = 2 and G(s) = L(n, m, k, 3). Then:
(i) G(o) is a commutative Moufang loop nilpotent of class 2.
(i) AG() =ImT; =Im Ty = Z3" 'b and C(G()) = D(G(-)) = An (T3) =
=Z3a®Z3b® Z3c.
(i) ¢(G(o)) = 3,{a, b, ¢} generates G(), G(o) is directly irreducible and G(s) is not
subdirectly irreducible.
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(iv) G(c) is given up to isomorphism by three generators x,y,z and relations

3n 3m 3k 3m-1
M=y =" =1, (x,y,2) = .

Proof. Similar to that of 6.1. []

6.3. Proposition. Let k = 2 and G(s) = L(n, m, k, 4). Then:
(i) G() is a commutative Moufang loop nilpotent of class 2.
(i) AG()) =ImT, =ImT, = Z3 ¢ and C(G(c)) = D(G()) = An (Ty) =
=Z3a®Z3b® Z3c.
(iii) ¢(G(s)) = 3, {a, b, ¢} generates G(), G(s) is directly irreducible and G(s) is
subdirectly irreducible iff n = m = 1.
(iv) G(o) is given up to isomorphism by three generators x, y,z and relations

3n 3m 3k-1
z .

x =Yy =Z3k=1,(x,)’,2)=

Proof. Similar to that of 6.1. [J

6.4. Remark. It is easy to see that for all x, y,ze G, Ty(x, y, z) = 3" }(x,p, —
- xbya) zZ.a, T3(3C, ¥, Z) = 3m_1(xa))b - xbya) Zcb and T4(xa Vs Z) = 3k_1(xayb -
— XpVa) ZC.

6.5. Proposition. Let S be a triadditive mapping of G* into G satisfying (1), (2)
and (4), but not (5). Then the corresponding commutative Moufang loop G(x) is
isomorphic to at least one of the loops L(n, m, k, 2), L(n, m, k, 3) and L(n, m, k, 4).

Proof. We can assume that Im S = A(G(x)) and {x, y, z} is a basis of G(+)
such that o(x) = 3", o(y) = 3", o(z) = 3" and {Jx, gy, oz} is an independent genera-
tor set of A(G(*)). However, 4(G(x)) is cyclic and non-zero, hence exactly one of Ax,
0y, 6z is non-zero and we can assume Ax + 0, gy = oz = 0, the other cases being
similar. Then A(G(x)) = ZAx, however, 4(G(x)) = B(G(+)) and thus A(G(x)) =
= Z 3" 'x. Since S does not satisfy (5), by 3.6(ii) and 3.8(ii) S(x, y, z) + 0 and
n = 2 (otherwise x € A(G(x)) < An(S) = An(S)). Hence we have in G(x) x*" =
=" = (=y)" = 2 = Oandeither (x, y, z) = S(x, y, z) = x*" " or (x, —y, z) =
= —S(x, y,z) = x"~'. In both cases, G(*) is a homomorphic image of and thus
isomorphic to L(n, m, k,2). [

6.6. Lemma, Let | En=<m=k, 1=n<<m k' and 1 £i,j £4. Then:
(i) If j = 2 then L(n, m, k, 1) is not isomorphic to L(n', m', k', j).
(ii) If L(n, m, k, i) is isomorphic to L(n’, m’, k', j) then n = n’, m = m’, k = k'.
(iii) L(n, m, k, 2) is isomorphic to L(n', m', k', 3) iff n = m = n’" = m" and k = k'
(iv) L(n, m, k,2) is isomorphic to L(n’,m', k', 4) iff n=m=k=n"=m' =k’
(v) L(n, m, k, 3) is isomorphic to L(n', m', k', 4) iff n = n’ and m = k = m’' = k'.
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Proof. Denote G(o) = L(n, m, k, i), H(c) = L(n’, m’, k', j) and f be an iso-
morphism of G(-) onto H().

(i) There is 0 = x € A(H(-)) » D(H(-)) and hence f~'(x) € A(G(-)) 0 D(G(-)) = 0,
a contradiction.

(ii) If i = j = 1 then f induces an isomorphism of G(-)/A(G(s)) onto H()[A(H(s)),
however G()/A(G(=)) = G(+)/A(G(s)) by 4.2(ii). If i, j = 2 then N = {f(a), f(b),
f(c)} generates H(-) and by 4.7 N generates H(+). Since o(f(a)) = n, o(f(b)) = m,
o(f(c)) =k and n + m + k=n"+ m' + k', the sum H(+) = Z f(a) + Zf(b) +
+ Z f(c) is necessarily direct and N is a basis of H(+).

(iif) If i =3 and j = 2 then 0 % (f(a), f(b), f(c)) = 3"~ f(b) € A(H(-)) and hence
m £ n’ < m’ = m. The converse implication follows easily from 6.2(iv).

(iv) and (v). Similar to (iii). [

In the rest of this section, we shall assume that n = m = 1, k = 2 and we put
G(s) = L(1,1,2,4) = L(2), T= T,. Define a transformation ¢ of G by y(x) =
= —x,a — X, + (3x, — x.) c. It is easy to see that y is a 1-central automorphism
of G(s). Moreover, Y(x) = —x,a — x,b + (—x, — 3x,) ¢ for each xeG, ¥ is
a l-central automorphism and Ker (¢ + ¥) = Zb ® Zc, where (¢ + ¥)(x) =
= x o Y(x).

6.7. Lemma. Let f be a 1-central automorphism of G(s) = L(2). Then f is equi-
valent to  iff B(G(-)) & Ker (¢ + f).

Proof. First, let hyy = fh for some automorphism h of G(o). Then h(Ker (v + ¥)) =
< Ker (v + f) and so h(Zb @ Zc) < Ker (¢ + f) = H. In particular, the subloop
H(5) contains an element d of order 9. If B(G(s)) < H then a, b € H, however, as
one may easily check, {a, b, d} is a generator set of G(), hence H = G, f = ¢ and
¥ = ¢, a contradiction. Conversely, assume that there is a’ e B(G(c))\ H. Then
f#¢& Im(c+ f) = C(G(s)) = Z 3¢ and H(o) is a maximal subloop of G(s). Since
Im T < H, H(+) is a maximal subgroup of G(+) and hence G(+) = Za’ & H(+).
It is easy to see that there is a generator set {a’, b’, ¢’} of G(+) such that o(a’) =
=o0o(b)=3, ofc)=9, 3¢ =3c and H(+)=Zb' @ Z¢'. Clearly, {a’, ', ¢}
generates G(o) and T(a’, b’, ¢') & 0 by 3.9. We must distinguish the following cases:

(i) a'of(a’) = 3¢ = 3¢’ = T(a', b', ¢’). By 6.3(iv), there is an automorphism h
of G(o) with h(a) = a’, h(b) = b’, h(c) = ¢’. Now h(a - y(a)) = h(3¢c) =3¢’ = 3c =
= a’ o f(a') = h(a) o f h(a), h(b o Y(b)) =0= b’ of(b’)'= h(b) o f h(b), h(c - Y(c))=
=0 = h(c) o f h(c). Thus h(¢ + ¥) = (¢ + f) h and hy = fh.

(ii) a’' o f(a') = 6c and T(a', b’, ¢’) = 3c. Then (—a’)of(—a’) =3¢, T(—a',
—b', ¢’) = 3¢’ and we can proceed similarly as in (i).

(iii) @’ o f(a’) = 3¢ and T(a’, b’, ¢’) = 6¢. Then T(a’, —b’, ¢') = 3¢’
(iv) a'of(a’) = 6c = T(a', b', ¢'). Then (—a’) o f(—a’) = 3¢ = T(—a’, b',¢'). O
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6.8. Proposition. (i) ¢, v, u and Y are complete 1-central automorphisms of L(2).
(ii) The automorphisms ¢, v, p and  are pairwise non-equivalent.
(ili) Every 1-central automorphism of L(2) is equivalent to exactly one of the auto-
morphisms &, v, p, .

Proof. Only (iii) is not immediate. If f is not equivalent to y then, by 6.7, B(G(-)) =
< Ker (v + f) and f(a) = &(a) = v(a) = u(a), f(b) = &(b) = v(b) = u(b). Since
cof(c)e Z3e, f(c) + ce Z 3c. Thus either f(c) = —c = &(c) and f = ¢, or f(c) =
=2c=v(c)and f =vorf(c)=5c=p(c)and f = p. O

7. THE LOOP L(6)

In this section, let G(+) = G(3) x G(3) x G(3) x G(9). Put a =<1,0,0,0),
b=1<0,1,0,0>, ¢=<0,0,1,0>, d =<0,0,0,1> and M = {a, b, c, d}. Further,
define 1:M? > B(G(+)) by #(a,b,c)=3d, b,a,c)=6d and x,y,z)=0
otherwise. Then ¢ can be extended to a triadditive mapping T satisfying (1), (2), (4)
and we denote by L(6) the corresponding commutative Moufang loop.

7.1. Proposition. Put G(o) = L(6). Then:

(i) G(o) is a commutative Moufang loop nilpotent of class 2.
(i) A(G(s)) = D(G(s)) =Im T=1Im T = Z 3d and C(G(s)) = An(T) = Zd.
(i) 9(G(o)) = 4, {a, b, c,d} is a generator set of G(s) and G(o) is subdirectly
irreducible.
(iv) G(c) is given up to isomorphism by four generators x, y, z, u and relations

P=y===u=1 (x,p2)=uxyu)=(xzu =(zu =1

Proof. Similar to that of 6.1. [

7.2. Lemma. Let H(+) be a 3-group, S a triadditive mapping of H? into H
satisfying (1), (2) and (4), and M = {a, b, c,d} UN a basis of H(+) such that
ImS < A(H(x)) = Zu, o(u) =3, N< An(S) and ueZ3a®Z3b@Z3c®
@ Z3d @Y, Zx. Then C(H(x)) £ A(H(x)).

xeN

Proof. Obviously, Im S = Zu and there are o, f, y, 6 € F(3) such that S(a, b, ¢) =
= au, S(a, b, d) = pu, S(a, ¢, d) = yu and §(b, ¢, d) = Su. Consider the following
system of linear equations over F(3): ax + év = 0, —ay + y =0, fx — u = 0,
—By —yu =0, yx + 6y = 0, au + fv = 0. It is easy to check that this system has
a non-trivial solution in F(3), say =, ¢, o, 7. Then, for w = na + ¢b + oc¢ + d,
S(w,x,y) =0 for all x,yeM. Hence we An(S) = C(H(x)) and, obviously,
wé¢Zu. [

7.3. Proposition. Let S be a triadditive mapping of G* into G satisfying (1), (2)
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and (4), but not (5). If the corresponding commutative Moufang loop G(x) is directly
irreducible and ¢(G()) = 4 then G(x) is isomorphic to L(6).

Proof. By 4.9, we can suppose that Im S < A(G(x)). Since g(G(x)) = 4,
a(G(*)[J(G(*))) = 4 and |G(x)/J(G(x))| = 81. Consequently |J(G(x))| =3 and
A(G(%)) = J(G(x)) = D(G(x)) = Z3d. By 7.2, A(G(x)) £ C(G(x)). Since G(x) is
directly irreducible, by 1.7 C(G(*)) n B(G(x)) < J(G(*)) = A(G(*)), hence there is
we C(G(x)) with o(w) =9, however, |G(x(/C(G(+))| = 27 and so C(G(x)) = Zw.
Clearly, {a, b, c, w} is a basis of G(+), hence a generator set of G(x), we An (S) and
S(a, b, ¢) + 0 (otherwise G(x) would be a group by 3.9). Thus S(a, b, ¢) € {3d, 6d} =
= {3w, 6w} and we can use 7.1(iv). [

7.4. Proposition. Let H(+) = G(3) x G(3) x G(3) x G(3) x G(3) and the S be
a triadditive mapping of H* into H satisfying (1), (2) and (4). Then the correspon-
ding commutative Moufang loop H(x) is not directly irreducible.

Proof. With respect to 4.9, g(H(*)) < 5 and we can assume that Im S < A(H(x)).
If g(H(x)) = 5 then by 1.2 q(K(*)) = 5, where K(x) = H(*)[J(H()), hence by 1.4
|K| = 243 = |H|, A(H()) < J(H(+)) = 0 and H(*) is a group. If g(H(x)) < 3 then,
with respect to 4.10, g(H(*)) < 2 and H(x) is a group again. However, in this case
H(x) is clearly isomorphic to H(+). Now suppose that H(x) is not associative. Then
q(H()) = 4, |K| = 81 and |J(H(x))| = 3. Consequently |A(H(x))| = 3 and there is
a basis {a, b, ¢, d, e} of H(+) such that Ze = A(H(x)) = C(H(*)) = An (5). By 7.2,
C(H(*)) & A(H(x)), however, C(H(x)) < H(x) = B(H(x)) and A(H(x)) = J(H(x)).
Now it suffices to use 1.7. [

8. COMMUTATIVE MOUFANG LOOPS NILPOTENT OF CLASS AT MOST TWO

We denote by .# the variety of commutative Moufang loops nilpotent of class at
most two and by ¥ the variety of abelian groups. Further, for n = 0, let ./Z, be the
subvariety of .# determined by the identity x" =1 and 9, = ¢ 0 M,. Thus M, =
=M, %y = % and M, = 9, is the trivial variety. Moreover, ¥ < # and 4, = M,,.

8.1. Lemma. Let Q € .45 be finitely generated and g(Q) = n. Then |Q| < 3vtm

where m = (;l) .

Proof. Since Q/A(Q)e¥; and q(Q[A(Q)) = n, I’Q/A(Q)I = 3". On the other
hand, A(Q)e ¥, and g(A4(Q)) £ m by 1.14. Thus |4(Q)| < 3" and |Q| < 3"*". O

8.2. Lemma. Let Q € ./ be free. Then A(Q) = B(Q) and A(Q) n D(Q) = {1}.
Proof. Denote by f the natural homomorphism of Q onto Q/A4(Q). If x € B(Q) then
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x* =1,f(x)’ = 1 and f(x) = 1, since Q/A(Q)is a free abelian group. Thus x € A(Q).
If, moreover, x € D(Q) then x = y* for some ye Q, hence f(y)> = 1, f(y) = 1,
yed(Q)and x =y’ =1. O

Letn 23, m= <:> and E,(+) = Z" x G(3)". Further, put a,, =<1,0, ...

s 0%y =<0,..,0,1,0,...,0), dyys0 = by, =<0,..,0,0,1,0,...,0) ...
cos Quimn = by = <0,..,0, 1>, N, = {ay, ..., pin,y and M, = {a,,, ...
<ees Gy n}. Obviously, N, is a basis of E,(+). Denote by K, the set of all
ordered triples <i,j, k>, where 1 £ i <j < k = n and let < be the lexicographic
ordering on K,. There is a biunique mapping p, : K, = {1, ..., m} such that for
«, feK,, a < B implies p,(«) < p,(B). Now, define a mapping 1, : Ny — B(E,(+))
by tJasaj, @) =b,q and t(a;,a;a)=2b,u for o=Jd,j k> ek, and
t,(x, y, z) = 0 otherwise. Clearly, f, can be extended to a triadditive mapping T,
satisfying (1), (2) and (4). Put xoy = x + y.+ T,(x, y,x — y) for all x, y€E,.
Then E,(-) is a commutative Moufang loop nilpotent of class at most two.

8.3. Lemma. (i) A(E(c)) = Zb, , ® ... ® Zb,,, and E,(o)/A(E,(>)) is isomorphic
to Z".
(i) D(E,(-)) = Z3a,, ® ... ® Z 3a,, and |E(-)/D(E,(-))
(iii) C(E,(-)) = An(T,) = D(E,(-)) ® A(E(:))-

Proof. Easy. [J

— 3n-im

The following proposition was for the first time proved in [2]. Here we present
a somewhat different proof.

8.4. Proposition. The loop E,(o) is a free commutative Moufang loop nilpotent
of class at most two and M, is a free generator set of E,(o).

Proof. It is easily seen that M = M,, generates E(o) = E, (o). Let Q € # be free of
rank n and let {x,, ..., x,} be a free generator set of Q. There is a surjective homomor-
phism f of Q onto E(o) such that f(x;) = ay ,, ..., f(x,) = a,,. We have f(4(Q)) =
= A(E(-)), f(D(Q)) = D(E(-)) and so f induces two surjective homomorphisms
g : Q[A(Q) — E(s)A(E(c)) and h: Q[D(Q) — E(o)/D(E(-)). Finally, denote by k
and ! the natural homomorphisms of Q onto Q/A(Q) and Q/D(Q), respectively.
We are going to show that g and h are injective. The abelian group Q/A(Q) is free
of rank n. On the other hand, E(-)/A(E(-)) is isomorphic to Z" and thus to Q/A(Q).
However, every surjective endomorphism of Z" is an automorphism and hence g
is injective. Further, Q/D(Q) is free of rank n in .#; and |Q/D(Q)| < 3"*™ by 8.1.
Since |E(-)/ D(E(o))| = 3"*™, h is injective. Now we can show that f is injective and
hence an isomorphism: if x, ye Q and f(x) = f(y) then g k(x) = g k(y), k(x) =
= k(y), h I(x) = h I(y), I(x) = (y), xy"* € A(Q) » D(Q) and x = y by 82. [
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8.5. Lemma. Let Q e .4/, g(Q) = n and let P be a normal subloop of Q such
that 4(Q[P) = n. Then P < A(Q).

Proof. Denote by L the subloop of Q generated by A(Q)u P. Then L/P =
= A(Q/P)and Q|L is isomorphic to (Q/P)/A(Q/P) = H. Since g(Q/P) = n, g(H) = n
and |H| = |Q/L| = 3". However, by 1.4 |Q/A(Q)| = 3" and A(Q) = L. This implies
A(Q) =L and P < 4(Q). O

8.6. Theorem. The following conditions are equivalent for a groupoid Q:

(i) Q is a finitely generated commutative Moufang loop nilpotent of class at most
two without elements of infinite order.

(ii) Q is a finite commutative Moufang loop nilpotent of class at most two.

(iii) There exists a finite ternary ring Q(+, S) satisfying (1), (2) and (4) such that
xy=x+y+8(x,y,x —y) for all x,ye Q.

Proof. The equivalence of (i) and (ii) is clear and (iii) implies (i) by 4.1.

(ii) = (iii). With respect to 1.3 and 1.2(i), we can assume that Q is a 3-loop and
g(Q) = n = 3. Then there is a surjective homomorphism f : E(c) — Q, where E(s) =
= E,(-). We are going to show that P = Ker f = C(E(-)). Denote by L the subloop
of E(s) generated by P U D(E()) and by h the natural homomorphism of E(5) onto
H(o) = E(o)/D(E(s)). Then h(L) is a normal subloop of H(o) and H(o)/h(L) is iso-
morphic to Q/D(Q). However, D(Q) = J(Q) by 1.4(i), hence ¢(Q/D(Q)) = n and
q(H(o)/h(L)) = n. Thus h(L) = A(H(-)) by 8.5 and L < R, where R is the subloop
of E(-) generated by A(E(c)) U D(E(-)). In particular, P < R = C(E(o)). Since
C(E(c)) = An (T,), P is an ideal of the ternary ring E(+, T,). Denote by r the con-
gruence of E(o) corresponding to P. Then obviously x r y iff x — y € P and hence r
is also a congruence of the ternary ring E(+, T,). O

9. COMMUTATIVE MOUFANG LOOPS OF SMALL ORDERS AND
COMMUTATIVE MOUFANG LOOPS GENERATED BY THREE ELEMENTS

9.1. Proposition. Let Q be a commutative Moufang loop such that Q is not as-
sociative and [Ql < 728. Then there are an abelian group G and a non-associative
commutative Moufang 3-loop P such that Q is isomorphic to the product G x P
and either |P| = 81 or |P| = 243.

Proof. Apply 1.3 and 1.8. [

9.2. Theorem. (i) L(1) and L(2) are up to isomorphism the only non-associative
commutative Moufang loops of order 81 and these two loops are not isomorphic.

(ii) L(3), L(4), L(5), L(6), G(3) x L(1) and G(3) x L(2) are up to isomorphism the

655



only non-associative commutative Moufang loops of order 243 and these six
loops are pairwise non-isomorphic.

Proof. (i) Let Q be a non-associative commutative Moufang loop of order 81.
By 1.6(ii) and 8.6, there are a group Q(+) and a triadditive mapping S of Q* into Q
such that S satisfies {1), (2) and (4), does not satisfy (5) and xy = x + y + S(x, y,
x — y) for all x, y € Q. First, let g(Q(+)) = 4. Then Q(+) is isomorphic to G(3) x
x G(3) x G(3) x G(3).1f g(Q) = 4 then q(Q/J(Q)) = 4,|0/J(Q)| = 81 and A(Q) =
< J(Q) = {1}, a contradiction. Thus ¢(Q) = 3 and Q is isomorphic to L(1) by 5.3.
If g(Q(+)) # 4 then g(Q(+)) <3 and ¢(Q(+)) = 3 by 3.8(iii). Hence Q(+) is
isomorhic to G(3) x G(3) x G(9) and Q to L(2) (apply 6.5).

(i) If | Q| = 243 then 3 < ¢(Q(+)) < 5 and the following cases can arise:

(@) o(+) = G(3) x G(3) x G(27). By 6.5, Q is isomorphic to L(4).

(b) 0(+) = G(3) x G(9) x G(9). By 6.5, Q is isomorphic to L(5).

(c) Q(+) = G(3) x G(3) x G(3) x G(9). If ¢(Q) = 3 then Q is isomorphic to
L(3) by 5.3.1f g(Q) # 3 then q(Q) = 4 and Q is isomorphic to L(6) by 7.3, provided Q
is directly irreducible. In the opposite case, Q = G(3) x P, where P is a non-associa-
tive commutative Moufang loop of order 81. Since P must contain an element of
order 9, P is isomorphic to L(2).

(d) O(+) = G(3) x G(3) x G(3) x G(3) x G(3). By 7.4 and 8.1, Q = G(3) x P,
where P is a non-associative commutative Moufang loop of order 81. Since every
non-zero element of P has order 3, P is isomorphic to L(1). [

9.3. Corollary. (1), L(2), G(2) x L(1), G(2) x L(2), L(3), L(4), L(5), L(6), G(3) x
x L(1), G(3) x L(2), G(4) x L(1), G(4) x L(2), G(2) x G(2) x L(1), G(2) x G(2) x
x I(2), G(5) x L(1), G(5) x L(2), G(2) x G(3) x L(1), G(2) x G(3) x L(2), G(2) x
x L(3), G(2) x L(4), G(2) x L(5), G(2) x L(6), G(7) x L(1), G(7) x L(2), G(8) x
x L(1), G(8) x L(2), G(2) x G(4) x L(1), G(2) x G(4) x L(2), G(2) x G(2) x
x G(2) x L(1), G(2) x G(2) x G(2) x L(2) are up to isomorphism the only non-
associative commutative Moufang loops of order <728. Moreover, these 30 loops
are pairwise non-isomorphic. [J

9.4. Remark. In the following table, I(n) denotes the number of isomorphism clas-
ses of commutative Moufang loops of order 3" (groups are included):

n|1| 6

2345
oy | v | 2] 3| 7| 13]

v

30
9.5. Theorem. L(ny, my, ky,.1), where 1 < n; < my < ky, L(ny, my, ks, 2), where

2 £ ny £ my £ ky, L(ns, my, ks, 3), where 1 < ny < my < ky and L(ny, my, ky, 4),
where 1 < ny < my < ky, are up to isomorphism the only non-associative com-
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mutative Moufang 3-loops with three generators. Moreover, L(n;, m;, k;, i) is iso-
morphic to L(nj, m, k;, j) iff i = j, n; = nj, m; = my, k; = k;.

Proof. Let Q be a non-associative commutative Moufang 3-loop with q(Q) <3
Then ¢(Q) = 3, Q is finite and nilpotent of class 2. By 8.6, there are a group Q(+)
and a triadditive mapping S of Q2 into Q satisfying (1), (2) and (4), but not (5), such
that xy = x + y + S(x, y, x — y) for all x, ye Q. Obviously, Q(+) is a 3-group
and q(Q(+)) = 3. If ¢(Q(+)) = 3 then 6.5 may be used. If g(Q(+)) = 4 then the
result follows from 4.10 and 5.3 and an application of 6.6 completes the proof. []

9.6. Corollary. The following assertions are equivalent for a groupoid Q:

(i) Q is a finite non-associative commutative Moufang loop with q(Q) = 3.
(i) There exist positive integers n, m, k, i, r, s, t such that r, s, t are not divisible
by 3 and Q is isomorphic to L(n, m, k, i) x G(r) x G(s) x G(t).

Proof. (i) = (ii). By 1.3, Q is isomorphic to H x K, where H is a non-associative
commutative Moufang 3-loop, K is an abelian group whose elements have orders
not divisible by 3 and obviously g(H), ¢(K) < 3.

(i) = (i). If {a, b, ¢} is a generator set of L(n, m, k, i), G(r) = Zx, G(s) = Zy
and G(t) = Zw then obviously {<a x), <b, y>, {c, wp} is a generator set of
L(n,m, k, i) x G(r) x G(s) x G(r). O

9.7. Theorem. The following assertions are equivalent for a commutative Moufang
loop Q:
(i) Q is not associative and every proper subloop as well as every proper factor-
loop of Q is a group.
(ii) Q is subdirectly irreducible, not associative and ¢(Q) < 3.
(i) Q is subdirectly irreducible and q(Q) = 3.
(iv) Q is isomorphic either to L(1) or to L(1, 1, k, 4) for some k = 2.

Proof. (i) = (ii). Obviously, Q is subdirectly irreducible. If g(Q) = 4 then for
all a, b, c € Q, the subloop generated by {a, b, c} is a group and (a, b, ¢) = 1.
(ii) = (iii). This is trivial.
(iii) = (iv). Clearly, Q is not associative and A(Q) is the least normal subloop.
If 1 + xe A(Q) and a e Q is arbitrary then a® e C(Q), hence there is k = 1 with
x = a* and a®* = 1. By 1.3, Q is a 3-loop and we can use 9.5, 5.1 and 6.3. '

(iv) = (i). First, we make the following simple observation: If G is a commutative
Moufang loop with ¢(G) = 3 and P is a maximal subloop of G such that C(G) < P
then P is a group (indeed, G/C(G) e %; and ¢(G/C(G)) < 3, hence g(P/C(P)) < 2
and P is a group). In our case, every proper subloop is contained in a maximal
subloop by 1.2(iii) and J(Q) = C(Q) by 5.1 and 6.3. Finally, let H be a non-trivial
normal subloop. Obviously, 4(Q) is the least non-trivial subloop of C(Q) and so,
with respect to 1.5, A(Q) < H. O
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10. THE LATTICE OF VARIETIES OF COMMUTATIVE MOUFANG LOOPS
NILPOTENT OF CLASS AT MOST TWO

10.1. Lemma. Let Q € .#5 be free and q(Q) = n = 3. Then Q is isomorphic to
a subdirect product of copies of L(1).

Proof. By 8.4, Q is isomorphic to E,(o)/D(E,(>)). Let 1 £l < m = (—) and

let1 <i<j<k=n besuch that [ = p,(<i, j, k)). Denote by P, the set of all
{15 ooy Ay 015 - .-y Oy € E, such that 1;, 4;, 4, are divisible by 3 and ¢, = 0. Obviously
D(E,()) = P,. On the other hand, it is easy to check that P(o) is a normal subloop

of E,(<) and E,()/P,(s) = L(1). Finally, ,61P’ = D(E(). O

10.2. Lemma. Let k = 2. Then there is a subloop P of L(1, 1, k, 4) x L(1, 1, k, 4)
such that L(1) is a homomorphic image of P. -

Proof. Put G(o) = L(1, 1, k, 4), T= T, H(s) = G(:) x G(o), H(+) = G(+) x
x G(+) and S = T x T. Further, let « = {a, —a), B =<b, b, y = c,c), 6 =
= (3*71¢, ..., 3*"!c) and let P(+) be the subgroup of H(+) generated by {«, B, y, }.
We have S(P*) = Z§ < P, and so P(s) is a non-associative subloop of H(s). Further,
(o, B, 7) = & in H(o) and so P(s) is generated by {a, B, 7} and g(P(c)) = 3. Moreover,
we have A(P(c)) = Z5. Put L= Z3y. Then L< C(P(-)), Lis a normal subloop
of P(c), L = D(P()) and P(s)/Le .4 . Since L~ A(P(s)) = 0, P(o)/Lis not associative
and by 9.5 P(-)[L = L(1). O

10.3. Lemma. Let k = 0 and let Q € /M 3. be free. Then A(Q) n D(Q) = {1}.

Proof. There are a free loop E € .# and a homomorphism f of E onto Q such that
Ker f = {x* | x € E}. For k = 0, there is nothing to prove. Let k = 1. Then
Ker f < D(E) If a € A(Q) n D(Q) then f(x) = a = f(y) for some x € A(E), y € D(E),
hence xy 'eKerf < D(E) and xe A(E)n D(E) = {1} by 8.2. Consequently
x=1landa=1. [J

10.4. Lemma. Let ¥ be a subvariety of M such that V" € 4. Then M5 < V.

Proof. There is Q € ¥~ such that Q is not associative, hence a . bc + ab . ¢ for
some a, b, c € Q. Denote by P the subloop generated by {a, b, c}. Then Pe ¥ and
q(P) = 3. Further, P has a subdirectly irreducible factor L such that L is not asso-
ciative. Hence g(L) = 3 and by 9.7 Lis isomorphic either to L(1) or to L(L, 1, k, 4)
for some k = 2. According to 10.2, L(1)e ¥" and by 10.1 every finitely generated
free loop from .#; belongs to ¥". Thus 43 = ¥". [

10.5. Proposition. Let ¥~ be a subvariety of 4. Then either V" = 4, for some
nz0or?¥ = M, for some m = 0 divisible by 3.

Proof. We can assume that ¥~ & ¥, the case ¥~ < ¥ being clear. There is m = 0
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such that ¥" N & = 4,.. Further, by 10.4, G(3)e %,, and so 3 divides m. If m = 0
then ¥ = 9, < ¥  and ¥ = .4, by 10.4 and 8.2. Now assume that m # 0. Then
m = 3*I, where k = 1 and [ is not divisible by 3. If Q € .# 5 is a finitely generated
free loop then by 10.3 Q is isomorphic to a subdirect product of Q/A4(Q) and Q/D(Q).
However, Q[/A(Q)e % = %, and Q/D(Q)e M5 = ¥ by 10.4, therefore Qe ¥
and My < V. If Qe M, is a finitely generated free loop then @ is isomorphic to
a product P x L, where P € .# . and Le %, hence Q € ¥ and ./#,, = ¥". Conversely,
if Q € ¥ is arbitrary and x € Q then the cyclic subgroup generated by x belongs to ¢
consequently x™ = 1 and Qe #,. [

Denote by & the set of all ordered pairs {n, 0) with n = 0 and {(m, 1) with m = 0
divisible by 3. Define an ordering < on % by {(n, i) < {(m,j) iff i < jand n divides
m. It is easy to see that & = (&, <) is a lattice. Now we can summarize our results:

ms

10.6. Theorem. (i) %,, for n = 0, and M, for m = 0 divisible by 3, are the only
subvarieties of M.
(i) ¢, < %, iff ndividesn’, M,, = M, iff m divides m', 9, = M, iff n divides m.
Moreover, M,, & 9,.
(iii) The lattice of subvarieties of the variety 4 of commutative Moufang loops
nilpotent of class at most two is isomorphic to the lattice &. The isomorphism
is given by 9, —» {(n, 0>, M, — {(m, 1>. []

11. DISTRIBUTIVE GROUPOIDS

A groupoid G is said to be distributive if it satisfies the identities x . yz = xy . xz
and yz.x == yx.zx. Obviously, G is distributive iff the translations L, and R,
(L(x) = ax, R(x) = xa) are endomorphisms of G for every a € G. A groupoid G
is said to be medial if it satisfies the identity xy . uv = xu . yv.

A non-empty subset I of a groupoid G is said to be an ideal if xa, ax € [ foralla €I,
x € G. In this case, the relation r = (I x I) U ¢ is a congruence of G and the cor-
responding factorgroupoid is denoted by G/I. This factorgroupoid contains a zero
element, i.e. an element z such that zx = z. = xz for every x. The ideal I is said to be
prime if xy e I implies either x e I or y € I. Obviously, a proper ideal I is prime iff
G\ is a subgroupoid of G.

For a groupoid G, let 1d G denote the set of all idempotents of G.

11.1. Proposition. Let G be a distributive groupoid. Then:

(i) 1d G is an ideal of G and a . be, ab . ce1d G for all a, b, c€ G.
(i) G/Id G is a medial semigroup and G is isomorphic to a subdirect product
of Id G and G|1d G.
(iii) G is medial iff 1d G is.

Proof. See [6, Propositions 1.2, 1.3]. [
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11.2. Lemma. Let I be an ideal of a distributive groupoid G such that both I and
G[I are medial. Then G is medial.

Proof. With respect to 11.1, we can assume that G is idempotent. For each a € 1,
the translations L, and R, of G are homomorphisms of G into I. Denote by s the
intersection of all congruences of G corresponding to these homomorphisms. Then
G/s is medial and x s y iff ax = ay, xa = ya for all a € I. Further, let f and g denote
the natural homomorphisms of G onto G[s and GfI, respectively. The groupoid
H = G[s x G[I is medial and h : G — H defined by h(x) = {f(x), g(x)) is a homo-
morphism. If x, ye G and h(x) = h(y) then g(x) = g(y) implies either x = y or
x, y €I, however, in the latter case x = xx = xy = yy = y, since f(x) = f(y). O

11.3. Proposition. Let G be a subdirectly irreducible commutative distributive
idempotent groupoid. Then at least one of the following assertions holds:

(i) G is a cancellation groupoid.
(ii) G contains a zero element 0 such that H = G\ {0} is a subgroupoid of G and H
is a cancellation groupoid. In this case, G is medial iff H is.

Proof. See [8, Proposition 5.1]. [

11.4. Lemma. Every proper ideal of a commutative distributive idempotent
groupoid is contained in a proper prime ideal.

Proof. Let I be a proper ideal of G and f the natural homomorphism of G
onto G/I. Then G/I is not a cancellation groupoid and by 11.3 there exists a homo-
morphism g of G/I onto a groupoid H such that H contains a zero element 0 and
H {0} is a subgroupoid of H. Then J = {xe G l g f(x) = 0} is a proper prime ideal
containing I. []

11.5. Lemma. Let G be a finite commutative distributive groupoid without proper
ideals. Then G is a quasigroup.

Proof. Apply 11.1 and 11.3. [

11.6. Remark. For n 2 1, let a(n) (b(n), ¢(n), d(n), e(n)) denote the number of
isomorphism classes of distributive groupoids (distributive idempotent groupoids,
commutative distributive groupoids, commutative distributive idempotent groupoids,
distributive semigroups) of order n. We have the following table:

n ] a(n) ‘ b(n) i c(n) i d(n) [ e(n)
1 i 1 1 ‘ 1 1 ‘ 1
2 4 3 1 2 1 ! 4
3 ‘ 19 13 } 7 3 | 14

660



12. NON-MEDIAL DISTRIBUTIVE QUASIGROUPS OF ORDER 81

12.1. Proposition. The following conditions are equivalent for a groupoid Q:

(i) Q is a distributive quasigroup.

(ii) There exist a commutative Moufang loop Q(+) and a complete 1-central
automorphism f of Q(+) such that xy = f(x) + f(y) = f(x) + (y — f(»)) for
all x, y € Q. In this case, Q is medial iff Q(+) is a group.

Proof. See [11, § I1.7 Théoréme 1, § V.1 Proposition 4]. [

12.2. Proposition. The following conditions are equivalent for a groupoid Q:
(i) Q is a commutative distributive quasigroup.
(ii) There exists a commutative Moufang loop Q(+) such that vy is an auto-
morphism of Q(+) and xy = p(x + y) for all x, ye Q.

Proof. This is an easy consequence of 12.1. [

12.3. Lemma. Let Q(+), P(+) be commutative Moufang loops and f,g be
complete 1-central automorphisms of Q(+), P(+), respectively. The following
conditions are equivalent:

(i) The corresponding distributive quasigroups Q and P are isomorphic.
(ii) There is an isomorphism h of Q(+) onto P(+) such that hf = gh.

Proof. (i) = (ii). Let k : Q — P be an isomorphism of distributive quasigroups.
There is a € P such that a k(0) = 0. Put I(x) = ax for every x € P and h = lk. Then |
is an automorphism of P and h is an isomorphism of Q onto P, hence h(O) =0,
h(f(x) + f(y)) = g h(x) + g h(y) for all x, y € Q and the result easily follows.

(ii) = (i). This is clear. []

We shall define six distributive quasigroups D(1), ..., D(6) as follows: The under-
lying set of D(1), D(2) is that of L(1) = G(o) and the multiplication is given by
xy=x"toy ' =e(x0y). xy=0(x)o (yoo(y')) = @(x) - #(y), respectively, where
¢ is the automorphism of L(1) defined in Section 5. The underlying set of D(3),
D(4), D(5), D(6) is that of L(2) = G(o) and the multiplication is given by xy =
=puxoy), xy=x"oy*=¢e(x)oW(y), xy=x*cy ' =¥(x)oe(y) and xy =
=yY(x)o (yo(y™")) = ¥(x) o ¥(»), respectively, where y is the automorphism of
L(2) defined in Section 6.

12.4. Theorem. (i) Every non-medial distributive quasigroup contains at least 81
elements. ’
(i) D(1), D(2), D(3), D(4), D(5) and D(6) are up to isomorphism the only non-
medial distributive quasigroups of order 81 and these quasigroups are pair-
wise non-isomorphic.

Proof. Apply 12.1, 12.3, 9.2(i), 5.6 and 6.8. []
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12.5. Corollary. D(1) and D(3) are up to isomorphism the only non-medial com-
mutative distributive quasigroups of order 81. []

12.6. Remark. It seems that the number of isomorphism classes of distributive
quasigroups of order 81 exceeds 100.

Let G;, iel, be all pairwise non-isomorphic abelian groups of odd order. For
each i €1, vg, is an automorphism of G; and we can define x o y = g (x + ) for
all x, y € G,. For the sake of completeness we include also the following two obvious
results:

12.7. Proposition. G(-), i €I, are up to isomorphism the only finite commutative
medial idempotent quasigroups. Moreover, these quasigroups are pairwise non-
isomorphic.

Proof. By 12.2 and 12.3, taking into account that for a finite group G, v is a per-
mutation iff |G| is odd. []

12.8. Corollary. G () with IG,-I < 80 are up to isomorphism the only commutative
distributive quasigroups of order <80. Moreover, these quasigroups are pairwise
non-isomorphic. []

13. DISTRIBUTIVE QUASIGROUPS OF ORDER AT MOST 15

13.1. Lemma. Let m > n > 0 and f(x) = nx for all x € G(m). Then f is a complete
automorphism of G(m) iff (m, n) = (m, n — 1) = 1. Moreover, if f, g are equivalent
automorphisms of G(m) then f = g.

Proof. Straightforward. []

13.2. Lemma. The group G(2) x G(4) has no complete automorphism.

Proof. Obviously, g(<0, 2>) = <0, 2) for every automorphism g of G(2) x G(4)
and by 1.12(i) g is not complete. [

In the following lemma, let G(+) = G(2) x G(6) and define an endomorphism
of G(+) by (<1, 0)) = <0, 3), (<0, 1)) = <1, 5).

13.3. Lemma. 7 is up to equivalence the only complete automorphism of G(+) =
= G(2) x G(6).

Proof. It is easy to check that 7 is a complete automorphism of G(+). If fis
a complete automorphism of G(+) then f(x) # x and o(f(x)) = o(x) for all x e G.
Hence f({1,0))e{<1,3), <0,3)} and (<0, 1)) {<0, 55, <1, 1), <1, 5%, <1,2,
(1, 4>}, If £(€0, 1)) = <0, 5) then f| G(6) is a complete automorphism of G(6),
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a contradiction with 13.1. I £(<0, 1>) = <L, 1> or <1, 4) then f(<0, 2)) = <0.2),
a contradiction. If f(€0, 1)) = <1, 5) then f(€0,3)) = <1, 3), hence f({1,0)) =
=<0, 3> and f = 7. Finally, let f(<0, 1>) = <1, 2). If /(<1, 0)) = <0, 3) then
f(<1,3Y) = <1, 3, a contradiction. Thus f({1, 0>) = (1, 3>. Now define 1 : G » G
by h({1,0)) = (1,0), h(<0.1y) =<1, 1). It is easy to check that h is an auto-
morphism of G(+) and hf = th. O

13.4. Lemma. Let F be a finite field, |F| = p". For all a,xeF put n,(x) = ax.
Then:

(i) If a + 0, 1 then m, is a complete automorphism of F(+). In this case, m, is
simple iff a generates F as a ring.
(ii) If a, b + 0,1 and b = a”" for some m = O then n, and =, are equivalent.
(iii) If a, b % 0, 1 are such that m, is simple then n, is equivalent to m, iff b = a™”
for some 0 = m < n — 1.
(iv) If f is a simple complete automorphism of F(+) then there is a € F such that
a £ 0,1, a is a generator of F as a ring and f is equivalent to =,

Proof. The assertions (i) and (ii) are easy.

(iii) Suppose that hr, = m,h for some automorphism h of F(+) and put k =
= Tyy-1h. Then kn,(x) = k(ax) = h(1)™" h(ax) = h(1)™' b h(x) = b h(1)"*.
. h(x) = b k(x) = m, k(x) and k(a) = k(a.1) = b k(1) = b. Hence k(ax) = k(a) .
. k(x). Denote by S the set of all z e F with k(zx) = k(z) k(x) for every x € F. Then
ae S, S is a subring of F, hence S = F and k is an automorphism of the field F.
Thus b = k(a) = a”" for some 0 < m < n — 1.

(iv) Let R be the subring of the endomorphism ring of F(+) generated by f.
Then R is commutative and the group F(+) can be viewed as an R-module. Since f
is simple, this R-module is simple. In particular, there is a maximal ideal I of R and
a module isomorphism of R/I onto F(+) inducing on F(+) the structure of a field.
Denote this field by F(+, o). Obviously, there is a € F(+, ) such that f(x) = a o x
for every x e F. Further, there is an isomorphism h of the field F(+, o) onto the
field F. Now hf = m,h and f is equivalent to m,,. O

13.5. Lemma. Let F(4) = {0, 1, a, a®} be a four-element field. Then x — ax is
up to equivalence the only complete automorphism of F(4) (+).

Proof. Let f be a complete automorphism of F(4) (+). Suppose that f(K) < K
for a subgroup K(+). Then f | K is a complete automorphism of K(+) and by 13.1
either K = 0 or K = F(4). Thus f is simple and we can use 13.4. [

13.6. Lemma. Let F(8) = {0, 1, a, a*, a*, a*, a°, a®} be an eight-element field.
Then x — ax and x — a®x are up to equivalence the only complete automorphisms

of F(8)(+). Moreover, these automorphisms are not equivalent.
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Proof. Let f be a complete automorphism of F(8) (+). Suppose that f(K) = K
for a subgroup K(+) =+ 0, F(8). By 13.1, |K| = 4. If x ¢ K then f(x) ¢ K, and so
x — f(x)e K, since F(8)(+)/K is a two-element group. Thus f(x) = x — f(x)e K
for every x e F(8), a contradiction. Hence f is simple and the rest is clear from 13.4.

O

13.7. Lemma. Let F(9) = {0, 1, a, a®, a*, a*, a°, a® a’} be a nine-element field.
Then x — ax, x — a’x and x — a®x are up to equivalence the only simple complete
automorphisms of F(9)(+). Moreover, these automorphisms are pairwise non-
equivalent.

Proof. Apply 13.4. O

In the following lemma, let G(+) = G(3) x G(3) and define an automorphism ¢
of G(+) by o(<x, D) = <2x + 3, 2y> = <y = x, »)

13.8. Lemma. ¢; and o are up to equivalence the only non-simple complete auto-
morphisms of G(+) = G(3) x G(3). Moreover, these two automorphisms are not
equivalent.

Proof. Let f be a non-simple complete automorphism of G(4-). There is a subgroup
K(+) of G(+) such that |[K| = 3and f(K) < K. Let 0 + a € K and b & G be such that
{a, b} is a basis of G(+). Since f(a) e K and f(a) % 0, a, f(a) = 2a = —a. Further,
f(b) = Aa + ob for some 4, 0€ {0, 1,2}. If o = 0 then f is not an automorphism,
a contradiction. If ¢ = 1 then f(—74a + b) = la + Aa + b = —Aa + b, a contra-
diction. Therefore ¢ = 2. If 4 == 0 then f(b) = —band so f = ¢g. Let A = 1. There
is an automorphism h of G(+) with h(a) = €0, 1) and h(b) = <1, 0. Now h f(a) =
= —h(a) = {(=1,0) = o h(a), h f(b) = {1, —1)> = ¢ h(b) and f, ¢ are equivalent.
Finally, let 2 = 2. There is an automorphism k of G(+) with k(a) = {—1,0),
k(b) = €0, 1). Then kf = ok and we are through. [

Now, we shall define 45 distributive quasigroups M(1), ..., M(45) as follows (the
operation will be denoted by o): M(1) = G(1). The underlying set of M(2) is that
of G(3) and x o y = —x — y = 2x + 2y. The underlying set of M(3) is that of F(4)
and xoy = ax + (1 — a) y (see 13.5). The underlying set of M(4), M(5), M(6) is
that of G(5) and x o y = 2x + 4y, x oy = 3x + 3y, X o y = 4x + 2y, respectively.
The underlying set of M(7), M(8), M(9), M(10), M(11) is that of G(7) and xoy =
=2x+ 6y, X0y =3x+5y, X0y =4x +4y,x0y =5x+ 3y, x0y = 6x + 2y,
respectively. The underlying set of M(12) and M(13) is that of F(8) and x oy =
=ax+ (1 —a)y, xoy =a’x + (1 — a’) y, respectively (see 13.6). The under-
lying set of M(14), M(15) and M(16) is that of G(9) and xoy = 2x + 8y, xo y =
= 5x + 5y, x o y = 8x + 2y, respectively. The underlying set of M(17), M(18) and
M(19) is that of F(9) and xoy=ax+ (1 —a)y, xoy =a’x + (1 —a?)y,
xoy=a’x + (1 — a’) y, respectively (see. 13.7). The underlying set of M(20)
and M(21) is that of G(3) x G(3) and xoy = —x — y = 2x + 2y, X0 y = o(x) +
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+ y — o(y), respectively (see 13.8; in fact, M(20) is isomorphic to M(2) x M(2)).
The underlying set of M(22), M(23), M(24), M(25), M(26), M(27), M(28), M(29)
and M(30) is that of G(11) and x oy = 2x + 10y, xoy = 3x + 9y, X0 y = 4x +
+ 8y, xoy=5x+4+7Ty, Xoy=06x+ 6y, xop=7Tx+ 5y, Xoy = 8x + 4y,
Xxoy=9x 4+ 3y, xoy = 10x + 2y, respectively. The underlying set of M(31) is
that of G(2) x G(6) and x o y = 7(x) + y — ©(y) (see 13.3). The underlying set of
M(32), M(33), M(34), M(35), M(36), M(37), M(38), M(39), M(40), M(41), M(42) is
that of G(13) and x oy = 2x + 12y, X0y = 3x + 1ly, xoy = 4x + 10y, x0 y =
=5 +9y, X0y =06x+ 8y, x0y =Tx+ Ty, x0y =8x+ 6y, x0y =9x + 5y,
xoy =10x + 4y, xoy = 11x 4+ 3y, xo y = 12x + 2y, respectively. Finally, the
underlying set of M(43), M(44) and M(45) is that of G(15) and x o y = 2x + 14y,
Xoy =8x + 8y and xo y = 14x + 2y, respectively.

13.9. Theorem. The quasigroups M(1), ..., M(45) are up to isomorphism the
only distributive quasigroups of order at most 15. Moreover, these quasigroups are
pairwise non-isomorphic.

Proof. Apply 12.1, 12.3, 13.1, 13.2, 13.3, 13.5, 13.6, 13.7 and 13.8. [J

13.10. Corollary. The quasigroups M(1), M(2), M(5), M(9), M(15), M(20), M(26),
M(37) and M(44) are up to isomorphism the only commutative distributive quasi-
groups of order at most 15. [

13.11. Remark. In the following table, g(n) and p(n) denote the number of iso-
morphism classes of distributive quasigroups and commutative distributive quasi-
groups, respectively, of order n:

n |1I2|3[4|5‘6|7i8|9!10!11|12 13‘14[15
a(n) }1’0‘1‘113‘0{5 2‘8!0{9i111}0l3
p(n) ‘Tiotl‘o‘l‘oli—o}ztoil‘o 1‘0!1

It seems that all these quasigroups are already known (see e.g. [ 11] for some of them),
however, the authors were not able to find explicitly their description in the literature
and hence they decided to include it in the present paper.

14. NON-MEDIAL COMMUTATIVE DISTRIBUTIVE GROUPOIDS
OF ORDERS 81 AND 82

Let G be a groupoid and 4, B = G two disjoint subsets of G such that A U B =
= @, A is either empty or a subgroupoid of G and B is either empty or an ideal of G.
Let f be an endomorphism of B (f = 0 if B = 0) and o an element not belonging
to G. We define a groupoid H = G(4, B, f, «) as follows: H = G u {a}, G is a sub-
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groupoid of H, ao = ax = xa = « for every xe A and ay = ya = f(y) for every
y€EB.

14.1. Lemma. If G is a commutative distributive idempotent groupoid then
G(4, B, f, «) is a commutative distributive idempotent groupoid iff the following
three conditions are satisfied:

(@) xf(y) = f(xy) = f*(y) for all x€ A, y€B.
(b) f(y) = xy . f(y) for all xe A, yeB.
(¢) xf(y) = f(x).xy forall x,yeB.

Proof. Straightforward. []

14.2. Proposition. Let H be a non-trivial groupoid, o€ H and G = H~ {«}. The
following conditions are equivalent:

(i) H is a commutative distributive idempotent groupoid and G is a subgroupoid
of H.

(ii) G is a subgroupoid of H, G is a commutative distributive idempotent groupoid
and there are two disjoint subsets A, B of G and a transformation f of B such
that G = A U B, A is either empty or a subgroupoid of G, B is either empty
or an ideal of G, f is an endomorphism of B satisfying conditions (a), (b), (c)
from 14.1 and H = G(4, B, f, o).

Proof. (i) = (ii). Put 4 = {xe G | ax = o}, B={xeG ] ax # o} and f{x) = ox
for every xe B. If xe A, ye B then o.xy = xo.. xy = x.ay * o Further, o %
+ f(xy) = a.xy = ax.ay = o.ay. Hence ay = f(y) € B and f(xy) = f*(y). The
rest is easy.

(ii) = (i). Apply 14.1. [

14.3. Lemma. Let Q be a finite commutative distributive quasigroup and f a
transformation of Q. The following conditions are equivalent:

(i) f is an endomorphism of Q and x f(y) = f(x) . xy for all x, y € Q.
(i) There is a € Q such that f(x) = ax for every x e Q.

Proof. (i) = (ii). For all x, y € Q, let L,(y) = xy. Since Q is a finite quasigroup,
there is n = 1 such that L.*' = 1, for every x € Q. Hence for all x, y€ Q, f(y) =
= L 1(0) = L2 S0) = LU - ) = L) -y = LLES(x) and L f(y) =
= L7 f(x). Let be Q be arbitrary and a = Lj f(b). Then f(a) = f(L} /(b)) =
= L}, f3(b) = L f(b) = a and a f(x) = f(a) . ax = a . ax for every x € Q. Thus
f(x) = ax.

(ii) = (i). This is clear. [J

14.4. Proposition. D(1) and D(3) are up to isomorphism the only non-medial
commutative distributive groupoids of order at most 81.
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Proof. Let G be a non-medial commutative distributive groupoid of the least
cardinality. Then obviously G is idempotent and subdirectly irreducible. If G is a qua-
sigroup then, by 12.4 and 12.5, IGI = 81 and G is isomorphic either to D(1) or to
D(3)‘ In the opposite case, with respect to 11.3, G contains a zero element 0 such that
H =G\ {0} is a non-medial commutative distributive quasigroup, a contradiction.

O

Now we shall define four groupoids D(7), D(8), D(9) and D(10) as follows: Choose
and fix three elements o, B, y such that « ¢ D(1) U D(3), fe D(1), y € D(3). We put
D(7) = D(1)(D(1), 0, 0, o) (i.e. D(7) = D(1) u {a}, D(1) is a subgroupoid of D(7)
and « is a zero of D(7)), D(8) = D(3)(D(3), 0,0, ), D) = D(1) (0, D(L), Ly, )
(i.e. D(9) = D(1) U {a}, D(1) is a subgroupoid of D(9), xa = o and xa = ax = fx
for every x e D(1)) and D(10) = D(3) (0, D(3), L,, a).

14.5. Proposition. D(7), D(8), D(9) and D(10) are up to isomorphism the only
non-medial commutative distributive idempotent groupoids of order 82. Moreover,
these groupoids are pairwise non-isomorphic.

Proof. Let G be a non-medial commutative distributive idempotent groupoid of
order 82. If G contains no proper ideal then G is a quasigroup by 11.5. However, 82
is no tdivisible by 81 and so G is medial, a contradiction (in fact, there is no distributive
quasigroup of order 82). Hence, let I be a proper ideal of G. With respect to 11.4,
we can assume that I is prime. First, let the factorgroupoid G/I be not medial. Then
|G/I| = 81 and so |I| < 2. If |I| = 2 then |G/1| = 81. However, G/I contains a zero
and G/I is not medial, a contradiction with 14.4. Therefore I = {0} for some Oe G
and 0 is a zero of G. Put K = G\ {0}. Since I is prime, K is a subgroupoid of G and
by 14.4 K is isomorphic to one of D(1), D(3). Now it is easy to see that G is isomorphic
either to D(7) or to D(8). Further, assume that G/I is medial. By 11.2, I is not medial
and so |I| > 81. Hence [I| = 81 and G\I = {a} for some a € G. By 14.4, I is iso-
morphic either to D(1) or to D(3). Suppose that I = D(1), the other case being
similar. Since al < I and I contains no proper ideal, by 14.2 there is an endomorphism
f of I such that x f(v) = f(x).xy for all x,yel and G =1(0,1, f, a). By 143,
there is b e I with f(x) = bx for every x € I. Further, b = fc for some cel and L,
is an automorphism of I. Define g : D(9) — G by g(x) = cx for every x e I and g(«) =
= a. It is easy to see that g is an isomorphism. Finally, D(7), D(8), D(9) and D(10)
are non-medial commutative distributive idempotent groupoids by 14.2 and these
groupoids are clearly pair-wise non-isomorphic, since D(7), D(8) contain zero ele-
ments, D(9) and D(10) do not, and a is the only element of D(9), D(10) with L,
surjective. [

Define two groupoids D(11) and D(12) as follows: D(11) = D(1) u {«}, D(1) is
a subgroupoid of D(11) and ax = B, ax = xa = fx for every xe D(1). D(12) =
= D(3) u {a}, D(3) is a subgroupoid of D(12) and ax = 7, ax = xa = yx for every
xe D(3).
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14.6. Proposition. D(11) and D(12) are up to isomorphism the only non-medial
non-idempotent commutative distributive groupoids of order 82. Moreover, these
two groupoids are not isomorphic.

Proof. Let G be a commutative distributive groupoid such that G is not medial,
not idempotent and [G| = 82. According to 11.1, Id G is not medial, hence ‘Id G| =
= 81 and G\1d G = {a} for some a € G. By 14.4, Id G is isomorphic either to D(1)
or to D(3). Further, b = aaeldG and ax = ax.ax = aa.x = bx for every
x € Id G. Finally, there is an isomorphism f of D(1) (or D(3)) onto Id G such that
f(B) = b (or f(y) = b). The rest is clear. []

14.7. Theorem. (1) Every non-medial commutative distributive groupoid contains
at least 81 elements.

(ii) D(1) and D(3) are up to isomorphism .the only non-medial commutative
distributive groupoids of order 81. Moreover, these two groupoids are not
isomorphic.

(iii) D(7), D(8), D(9), D(10), D(11) and D(12) are up to isomorphism the only non-
medial commutative distributive groupoids of order 82. Moreover, these six
groupoids are pairwise non-isomorphic.

Proof. Apply 14.4, 14.5 and 14.6. [

14.8. Remark. Obviously, every semilattice (i.e. a commutative idempotent semi-
group) is a medial commutative distributive idempotent groupoid. Denote by s(n)
the number of isomorphism classes of semilattices of order n. For a finite semilat-
tice S, we can define two semilattices S and S of order |S[ + 1 as follows: Choose
an element « not belonging to S. The underlying sets of S and S are equal to S U {a},
S is a subgroupoid of both S and S and aa = . Further, ax = xa = o for every
xeSin Sand ax = xa = 0in S, where 0 is the zero element of S (it exists, since S
is finite). Using this construction, it is easy to show that s(n) = 2"~2 for n = 2. In
particular, we have s(81) = 27° > 6. 10,

References

[1] G. Bol: Gewebe und Gruppen, Math. Ann. 114 (1937), 414—431.

[2] R. H. Bruck: Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946),
245—354.

[3]1 R. H. Bruck: “A Survey of Binary Systems”, Springer Verlag, Berlin—Heidelberg—New
York, 1966.

[4] O. Chein: “Moufang Loops of Small Orders”, Mem. Amer. Math. Soc. 197, Providence
R. 1, 1978.

[5] T. Evans: Identities and relations in commutative Moufang loops, J. Algebra 31 (1974),
508—513.

668



[6] J. JeZek and T. Kepka: The lattice of varieties of commutative abelian distributive groupoids,
Algebra Universalis 5 (1975), 225—237.

[7] J. JeZek, T. Kepka and P. Némec: Distributive groupoids (to appear).

[8]1 T. Kepka: Commutative distributive groupoids, Acta Univ. Carolinae Math. Phys. 19,
2 (1978), 45—58.

[91 T. Kepka and P. Némec: Distributive groupoids and the finite basis property, J. Algebra
70 (1981), 229—237.

[10] S. Klossek: “Kommutative Spiegelungsriume”, Mitteilungen Math. Sem. Giessen, Heft
117, Giessen, 1975.

[11] J.-P. Soublin: Etude algébrique de la notion de moyenue, J. Math. Pures Appl. 50 (1971),
53—264.

Authors’ address: 186 00 Praha 8, Sokolovska 83, CSSR (Matematicko-fyzikalni fakulta UK).

669



		webmaster@dml.cz
	2020-07-03T03:01:44+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




