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0. By a graph we shall mean a pseudograph in the sense of [2] and [5] (multiple
edges and loops are permitted). A graph G is determined if and only if we know its
vertex set V(G), edge set E(G), and its incidence relation between vertices and edges
(note that both ¥(G) and E(G) are finite and V(G) is nonempty). A graph is called
trivial if it has exactly one vertex and its edge set is empty. Let G be a graph; we
denote by C(G) the set of its components; moreover, we denote ¢(G) = |C(G);
the integer |E(G)| — |V(G)| + ¢(G) is referred to as the Betti number f(G) of G:
obviously, if G is connected, then ¢(G) = 1 and B(G) = |E(G)| — |V(G)| + 1.

Let G be a connected graph. The minimum integer i such that there exists an em-
bedding of G into the orientable surface (i.e. compact orientable 2-manifold) S;
of genus i is called the genus y(G) of G. An embedding of G into an orientable surface
is called a 2-cell embedding if every region is topologically homeomorphic to the
Euclidean plane (cf. [2], Section 5.2). Youngs [17] proved that every embedding of G
into S, is a 2-cell embedding. The maximum integer j such that there exists a 2-cell
embedding of G into S; is called the maximum genus y,(G) of G. In [10] it was
shown that 7,(G) < [B(G)[2], where [«] denotes the maximum integer m with the
property that m < «. Nordhaus, Ringeisen, Stewart, and White [9] proved that
yu(G) = 0 if and only if no two cycles of G have a vertex in common. G is said to
be upper embeddable if y,(G) = [B(G)[2].

As was proved by Duke [3], for every connected graph G and every integer m,
7(G) £ m £ yu(G), there exists a 2-cell embedding of G into S,,. The theory of 2-cell
embeddings is a relatively separated but very fruitful branch of graph theory. The study
of the genus of a graph has brought remarkably deep results (see [12] or survey
[14]). Various results concerning the maximum genus of a graph are also very in-
teresting (see [2], Section 5.3, [7], or survey [11]).

1. The maximum genus of a connected graph was determined by Homenko,
Ostroverkhy, and Kusmenko [7] and by Xuong [16].

Let G be a connected graph. We denote by T(G) the set of spanning trees of G.
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If Te T(G), then we denote
xo(T) = |{F e C(G — E(T)); |E(F)| is odd}] .
It is clear that x¢(T) = B(G) (mod 2), for every Te T(G).

Theorem A ([16]). If G is a connected graph, then
u(G) = (B(G) — min x¢(T))/2 .
TeT(G)

The formula for the maximum genus of a connected graph given in [7] reads
differently but in substance both results are the same.

The following characterization of upper embeddable graphs was given by Junger-
man [8], Xoung [16], and for the connected graphs of even Betti number also by
Homenko [6]; see also Theorems 1 and 2 in [7].

Theorem B. A connected graph G is upper embeddable if and only if there
exists Te T(G) such that xo(T) < 1.
Note that Theorem B is a special case of Theorem A.

2. In the present paper a new way of determining the maximum genus of a con-
nected graph will be shown.
If H is a graph, then we denote

B(H) = {F e C(H); B(F) is odd}
and b(H) = |B(H)|. I G is a connected graph and A < E(G), then we denote
y6(4) = b(G — 4) + (G — A) — |4] — 1.
Proposition. Let G be a connected graph, and let A < E(G). Then
(1) v6(4) = B(G) (mod 2).
Proof. We have
B(G) + ye(4) =
= |E@G)| = |[V(G)| + 1 + b(G — 4) + (G — A) — |4| =1 =
WG -4+ T AE).

FeC(G—A4)

This means that B(G) + yg(4) = 0 (mod 2), and thus (1) follows.
The following theorem is the main result of the present paper. It will be proved
in the next sections.

Theorem 1. Let G be a connected graph. Then

min x4(T) = max ye(4) .
TeT(6) ASE©)
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Combining Theorems A and 1 we get an alternative formula for the maximum
genus of a connected graph:

Theorem 2. If G is a connected graph, then
m(G) = (B(G) — max y(4))[2.
ASEG)

Therefore, we have two complementary tools for determining the maximum
genus of a connected graph G. Consider an integer i with the properties that 0 <
< i £ f(G) and i = B(G) (mod 2). If we have found a spanning tree T of G such that
x6(T) = i, then we know that y,/(G) = (B(G) — i)/2. On the other hand, if we have
found a subset 4 of E(G) such that yg(4) = i, then we know that y,(G) <
< (B(6) - i)/2.

Combining Theorems B and 1 we get an alternative characterization of upper
embeddable graphs:

Theorem 3. A connected graph G is upper embeddable if and only if
b(G — A) + (G — A) — 2= |4|, forevery A< EG).

Theorems B and 3 are complementary in the following sense: if we wish to show
that a connected graph is or is not upper embeddable we can use Theorem B or Theo-
rem 3, respectively.

3. For every connected graph G, we denote

x¢ = min x4(T) and yg =

max yg(4).
TeT(G) ASE(G)

Theorem 1 asserts that (I) x; = yg, for every connected graph G, and that (II)

¢ < yg, for every connected graph G. Proving statement (I) is easier than proving
statement (11). In this section we shall give two proofs of (I). Two proofs of (II)
will be given in Sections 4 and 5.

First proof of (I). Let G be a connected graph. Denote m = |E(G)|. If m = 0,
then G is trivial, and thus x; = yg. Let m = 1. Assume that for every connected
graph G* with the property that |E(G*)| < m, it is proved that Xg. = yg.. We
wish to prove that x; = yg.

There exists Te T(G) such that x4(T) = xg. If for every component F of G — E(T),
]E(F)I < 1, then no two cycles of G have a vertex in common, and therefore, xG(T) =
= P(G) = yg. Let there exist a component F of G — E(T) such that |E(F)| = 2.
Then there exist adjacent edges e, and e, of F such that xg(T) = Xg_g,e,(T)-
Therefore, Xg = XG_g,-e,» According to the induction assumption, Xxg_, —., =
2 YG-c,-e,» We shall prove that yg_. —., = Ve Consider 4 < E(G) such that
y6(A) = yg. Since e, and e, are adjacent edges of G, there exists at most one com-
ponent F, of G — A with the property that E(F. 0) N {es, e;} + 0. It is not difficult
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to show that Yg-e,-e(4 — {€y, €2}) = yo(4). Hence yg_o —e, = Vg, which com-
pletes the proof of (I).

Second proof of (I). Let G be a connected graph. Consider A S E(G) such that
vo(A) = yg. Let T e T(G). We denote

B.,, = {F € B(G — A); the subgraph of T induced by V(F) is connected} .

According to the definition of B(G — A), for each F e B(G — A), B(F) is odd. This
implies that for each F € B, |E(F) — E(T)| is odd. Therefore, it is not difficult to
see that for at least |B_,| — |A - E(T)l components H of G — E(T), lE(H)| is odd.
Hence, x(T) 2 |Beon| — |4 — E(T)|. It is clear that (T — A4) = ¢(G — 4) +
+ |B(G — A) — B,,y|. Since T is connected, we have that |E(T) N 4| = o(T — 4) —
— 1, and thus 0 = |B(G — 4) — B.,,| + ¢(G — 4) — 1 — |A N E(T)|. We have
that

con

xg Z %6(T) Z |Beon

— |4 - ET)| 2
2 b(G — A) + (G — A) = 1 — |4 = ye(4) = ys.
4. Let G be a connected graph. Since yg(0) = b(G), y¢ = 0. We denote by
MAX (G) the set of A = E(G) such that yg(4) = y¢ and for every A’ = E(G), if
y6(A’) = yg, then A is not a proper subset of A’. It is clear that

(2) if A€ MAX (G) and F is a component of G — A such that S(F) is even, then F
is trivial.

Lemma 1. Let G be a connected graph, Ae MAX (G), let F be a component of
G — A such that B(F) is odd, and let e be an edge of F. Then F — e is connected
and yp_, = 0.

Proof. Since A U {e} ¢ MAX(G), it follows that F — e is connected. Consider
an arbitrary Z < E(F — e). We have that

b((G—-(Auf{euZ)=bG—A) +b(F—e)—2)—1,
and
(G—(Au{eu2)=cG—-A)+c((F-e—-2Z)—1.
This implies that
ya(A v {e} UZ)= ys(4) + yr_o2) — 2.

Since A e MAX (G), y4(4 u {e} U Z) < ye(A). Therefore, yr_o(Z) < 2. It follows
from (1) that y;_,(Z) < 0. Hence y;_, = 0, which completes the proof of Lemma 1.

First proof of (II). Let G be a connected graph. Denote m = |E(G)|. The case
m = 0 is obvious. Let m = 1. Assume that for every connected graph G* with the
property that E(G*) < m, it is proved that xg« < yg+«. We wish to prove that
xg < yg.- We distinguish two cases.

Case 1. Assume that G contains a bridge. Let ¢, be a bridge in G, and let G, and G,
be the components of G — e,. According to the induction assumption, xs, < yg,
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S E(G,) such that yg,(4,) = yg, and yg,(4,) = ¥, Clearly, Vg (4,) + yg,(4,) =
= ys({eo} U A; U 4,). Hence yg, + yg, < yg. This implies that xg < y..

and xg, < yg,. It is clear that x; = xg, + Xq,. Consider Ay < E(G,) and A,

Case 2. Assume that G is bridgeless. If G is a cycle, then xg = 1 = y,;. We shall
assume that G is not a cycle. We distinguish two subcases.

Subcase 2.1. Assume that for every A e MAX (G) and every component F of
G — A, |E(F)| £ 1.

We first assume that G contains no loop. Consider an arbitrary A’ e MAX (G).
We have that b(G — A’) = 0. It follows from (2) that (G — A’) = |V(G)| and 4’ =
= E(G). Therefore, y; = |V(G)| — |E(G)] — 1 = —B(G). Since ys = 0, B(G) = 0,
and thus G is a tree. Since m = 1, G has a bridge, which is a contradiction.

We now assume that there exists a loop e; of G. We denote by u the vertex of G
incident with e,. Since G is bridgeless and difterent from a cycle, we get that m = 2
and for every edge e adjacent to e, in G, G — e, — e is connected. We shall show that
there exists an edge e, which is adjacent to e, in G and such that yg_., —¢, =< Vg-
Consider an arbitrary edge e, adjacent to e; in G. Assume that yg < Vo—e,—eo
Since B(G — e, — €p) = B(G) (mod 2), it follows from (1) that yG = Vo-e;-ep — 2-
Consider A, = E(G — e; — e,) such that yg_,, —o(4o) = V-e,—eo 1t is clear that
va(Ao U {0, €1}) = ¥G-e,-eo(Ao) — 2, and thus yg(A, U {eo, €,}) = yg. This means
that there exists 4 € MAX (G) such that e; € 4. Let F, be the component of G — 4
which contains u. According to the assumption in Subcase 2.1, |E(F o) £ 1.1 B(F,)
is even, then yg(4 — {e;}) > ys, which is a contradiction. Therefore, we assume
that B(F,) is odd. This means that there exists a loop e, of G such that E(F,) = {e,}.
Since e; and e, are adjacent loops of G, it is clear that yg_,,—., < Ye-

According to the induction hypothesis, Xg_o -, = VG-o,—c,- Consider Te€
e T(G — e; — ;) such that Xg_,, —o,(T) = Xg_g, -, 1t is easy to see that xg(T) <
< Xg-e,-,(T), and thus x5 < yg.

Subcase 2.2. Assume that there exists A€ MAX (G) such that for at least one
component F' of G — A, |E(F')| = 2. We denote B = B(G — A) and D =
= C(G — A) — B. As follows from (2), F’ € B. We denote by H the graph obtained
from G — (E(G) — A) in such a way that (i) for each F € B U D, the vertices of F
are identified into one vertex, say vy, and (ii) for each F € B, one new loop, say e,
incident with vy is added. Clearly, V(H) = {vy; F € B U D}.Denote E, = {e;; F € B}.
Obviously, E(H) = AU E,. If Z, < E(H) and ¢, € E,, then it is easy to see that
yu(Zo U {eo}) £ yu(Z,). This implies that
(3) yu = max yy(Z).

ZSA

Let Z be an arbitrary subset of A. There exists a one-to-one mapping h of C(G — Z)
onto C(H — Z) with the property that for every G, e C(G — Z) and every F€
€ C(G — A), if V(F)N V(Gy) * 0, then vy belongs to h(G,). Hence c(H — Z) =
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= (G — Z). Let G'e C(G — Z); compare B(G’) and B(h(G")); obviously, for every
Fe B, |E(F)| — |V(F)| = 0(mod 2), and — according to (2) — for every Fe D,
}E(F)‘ — 1I/(F)| = —1; it follows from the definition of the Betti number of a graph
that B(G’) = B(h(G’)) (mod 2). This implies that b(H — Z) = b(G — Z), and thus
yu(Z) = yo(Z). Combining the result of this observation with (3) and with the fact
that y4(A4) = yg, we get that

(4) Yy = yH(A) = Ye -

Consider an arbitrary Te T(H) such that x,(T) = xj. Denote 4, = A — E(T).
It is easy to sce that x,(T) = |Eo| — |4,|. Since b(H — A4) = |Eo|, «(H — 4) =
= |V(H)|, |E(T)| = |V(H)| — 1, and ye(A4) = yg, we have that yg = |Eo| — |4,].
It follows from the assumption in Subcase 2.2 that |E(H)| < m. According to the
induction hypothesis, x; < yy. Since yu(T) = yy and yg = |Eo| — |4;| £ x4(T),
it follows from (4) that

%) xu(T) = |Eo| — |44| = y6 -

It is not difficult to see that there exists a one-to-one mapping w of A, onto a subset
of E, such that for every e € 4, the edges e and w(e) are adjacent in H.

For every F € B, we choose one of the edges of F, say e(F), as follows: if there
exists an edge e e A; such that o(e) = ey, then there exists an edge e, of F such
that the edges e and e, are adjacent in G; in this case we put e(F) = e,; otherwise,
let e(F) be an arbitrary edge of F. Let F € B; it follows from Lemma 1 that F — ¢(F)
is connected and yr_.) = 0; according to the induction hypothesis, xp_ ) = 0.
For each F € B, we consider T € T(F — ¢(F)) such that xp_,(Tr) = 0.

Let T; be the subgraph of G induced by

E(T) vy E(Ty) .

It follows from (2) that for each Fe D, E(F) = 0. Clearly, T; e T(G). Since
Xp—er(Tr) = 0, for each Fe B, it follows from (5) that x(T;) £ |Eo| — |44 =
= xy(T), and thus x; < yg, which completes the proof of (II).

5. The proof of (II) given in Section 4 was purely graph-theoretical. In the present
section we shall give an alternative proof of (II); that proof depends on a matroid
theoretical theorem.

Let E be a finite set. We denote by exp E the set of subsets of E. We shall say that
an integer-valued function f defined on exp E is a rank function of E if for every 4,
A* < E it holds that

(@) /(4) z 0,
(ii) f(4) < |4],
(iii) if A* = 4, then f(4*) £ f(A), and
(v) (AU 4%) + f(An A%) £ f(A) + f(4%).
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Note that a finite set E together with a rank function of E form a matroid (cf.
Theorem 30A in [15]).

We shall say that a set E is partitioned into sets Ey, ..., E,(n 2 1)if E; U ... UE, =
= E and the sets E,, ..., E, are mutually disjoint.

Theorem 1c in [4] may be reformulated as follows:

Theorem C (Edmonds and Fulkerson). Let E be a finite set, and let f,, ..., f,
(n = 1) be rank functions of E. Assume that

fi(A) + ...+ f(4) = |A| , forevery ACE.
Then E can be partitioned into sets E, ..., E, such that

fi(E) + ... + f(E,) = |E| .

Let H be a graph, and let W < V(H). We denote by ry/(H) the number of com-
ponents F of H with the properties that F is a tree and V(F) < W.
Theorem C will be used in the proof of the following lemma:

Lemma 2. Let G be a connected graph, let m = 0 be an integer, and let W = V(G).
Assume that

(6) (G — A) + ryp(G— A) —(m+ 1) < |A| , forevery A < E(G).

Then E(G) can be partitioned into sets E; and E, such that G — E; e T(G) and
rw(G — E,) £ m.

Proof. Let first r,(G) = 0. Then G is a tree and W = V(G). If we put 4 = E(G),
then we can see from (6) that m = |V'(G)|. Clearly, 0 and E(G) are the desired sets E,
and E,, respectively.

Let now ry(G) = 0. We denote by f; and f, the mappings of exp E(G) into the
set of integers defined as follows:

fi(A) = 4] = (G — A) + 1 and f,(4) = |4] — ry(G — A)

for every A < E(G). It is easy to see that both f, and f, fulfil (i), (ii), and (iii). It
follows from a result of Tutte (see [13], p. 225) that f, fulfils (iv). It can be proved
similarly that f, fulfils (iv); details of the proof will be left to the reader. Therefore,
both f, and f, are rank functions of E(G). It follows from (6) that m + f,(4) +
+ f2(4) =2 [A| for every A = E(G). We denote by f, the integer-valued function on
exp E(G) defined as follows:

fo(A) = min (m, |A|) forevery A < E(G).

Since both f1 and f, fulfil (i), we bave that f,(4) + f2(4) = 0, and therefore, Al +

+ fi(4) + f2(A4) 2 |4 for every A = E(G). This implies that
fo(A) + f1(4) + f2(4) = |4] forevery 4 < E(G).
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Since f, is a rank function of E(G), it follows from Theorem C that E(G) can be
partitioned into sets Ey, E; and Ej such that fo(Eo) + f1(E,) + fo(E3) = |E(G)[
We put E; = E, U E,. Since f,(E}) = f,(E,) and fo(Eo) £ m, we have that f,(E}) +
+ f1(E5) = |E(G)| — m. Since f,(E}) = |Ej| — «(G — E}) + 1and f,(E;) = |E’zl -
— rw(G — E}), we have that

G —E})— 14+ ry(G—E)=m.

This means that E(G) can be partitioned into sets Ej and E; with the properties
that E; = Ef, (G — E{) = ¢(G — E}), and that every component of G — Ef is
a tree. Since Ej = Ej, ry(G — E3) < ry(G — E}). Therefore, ¢(G — Ef) — 1 +
+ rw(G — E3) < m. Since G is connected, there exists Q < Ef such that lQI =
=¢(G — E{) — 1 and ¢(G — (E{ — Q)) = 1. It follows from (iii) that ry(G —
— (E5 0 Q) = |E5 v Q| — f2(E5 v Q) < |E3| — fa(E3) + |Q] = ry(G — E3) +
+ (0| = rw(G - E5) + (G — E}) —1 < m. If we put E, = E{ — Q and E, =
= Ej U Q, we get the desired result, and thus the lemma is proved.

If H is a graph and W = V(H), then we denote by sy(H) the number of trivial
components F of H with the property that the only vertex of F belongs to W.

We shall prove one more lemma:

Lemma 3. Let G be a connected graph, let m = 0 be an integer, and let W < V(G).
Assume that

(7) (G —A)+sp(G—A)—(m+1) = IA[ , forevery A < E(G).

Then E(G) can be partitioned into sets E; and E, such that G — E, is a tree and
rw(G — E;) < m.

Proof. We wish to prove that (6) holds. On the contrary, we assume that there
exists A’ = E(G) such that

®) (G —A)+ ry(G—A)—(m+1)> |4].
As follows from (7) and (8), sy(G — A’) < ry(G — A’). Denote
R = {FeC(G — A'); F is a nontrivial tree and V(F) = W} .
Since sy(G — A’) < rp(G — A’), R + 0. Denote
' E' = U E(F).

FeR

It is clear that sy(G — (4’ U E)) = ry(G — (4’ U.E)) = ry(G — 4) + |E/|.
Moreover, ¢(G — (4" U E')) = ¢(G — A') + ]E'] It follows from (8) that

oG — (A VE)) + 54(G — (A VE)) — (m + 1) > |4] + |E],
which is a contradiction. This means that (6) holds. The desired result follows from

Lemma 2.
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We are now prepared to give the second proof of (II).

Second proof of (II). Let G be a connected graph. We wish to prove that x; < yg;
the structure of this proof (together with Lemma 1 and with the used parts of the
first proof of (II) is derived partially from the structure of Anderson’s proof [1] of
Tutte’s theorem on the existence of a I-factor.

If G is a trivial graph, then x; = 0 = y;. Let now G be non trivial. Assume that
for every connected graph G with |E(G*)| < |E(G)|, it is proved that x; < yg.
Consider 4 e MAX (G) Let B, D, H, and E, be defined in the same way as in the
first proof of (II). We denote W = {v;; Fe B} and J = H — E,. Then W < V(J)
and A = E(J). Obviously, |W| = |E,| = |B|-

We now make the following observation. Consider an arbitrary T’ e T(J). It
follows from the definitions of xy(T") and ry(J — E(T")) that x4(T") = ry(J —
— E(T) 2 |W| = |E(J — E(T"))|. If x4(T") > rg(J — E(T")), then it is not dif-
ficult to see that |E(J — E(T')| + ry(J — E(T")) > |W|, and therefore, ry(J —
— E(T)) > |W| — |E(J — E(T"))|. This implies that if ry(J — E(T")) < |W| -
— |E(J = E(T"))|, then x,(T") = |W| — |E(J — E(T").

Let Q be an arbitrary subset of A4; clearly, ¢(J — Q) = ¢(G — Q); moreover, we
have that sy(J — Q) < b(G — Q); since 6(Q) < yg, o(J — Q) + sy(J — Q) —
—(yg +1) = ]Ql 1t follows from Lemma 3 that A can be partitioned into sets 4,
and A, such that J — A, is a tree and ry{J — 4,) < y;. Denote T=J — A,.
Since E(J) = 4, TeT(J), and |A| = [V(J)] = 1 + |W| — yg, we get that |W| —
- |A1| = yg- Since ry(J — E(T)) £ yg = ]W| - ‘Al , it follows from our observa-
tion that (5) holds.

Let Eq = 0. Since |4y| = |Eo| — yg, A = E(T). It follows from (2) that G is a tree,
and thus xg = 0 = yg.

Let E, + (. Then the final part of the proof is identical with that of the first proof
of (1I).

Remark. In the present paper the proofs of (I) and (II) are not arranged chrono-
logically. In fact, the second proofs were found before the first ones.
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