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0. INTRODUCTION

In order to obtain some results on definability in the lattice ¥, of equational
theories (in a further part of this treatment), it is advantageous first to investigate
definability in the lattice & , of full sets of 4-terms. The present Part II is of auxiliary
character and it is devoted to this investigation. We give a long list of first-order
formulas in the language of lattice theory; some of them describe (if interpreted in & ,)
the structure of terms, other describe codes of finite sequences of terms or the con-
sequence relation between equations. We find all automorphisms of the lattice &,
and prove that every finitely generated member of & , is first-order definable in &,
up to automorphisms.

We preserve the terminology and notation introduced in Section 1 of [1]. More-
over, the following notation will be used.

Let 4 be a type. For every symbol F € 4 we denote by ny the arity of F; put 4, =
= {F e 4; np = k} for any k = 0. We denote by 4 the set of ordered pairs (F, i)
such that Fe 4 and ie{l, ..., ng}. Notice that if (F, i) e 4" then ny = 1. The set
{(F, i)e 4V; ny = 2} will be denoted by 4®. We denote by 4~ the set of finite
(not necessarily non-empty) sequences of unary symbols from 4. A type 4 is said
to be unary if np = 1for all F € 4; it is said to be strictly large if it contains a symbol
of arity >2.

For every term ¢ we define a non-negative integer ,10(1) as follows: if t € V then
Ao(t) = 05 if ¢ = F(15, ..., 1) then Ao(r) = 1 + Ag(t;) + ... + Ag(t,,)- Thus Ao() is
the number of occurrences of symbols from 4 in #; we have Ao(t) < A(t).

Whenever a lemma is not followed by its proof, it is either regarded to be evident
or follows easily from the preceding lemmas.
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1. DEFINABILITY IN GENERAL LATTICES

By a formula we shall always mean a first-order formula in the language of lattice
theory. Thus formulas are inscriptions composed of the symbols 1, &, VEL, —,
«,V¥,3,(,), =, £ and the variable symbols X,Y,Z, 4,B,C, X', X,,... (These
“variable symbols” are different from the variables x,, x,, X3, ... introduced in [1])

We shall work with very long formulas and so it is necessary to introduce abbrevia-
tions. Instead of saying that A is an abbreviation for a formula f, we shall write 4 = f.
For example:

Definition. (i) X + Y= 37X =Y.

() X<Y=XSY&X + VY.

[i) X, £X,£..2£X, =X, £ X,&...&X,_, £ X,.

(V) X, <X, <... <X, =X, <X, &...&X,_, <X,.
MX=Y,v..vY,=VIXZ2Zo(V,£Z2&...&Y, £ 2Z)).
(M) X=Y, A .. AY,=VZZSXo(ZS Y, &...&Z < Y,)).
(vii) 0o(X) = VYX L Y.
(vil)) 0y(X) =VYY < X.

Usually, every definition introducing an abbreviation for a formula will be followed
by a lemma explaining how to interpret this formula in a given lattice. If we wanted
to be precise, the lemma corresponding to wy(X) would have to look as follows:
Given a lattice L and an element a € L, the formula wy(X) is satisfied in L under the
interpretation X |+ a iff a is the least element of L. However, in order to be brief,
we shall express this less accurately as follows: Given a lattice L, wy(X) in L iff X
is the least element of L. Similarly, wl(X) in L iff X is the greatest element of L.

For every formula f(X, ...) we introduce the following abbreviations:

X f(X,..) = VXVY((f(X,...)&f(Y,..)) > X = Y).

MXf(X,..)=3Xf(X,..) &N X f(X,...).

VX1, o X f = VX, VX, . VXS,

X, .. X, f = 3X, 3X, ... 3X, f.

Xy oo X)) =X X(f& X, X, & X, £ X1 &...&X, + X, &
&X, ¥ X3& ... &X, + X, & ... & X,_; * X,).

A subset 4 of a lattice L is said to be definable if there exists a formula f(X) (with
a single free variable symbol X) such that an element of L satisfies f(X) in L iff it
belongs to 4. Evidently, every definable subset of L is closed under the automorphisms
of L. An element a € L is called definable if the set {a} is definable. An element a € L
is called definable up to automorphisms if the set {p(a); p e Aut (L)} is definable.
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2. THE LATTICE %,

Throughout this paper let 4 be a fixed type.

Recall that by a full subset of W, we mean any set U of A-terms such that if a e U,
be W, and a < b then b € U. Evidently, the union and the intersection of any system
of full subsets of W, is a full subset of W,. The set of full subsets of W, is thus a com-
plete distributive lattice; the empty set and the set W, are its extreme elements. The
lattice of full subsets of W, will be denoted by & ,.

For every set U = W, we denote by U* the full subset generated by U, i.e. U* =
={aeW,; b <a for some beU}. For every term t put t* = {r}* = {ae W,;
t < a}. If t, u are two terms, then t* < u* iff u < ¢; consequently, * = u*iff t ~ u.

Two subsets Uy, U, of W, are said to be similar if every term from U, is similar
to a term from U, and every term from U, is similar to a term from U,. For every
Uc WyputU~ = {ae Wy;a ~ b for some b e U}; evidently, U~ is just the greatest
subset of W, which is similar to U. For every term ¢ put t~ = {t}~. By a representative
subset of a set U = W, we mean any minimal subset of U which is similar to U;
thus R is a representative subset of U iff R < U and every term from U is similar to
exactly one term from R. By an irreducible subset of W, we mean a subset U such
that there is no pair a, b of elements of U with a < b.

For every U € & 4 denote by I(U) the set of all the terms a € U such that there is
no term b e U with b < a. Evidently, I(U) is an irreducible generating subset of U
and every two irreducible generating subsets of U are similar. For every Ue &,
fix a representative subset of I(U) and denote it by I(U). )

Evidently, if U,, U, are two irreducible subsets of W, then U} = Uj iff U,, U,
are similar. We have I(t*) = t~ for any term 1.

Definition. (i) 7(X) = Tw,(X)& VY, Z(X = Yv Z > (X = YVELX = Z)).
(i) X < Y= 1(X)&(Y)& Y < X.

(i) X, <X, <... <X, =X, <X, &...&X, ; < X,.

(iv) o;(X, Y) = (X)&X S Y& 13Z(Z < X & Z < Y& X * Z).

2.1. Lemma. (i) ©(X) in 7, iff X = a* for some term a.
(i) X € Yin 7, iff X = a* and Y = b* for some terms a, b with a < b.

. . % ok ok
(111) X, KX, <...X,,in F,0ff Xy = a1, X, =4a;,....,%X, = a, for some
terms ay, dz, ..., d, With a; < a, = ... = a,.

(iv) @y(X, Y) in F4 iff X = a* for some ael(Y).
(V) wo(X) in F,iff X = 0.
(vi) wy(X) in F 4 iff X = x* for some (or any) xe V.
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3. COVERS OF TERMS

Let a, b be two terms. We write a < b (and say that b is a cover of a or that a is
covered by b) if a < b and there is no term ¢ with a < ¢ < b.

Let (F,i)e A", te W, and k = 0. We define a set t[ k ] of similar terms as

F,i
follows: t 01 {t}; aet k+1 iff @ = F(yg, ..o Yiegs Dy Vig1s --es Yup) fOr
F,i F,i
some bet [Fk ] and some pairwise different variables y,, ..., y,. not belonging
o i

k1" .. k
to var (b) Moreover, tl:F ] denotes the set of terms similar to a term from t|:F ] .
s s 1

Let ¢ be a term, xe V and Fe 4. The term o%,,, ., 5(?) Where yy, ..., y,, are

pairwise different variables not contained in var (¢) will be denoted by o7(z). (It is
determined by ¢, x, F only up to similarity; for every triple ¢, x, F we fix one such
term o3(t).) ‘

3.1. Lemma. Let (F,i)ed™, k20, xeV, tex[Fk :I, ae W, Then a <t
L i

iﬁ’aexl: ! ] for some 1€ {0, ..., k}.
, i

].
3.2. Lemma. Let (F,i)e AV, te W,, k=0, uet[ ' ] aeW, t<asu

5 1

F,i

B
Then a e t[ ] for some 1 € {0, ..., k}.

Proof. By induction on t. If t € ¥, we can use 3.1. Let t = G(t,, ..., t,,;). Suppose
that there is a term a for which the assertion is not true and let us take a minimal such
term a. There are substitutions f, g such that f(¢) is a subterm of a and g(a) is a sub-

term of u. Evidently, there is a j € {0, ..., k} with g(a) e t[F] ] Jfj=0thena ~ ¢,
i

>

a contradiction. Hence j > 0;since a ¢ V, we get a = F(yl, v Vi Dy Vi ts ooy Yup)

for some term b and pairwise different variables y;, ..., y,, not contained in var (b)

. ) ..

If f(f)isa subterm of bthen t < b <a <wuand be t[F ] for some I by the mini-
, 1

I+ 1

mality of a; but then a € t[ ] , a contradiction. Thus f(f) is not a subterm
i

>

of b and so f(rf) = a. This implies that G = F and ty, ..., t;-.q, iy, +- o5 L, aTE

- . . . . k+1
pairwise different variables not contained in var (¢;). Hence ue t;l: P :|and
, i
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t; < a < u. By the induction hypothesis, ae€t;

-1 ..
aet A a contradiction.
L0

for some | = 1; hence
F,i

3.3. Lemma. Let te Wy, xeV, Fed, u = F(y, ..., y,;) where y,, ..., y,, are
pairwise different variables not belonging to var (t). Let b be a subterm of t such that

h(t) = o}(b) for some substitution h. Then either b =1 or te x[ k ] for some

F,i
k = 0 and some i€ {1, ..., ng}.

Proof. By induction on t. If te V, then evidently b = 1. Let t = G(t,, ..., t,,,).
Suppose b = t. There exists a j e {1, ..., ng} such that b is a subterm of ¢;.

Assume first be V. Then b = x, h(f) = o}(b) = u and evidently te x[ ! ] (for
5 1
some i).

Now assume that b ¢ V, so that b = G(bl, . bnG) for some by, ..., b,,. We have

h(t;) = o3(b;) and b; is a proper subterm of 1;. By the induction hypothesis, t; €

€ X P for some k = 0 and some ie{l, ey nF}. We have k = 1. Since b is a sub-
,

term of #;, we get G = F, i = j and bex[ : ]for some l e {1, ..., k}. Hence h(f) =

F,i

= oj(b)e x[l; _lw . This implies that te x[ p ]for some p.

s i

F,i

3.4. Proposition. Let t, w be two terms. Then t < w iff at least one of the following
four cases takes place:

(1) wet[F1 ] for some (F, i)e 4";
L i

(2) w ~ o}(t) for some x e var (t) and some F € A with np = 1;
(3) w ~ o§(t) for some x e var (t) and some F e A with ny = 0;

(4) w ~ a3(1) for some x, y € var (t) with x * y.

Proof. If (1) takes place, then t < w by 3.2. Let (2) take place and put u =
= F(yy, ..., Yuy) Where y,, ..., y,, are pairwise different variables not belonging to

var (t) Iftex [Fk ] for some k, i, then t < w follows from 3.1. Let téx[ k ] for
, 1 , 0

any k, i. Evidently #+ < w. Let t £ a < w. There are substitutions f, g such that

f(t) is a subterm of a and g(a) is a subterm of ¢}(t). Hence g f(r) is a subterm of (1),
so that either g f(¢) is a subterm of u or g f(t) = o}(b) for some subterm b of t. It
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follows from 3.3 that g f(f) = o}(). Hence f(t) = a and g(a) = o(¢). This easily
yields that either a ~ t or a ~ w, so that t < w. In the cases (3) and (4) it is easy
to prove t < w, as well.

Conversely, let z, w be two terms such that ¢ < w. There is a substitution f such that
f (t) is a subterm of w. Since t < f (t) < w, we can assume that either ¢ is a subterm
of wor f(f) = w. If ¢ is a subterm of w, then evidently (1) takes place. Let f() = w.

Assume first that there is a variable x € var (f) with f(x) ¢ V. Then f(x) =
= F(ty, ..., t,,) for some Fe 4 and 1, ...,1,.€ W,. We have t < o}(1) £ f(t) and
so w ~ o§(1).

Finally, let f(x) e V for all x e var (t). Since ¢ < w, we have f(x) = f(y) for some
x, y € var (f) with x # y. Then ¢ < ¢}(t) £ f(t) and so w ~ a}(1).

We say that w is a cover of ¢ of the first (second, third, fourth) kind if t < w and
in 3.4 the case (1) (the case (2), (3), (4), resp.) takes place.

3.5. Lemma. Let (F, i)e AV, te Wy, xe V, k 2 2, ue x[Fk ] ,var (u) N var (f) <
L

< {x}. Let b be a subterm of t such that h(t) = o;(b) for some substitution h. Then

either b =t or tex[Fl | for some | z 0.
L

Proof. By induction on t. If t€ ¥, then evidently b = 1. Let t = G(ty, ..., t,,)-
Suppose b # t. There exists a j € {1, ..., ng} such that b is a subterm of ;.

Assume first that be V. Then b = x, h(t) = o}(b) = u and we can use 3.1.

Now assume that b ¢ V, so that b = G(by, ..., b,,) for some by, ..., b,.. We have
h(t;) = o}(b;) and b; is a proper subterm of t;. By the induction hypothesis, ; &

exl: ! ]for some | = 0; we have [ = 1. Since b is a subterm of 1, we get G = F,
L0

j =1 and bex[m.

F,i

k+m ; by 3.1 we get tex P
F,i

] for some m = 0. It is easy to see that o}(b)e x[k + m] X
L i

, 0

Hence h(f) e x[ ] for some p = 0.

3.6. Lemma. Let (F,i)e A", te W,, xevar(t), k =2, ue x[Fk ] , var (u) 0
, i

N var (1) = {x}. Let there exist no p 2 0 with tex[ p.:| . Let aeW,, t<a <
i

< }(t). Then there exist an 1€ {0, ..., k} and a ve xl:Fl :| with var (v) N var (t) =
L i
= {x} such that a ~ o&{1).

Proof. There are substitutions f, g such that f(r) is a subterm of a and g(a) is
a subterm of ¢7(7). The term g f(¢) is a subterm of o7(¢) and so either g f(z) is a sub-
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term of u or g f(t) = o(b) for some subterm b of . By 3.1 and 3.5 we get g f(t) =
= o}(1). Hence f(f) = a and g(a) = o(t). This implies the result.

Definition. () X < Y=X < Y& X + Y&VZ(X <Z < Y- (Z=XVELZ=Y)).
() X<Y=X<Y&IZ(Y<ZE&VU(X < U K Z&X + U&U + Z) ~
- U=7Y)).

3.7. Lemma. (1) X<LYin F,iff X =t*¥ and Y = w* for some terms t, w with
t<w.

(i) X < Yin Z,iff X = t* and Y = w* for some terms t, w such that w is a cover
of t of either the first or the second kind.

Proof. (i) is evident. Let us prove (ii). If w is a cover of ¢ of the first kind then
t* < w* follows from 3.2. Let w be a cover of ¢ of the second kind. If there exists an

ie{l,..., ng} such that t¢x[Fp } for any p = 0 then * < w* follows from 3.6.

B

If there is no such i then evidently either te V or t ~ F(xy, ..., x,,.) or np = 1 and
t = F?x for some p = 0. However, in all these singular cases we easily get (* < w*.

Now let X < Y. There are terms ¢, w, a such that X = t*, Y=w* t<w<a
and whenever t < b < a then b ~ w. Suppose w = o(f) for some x, y € var (1)
with x & y. If @~ F(yy, .0, yicts W, Yists oo Vp) then ¢ < F(yy, .oy yioy, 8,
Vitts -0 Yap) < @ implies w ~ F(yy, ..., Yim1, b, Vit 15 - Yap), @ contradiction. If
a ~ oj(w) then ¢t < o%(t) < a implies w ~ 0%(?), a contradiction. If a ~ o7 (w) then
t < 07,(t) < a implies w ~ ¢ (1), a contradiction again. We have proved that the
case when w is a cover of the fourth kind is impossible. Similarly, w cannot be a cover
of the third kind.

4. SOME FORMULAS DESCRIBING THE STRUCTURE OF TERMS

For every symbol F € 4 put F* = t* where t = F(xy, ..., x,,). Moreover, for every

pair (F, i) € AV put (F, i)* = t* where t € x|: 2 ]and xeV.

Definition. (i) o(X) = 3¥(w,(Y) & ¥ < X).
(ii) ¢2(X, Y) = o(X) & (V) & VZ(((2) & Z < Y) > Z = X).
(ii)) @3(X, ¥) = (X, )& X < Y.
(iV) (P4(X) = 3Y(P3(Y:X)'
(v) Forevery n > 1 put
5(X) = o(X) & IX,, ..., X,)* (03(X, X 1) & ... & 905(X, X,)) .

Moreover, put #,(X) = o(X).
(vi) For every n = 0 put 0,(X) = &(X) & e+ 1(X)-
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4.1. Lemma. (i) o(X) in &, iff X = F* for some F e 4.

(i) ¢o(X,Y) in F, iff X = F* for some Fe A and Y = t* for some term t con-
taining no symbol from A other than F.

(i) ¢s(X, Y) in F, iff there is a pair (F, i)e AV such that X = F* and Y =

= (F, i)*.

(iv) (p4(X') il F 4 iff X = (F, i)* for some (F, i) e 4",

(v) Let n 2 0. Then a,(X) in F 4 iff X = F* for some F € 4 of arity Zn.

(vi) Let n = 0. Then o,(X) in F 4 iff X = F* for some F € 4,.

Definition. (i) ; = VX(«(X) — ao(X)).
(i) 5 = VX((X) ().

(iii) 65 = 3X, Y(ty(X) & 0y (Y) & X * Y).
(iv) 6, = 3X a,(X).

(v) 65 = 85 VELG,.

4.2. Lemma. (i) 6, in # 4 iff A contains only nullary symbols.

(ii) 6, in F, iff 4 is a unary type.

(iil) 65 in F 4 iff 4 contains at least two different unary symbols.

(iv) 64 in F 4 iff A is strictly large.

(v) 05 in F,iff A is large.

A term 1 is said to be balanced if it contains no nullary symbol from 4 and every
variable has at most one occurrence in .

Definition. (i) ¢5(X) = 1(X) & VY(2(Y) > Y < X).
(i) @e(X) = @s(X) &VY((X < Y& ¢5(Y)) » X < Y).
(i) @4(X) = os(X) & VY, Z(Y< Z&Z < X) > Y < Z).

4.3. Lemma. (i) ¢s(X) in #, iff X = t* for some term t containing no nullary
symbol.
(i) @o(X) in F4 iff X = t* for some term t containing no nullary symbol and
containing a single variable.
(iii) @4(X) in F 4 iff X = t* for some balanced term t.

For any term ¢t we define a set Q(f) of terms as follows: if ¢ is either a variable or
a nullary symbol from 4 then Q(t) = V;if t = F(ty, ..., t,,) where ny 2 1, then we
take terms u; € Q(ty), ..., u,. € Q(t,,) such that the sets var (uy), ..., var (u,,) are
pairwise disjoint and put Q(r) = {F(uy, ..., u,.)}~. Evidently, Q(¢) is a non-empty
set of similar balanced terms; the terms u e Q(f) are just the greatest balanced terms u
with the property u < t.

For any term ¢ and any variable x define a term K,(7) as follows: if ¢ is either
a variable or a nullary symbol from 4 then K (1) = x; if t = F(ty, ..., t,,) where

r = 1 then K, (1) = F(K(t,), ..., K(t,))- Moreover, put K(r) = {K.(t); xe V}.
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Definition. (i) ps(¥: ¥) = 1(X) & 0:(Y)&VZ(¢:(2) > (Z < X > Z < Y)).
(ii) @o(X, ¥) = oY) & 32(0s(X; Z) & g4(¥, 2).

4.4. Lemma. (i) <P8(X’ Y)in F4iff X = t* for some term t and Y = u* for some

ue Q1) ‘
(ii) @o(X, Y) inZF 4 iff X = t* for some term t and Y = u* for some u € K(t).

Definition. ¢ o(X, Y) = (P7(X) &X < Y&IZ,, Zy(oo(X, Z,) & ¢9(Y» Z,) &
& Z, < Z,).

4.5. Lemma. ¢,o(X, Y) in F, iff there exist two balanced terms t, u and a pair
1
(F, i) e 4V such that X = ¢*, Y = u* and either ue tliF ] or t = 5sx, u =
i
= SF(y1, - ) Jor some se A7) and x, y,, ..., yo € V.

Proof. The converse implication is evident. Let ¢ o(X, Y), X = t¥, Y = u*,
Evidently ¢, u are balanced terms and ¢ < u. Since t* < u*, it is enough to consider
the case u = oj(t) where x e var (1), v = F(yy, ..., Vup)s Hp 2 1 and yy, ..., y,, are
pairwise different variables not contained in var (). Put h = o;; for every term a
put ' = K,(a). Since ¢o(X, Y) is satisfied, we have ¢' < u’. There exists a substitu-
tion f such that f(t') is a subterm of «’. Evidently, either f(x) = F(x, ..., x) and ¢’
contains a single occurrence of x or f(x) = x. In the first case t = sx for some se
€ A7) and we are through. Consider the second case; ¢’ is a subterm of u’.

Let us prove by induction on a that if a is a balanced term not containing y4, ..., Ynp

i
p=0 and some i€ {1, ..., ng}. If a €V, this is evident. Let a = G(ay, ..., a,;)- There
is a unique je {1, ..., ng} with x € var (a;). We have G(aj, ..., a,;) = a’ and a’ is
a subterm of (h(a)) = G(a}, ..., aj_y, (h(a;)), ajs1, ... ay) and so G(ay, ..., ang)
is a subterm of (h(a;))". Hence a} is a subterm of (h(a;))'. By the induction hypothesis,

and such that a’ is a subterm of (h(a))’ and x € var (a) then a e x[ P ] for some

a;ex Fpi for some p = 0 and i e {1, ..., ng}. Since G(a}, ..., a,) is a subterm of
(h(a;)), we get G=F and df =..=4aj_; =ajy, =..=a, =x If

{ay, ..., a,} SV, we get aex[F1

aex p+1 .
F,i
. P . p+ 1]
Particularly, te x P forsomengand1e{1,...,np}.Butthenuex F
’l ’l

andsou et 1 .
F,i

']; in the remaining case we get i = j and
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Definition. (i) ¢, (X, Y) = ¢;o(X, ¥) & (YU((2(U) & U < X) — a,(U)) &
&V (@(U)& U < Y)) = 3Z, Z, Y(p1o(Y, Y) & y(2) & 03(Z, Z') & Z' < Y').
(i) ¢12(X, Y) = 0,(X, V) & (VZ(HZ) & Z < Y¥) > 04(2)) & 3Z', X', Y'(%,(2") &
&0 (X, X)& @, (Y, Y)&Z < X' < Y')) > VU, Uy((U,y) & (U,) & U, < Y&
&U, < Y) > Uy = Uy)).

4.6. Lemma. (i) ¢,,(X, Y) in & 4 iff there exist two balanced terms t, u and a pair
(F,i)e 4™ such that X = t*, Y= u* and either u e t[:Fl i] orng=1andt = sx,
u = sFx for some se A and xe V. ,

(i) @12(X, Y) in F , iff there exist two balanced terms t, u and a pair (F, i) e A
such that X = t*, Y = u* and either uet[Fli
of arity 22 and t = sx, u = sFx for some s‘e,A(') and xe V.

:| or np = 1, 4 contains no symbol

Definition. (i) ¢,3(X, Y) = &(X) & ¢7(Y) & X < Y& VZ,, Z,((Z, < Y&
&Z,<Y)~>(Z, <« Z,VELZ, < Z,)).

() 014X, Y, 2) = 0 3(X, V)& YK Z& VU, Up((Y < U, & U, < U, & U, <
< Z) - U, < U,).

(i) @1s(X, ¥, 2) = 00X, Y, 2) & X + Y&IY, 2, Zo(Z < Z, & Z < Z, &
&Z, + Z, 805X, Y)&Y <L Y & 14X, Y, Z,) & 0,4(X, Y, Z,)).

(iv) 016X, Y) = X < Y& 3Xy, Yi(015(Xy, Yy, V) &VZ(X < Z & VZ'((0,(2') &
&2 <Z)»Z =X,)~»3Z'(Y<Z' &Z < Z"))).

4.7. Lemma. (i) ¢,5(X,Y) in F, iff there are (F,i)e A", xeV, k21 and

te xl:Fk_ such that X = F* and Y = t*.
i

(i) @14(X, Y, Z) in F, iff there are (F,i)e AV, xeV, k2 1, tex k ] and
i

F,i
a substitution f mapping V into VU A, such that X = F*, Y = t* and Z = (f(t))*.
(i) ¢15(X, Y, Z) in F, iff there are (F,i)e AV, xeV, k=2, tex Fk j and

, i

a substitution f such that f(x) = x, f maps V\{x} into (V\{x}) U 4,, f(t) is not
a balanced term and X = F*, Y = t*, Z = (f(1))*.
(iv) @16(X,Y) in F, iff there are (F,i)ed™, xeV, k=1, tex Fk —‘ and
5 1|
a substitution f such that f(x) = x, f maps V~\{x} into (V\{x}) U 4, f({) is not
a balanced term and X = (f(t))*, Y= (U;(y!,...,y,,F)f(l))* where yy, ..., y,,. are
pairwise different variables not contained in var (f(z)).

Proof. The assertions (i), (ii) and (iii) and the converse implication in (iv) are
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easy. Let ¢ 4(X, Y). There exist (F,i)e 4", xeV, [ =2, ue x[ ! :land a sub-

F,i
stitution g such that g(x) = x, g(V~{x}) = (V\{x}) U 4, g(u) is not balanced
and Y = (g(u))*. Put k=1 — 1, so that k = 1. We evidently have X = (f(1))*
k ] and some substitution f with f(x) = x and f(V\{x})

F,i
< (V\{x}) U 4,. Since g(u) is not balanced, f(t) is not balanced and we have n; = 2.

for some term t e x[

.....

for some pairwise different variables y,, ..., y,,. not contained in var (f(z)) or

g(u) e f(1) I:Fl } . It is enough to exclude the second possibility. Suppose g(u) €
L

ef(t) [Fl :| . Let us take a term a € f(7) [Fl ] Since @4(X, Y), there exists a term b
2 l 2 ]
such that (g(u))* < b* and a* < b*.

Suppose first that b e g(u) [Gl :l for some G, s. There exists a substitution h
such that h(a) is a subterm of b; evidently h(f(1)) = g(u) € f(1) I:Fl :| . It is easy

to prove by induction on w that if w is a term such that some substitution maps w
1
] thenwex| ?

s

F,i Fi
term, a contradiction, since (f(1))* < (g(u))* and g(u) is not balanced.

onto a term from w[ :l for some p = 0. Hence f(¢) is a balanced

1 . N
Now suppose that b € G for some G, s. There exists a substitution h such that
) S

h(g(u)) is a subterm of b. Evidently h(f()) = a € (1) [Fl ];hence it follows sim-

ilarly as above that f(r)e X[Fp ] for some p = 0, a contradiction.
sJ

Finally, suppose that b ~ ¢} g(u) and b ~ oi(a) for some y,z and v =
= G(zy, .os Zug), W = H(zi, ..., z,,). We have g(u) ~ F(yy, ..., yi-1. f(1),
Vitts oo Yup) fOr sOME yy, ooy Yoo @ = F(¥1, ..y ¥io 1, (1), Yis1s - Yop) fOr some
Vis oo Yop 00()) ~ 05 f(1), a3(y;) €V, ¥y =y G(z1, ..., 2a5) ~ 0% f(1), evidently
a contradiction.

Definition. ¢,(X, Y) = X < Y& 94X, Y) & 3X', Y'(0s(X, X') & 04(Y, V') &
& ‘Plz(X/: Y'))-

4.8. Lemma. ¢,,(X, Y) in &, iff there exist two terms t, u and a pair (F, i) € 4V

1
such that X = t*, Y = u* and either u € tl: ] or np = 1, A contains no symbo]

F,i
of arity 22 and t = sx, u = sFx for some se A™) and x e V.
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Proof. The converse implication is easy (it follows from 4.7 that we cannot have
¢16(X, Y)). Let ¢;,(X, Y) and suppose that the assertion is false. We have X = ¢*,
Y = u* and u = o3(t) for some non-balanced terms ¢, u, some x € ¥ and some non-

nullary symbol F e 4. There exist terms ¢ € Q(r) and u’ e Q(u) with u’e t'[ ! :I
,i

for some G, i. Evidently G = F and x has exactly one occurrence in ¢. It is easy to
prove by induction on a that if a is a term containing a single occurrence of x and

such that Q(cf(a)) = Q(F(y1s - Yie1s @5 Vit 1s oo Vup)) (Where yy, ..., y,. are
pairwise different variables not contained in var (a)), then a = f(b) for some

bex [Fp :l with p = 0 and some substitution f such that f(x) = x and f(V'\ {x}) =
i

< (V~{x}) U 4. In particular, t = f(b) for some b and f with these properties.
We get ¢,4(X, Y), a contradiction.

Definition. ¢5(X, Y) = ¢,5(X, Y) & (71 325,(2)) - YU, X', Y((2(V) &
& po(X', X) & oY, Y)&U < X' & U < Y') > X' < Y')).

4.9. Lemma. ¢5(X, Y) in F 4 iff there exist two terms t, u and a pair (F, i)e 4V

. . 1 .
such that X = t*, Y = u* and either u € t[ ] or A contains only unary symbols

F,i
and t = sx, u = sFx for some se A and xe€ V.

Definition. ¢o(X, Y) =X < Y&VZ,, Z,(X < Z, < Y& X R Z, < Y) >
- (Z, < Z, VEL Z, < Z,)).

4.10. Lemma. ¢,o(X,Y) in F, iff X = a* and Y = b* for some terms a, b
such that a < b and whenever a < ¢ < b and a £ d £ b then either ¢ < d or
d< e

4.11. Lemma. Let a, b be two terms such that a || b (i.e. neither a < b nor b < a).

Let n > Ao(a), (F,i)e AV, te b |:Fn :| Then we do not have @,o(a*, t*) in & ;.
L i

Proof. Suppose ¢;q(a*, t*). Denote by m the least non-negative integer such

m
that a < t; for some ¢, € bl:F )
i

b

].Wehave ISm<nandt; =F(yy,...0i-1 by,
-1 . .

Vit1s -+ Vnp) fOr some t; € b[mF ) ] and pairwise different variables y;, ..., y,.
L

. . 1
not contained in var (f,). Let ap€a [F ], Ao = F(zys o0 Zimgs @, Zis 15 -0y Zyp)-
i
b

If it were ay < t, then evidently a < ¢,, a contradiction with the minimality of m.
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If it were t; < a, then a < 1, < a, and so t; ~ a,, since a < a,; hence t, ~ a,
a contradiction. We have proved a, | t,. Since @ £ 1, < 7 and a < ao, this implies

ap £ t. Hence m = n. Since n > (a), it follows that a e .\‘l: k :I for some x e V
L1

and k = 44(a). Hence a < t; for some ;€ b[ k ] Consequently m = k, a contra-
diction with m = n and k = ,(a). ) !

Definition. (i) ¢20(X, Y) = VZ(p,(Z, X) » 3N Z'(9,(Z', V)& Z < Z')) &
& VU(p4(U, Y) » 31 U'(¢4(U’, X) & U’ < U)).

(il) @2:(X, Y) = VZ(04(Z, X) - 3N Z'(04(Z', Y) & 910(Z, Z'))) & YU(9,(U, Y) >
- MU (p4(U’, X) & ¢,6(U’", U))).

(iﬁ) ‘Pzz(X, Y) =3X1, X5, X3, Xy, Y1, V0, Y3, ¥y, Z((sz(X, Xx) & ‘P21(X1, Xz) &
& (P21(X2a Xs) & §021(X3» X4) & (PZI(Ya Y1)& (P21(Y1a Yz) & (p21(Y2’ Ys) & ‘sz(Ysa Y4) &
& ‘on(Z, X4) & (on(Za Y4))-

4.12. Lemma. Let 4 be a large type. Let X, Ye & , be such that the sets I(X), I(Y)
are finite. Then ¢,,(X, Y) in # , iff Card (I(X)) = Card (I(Y)).

Proof. The direct implication is obvious. Let Card (I(X)) = Card (I(Y)) = k,
I(X) = {ay, ..., a}, I(Y) = {by, ..., b}. Let n > Max (Ao(ay), ..., Ao(ar), Ao(b1), ---
...» Zo(by)). Since 4 is large, there exist two different pairs (F, i), (G, j) in 4*). Put

X, = {cy, ..., }* where ¢, € a, Fn :| for all m,
L i

X, = {dy, ..., d,}* where d,eec, ! ],
1 G.J

X; = {ey, ..., e}* where e,ed, n + m:| ,
| F,i

Xy ={f1, ... fu}* where f,ee, 1 ,
_G:j_

Y, = {¢, ..., &}* where ¢,€b, ",
| F,i

Y, = {dy, ..., d}* where d,€¢, L] ,
| G, j

S 2n+m
Yy = {é,, ..., &}* where ¢&,ed _ ] ,

Y, = {fn cen fk}* where [, €&, ! T >

1 2n+ mil 1
Z ={g1 ..., gu}* where gneF(xy,...,x%, ’
{91, 94 (xs F)[G, ,][ F,i ][G,j]
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, 1 L0

(If Tis a set of terms then TI:FP :I denotes the set {t I:Fp ]; te T} ) Using 3.2 and

4.11, it is easy to verify @,,(X, Y).

Definition. ¢,5(X, Y, Z) = 010X, Y)&VZi(94(Z1, Z) - X < Z,) & VX,(X <
<X, < Yo MZ(01(Z1, 2) &VXH(X < X, < Y (X; < Z1 & X, < X4))))

4.13. Lemma. Let A be a large type. Let X, Ye #, be such that ¢,o(X,Y),
(X)), X + W,. Then there exists a Ze F 4 such that ®23(X, Y, Z) is satisfied
in #,.

Proof. We have X = a* and Y = b* for some terms a, b such that if x € V then
neither a = x nor x < a. There are terms a = ao < a; < ... < a, = b such that

any term u with a £ u < b is similar to some term from {ao, ..., a}. For every
je{0,...,k} put d; = Ay(a;); we have dy < d; < ... < d,. Put b, = b. Moreover,
for every je {0, ..., k — 1} we shall define a term b; as follows.

. 1" . . .
Consider first the case a;,, € a; ] for some (F, i)e A", Since 4 is large,

there exists a pair (G, iy) € 4" different from (F, i); let b; be any term from

. d,c-d,-+k—j'
! G, i,

Now consider the case a;,; ~ o}(a;) for some x € var (a;) and F € 4. Evidently,

there exists a pair (G, i) € 4" such that a; ¢ x[Gp :] for any p = 0; let b; be any

, 1
dy —d; + k —j
G,i ]
Finally, consider the case a;,, ~ 0}(a;) for some X, yevar(a;) with x # y.
dy—d; +k—j
F,i ]
Evidently, a; £ b;. Let us prove a;.; £ b;. In the first and the last cases it is
evident. Consider the case a;.; = o§(a;). If F # G, it is evident that a;,, £ b;.
Let F = G. Tt is easy to prove by induction on ¢ that if ¢ is a term and there exists

term from ajl:

Take any pair (F, i) e A" and let b; be any term from aj[

a substitution h such that h(t) e ¢ I:Fp ] for some p = 1 then te ,\[ 1 :| for some
i i

> )

g z0.1fa;,; < b;then f(a;,)is a subterm of b; for some substitution f; evidently

f(aj+l) = fo-i(aj)e a; [Fp :I for some p, so that a; e x [Fq :I for some ¢, a contra-
51 5 1
diction.
Let us prove that if ji,j2 €{0, ..., k} and j, < j, then b, | b,,. By the above
proved, b;, £ b;,. Since Ao(bj) = di + k — ji > diy + k — j, = Ao(b},), we can-

not have b; < b;,.
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Put Z = {by, ..., b}*. Now it is evident that ¢,5(X, Y. Z) is satisfied in % .

Definition. ¢,,(X;, Yy, X5, Y5) = ¢1o(X . YI)&QDW(XZ’ )& (X, =Y, &X, =
= Y,) VEL (X, < Y; & X, < Y,) VEL 34,, 4,, By, By, Cy, Co(X; < 4, & 4, <
<B,&B; <Y, &X, < A, & A, < B, & B, < Y, & ¢53(B1, Y1, Z,) &

& 9023(32, Y,, Zz) & (Pzz(zxs Zz)))-

4.14. Lemma. Let A be a large type. Then ¢,4(X1, Y1, X2, Y2) in F 4 iff there are
n=0 and terms ayg<a; <...<a, by<by<...<b, such that X, = agy,
Y, = af, X, = b, Y, = b¥, every term u with ay =< u £ a, is similar to some a;
and every term v with by < v £ b, is similar to some b;.

Definition. (i) ¢,5(X, X", U, Y, Z) = &(X) & «(U) & X # U & ¢5(X, X") &
&9 (X, Y)&X < Y& Y<Z&U < Z& T1918(Y, Z).

(i) 26(X. X, U, Y, Z) = ¢,5(X, X', U, Y, Z) & VYY", Z'((025(X, X", U, Y', Z') &
&Z <Z) - ¢4(Z,2)).

(it)) @27(X, X', U, Y, Z) = 3(X) & 93(X, X') & 015(X, V)& X' < Y& Y < Z &
E(X=U- 03X, 2)&(X + U » ¢,¢(X. X", U, Y, Z)).

(iv) 025(X. X', Y, Z) = 03(X, X') & ¢ 15(Y; Z) & (04(Y) = X = Z) & VA((T100,(Y)&
& ¢15(X, A)& X' < A) > 3B, C, D, E(w,(E) & ¢24(E, A, Y, B)& A < B& Z < B&
& (0,(X) > (D < B& 939(X, X', C, A, D)) &VZy, Z(Y <R 2, & 2, < Z, & Z, <
< B) = ¢15(Z1, Z,))))-

4.15. Lemma. (i) ¢,5(X, X, U, Y, Z) in F, iff there are (F,i)e AV, Ge 4,
er,ng,tex[ k]such that np 22, F + G, X = F*, X' = (F, i)*, U = G,

i
Y = t* and Z = (o%(t))* for some y e var (1).

(i) ¢26(X, X', U, Y, Z) in F, iff there are (F,i)e AV, Ged, xeV, k> 2,
S

tex P such that np 2 2, F G, X = F*, X' = (F,i)*, U= G* Y= t* a4
5 1]
Z = (og(1))*.

(iii) ¢27(X, X", U, Y, Z) in #, iff there are (F,i)e AV, Ged, xeV, k2 2,

fex Fk such that np =2, X = F*, X' = (F’ i)*, U=G* Y=1t* gnd Z =
5 l_
= (ee()*.

(iv) Let A be a large type. Then ¢,4(X, X', Y, Z) in F , iff there are (F,i)e qw
and t,u € WysuchthatX = F* X' = (F,i)* Y = t*, Z = u* and either uet[ 1 ]
s 1

or A is a unary type and t = sx, u = sFx for some se A and xe V.

Proof. (i) is evident.
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k
(ll) Let (,026(X, X', U,Y, Z), X=FX = (F, l)*’ U = G*, Y= t*, texl:F 1],

Z = (o%(t))*. We must prove y = x. If y # x, put ¥’ = (c}(1))* and Z' = (oF o%(1))*;
we evidently have ¢,5(X, X, U, Y, Z') and Z < Z', but not ¢18(Z, Z), a contra-
diction. The converse is easy.
(iii) is evident.
k
(iv) The converse implication is easy <if A = a* where a e x[F ] ,put B = b*
1
k :I).Now let p25(X, X", Y, Z), X = F*, X' = (F, i)*, Y=1*Z = u*.

F,i
Everything is evident if e V. Let ¢t ¢ V. Take a k > 4,(u), a variable x and a term

where b t[

ae x[ Fk i]' Since (pzs(X , XY, Z) is satisfied, there exist a finite sequence by, ..., by

of terms and a finite sequence (Gy, iy), ..., (Gy, i) of pairs from A such that
by < b; < ... < by, any term v with by < v < b, is similar to some term from

{bo,...,bk},b0=t,b1=u,a§bkandifje{l,...,k}theneitherbjebj_l[ 1 ]

i b
or 4 is unary, x e var (b;_,) and b; = 0%,(b;-); moreover, if np > 2 then there
exists a symbol H € 4 such that o3(a) < b,.

Consider first the case when 4 is unary. We have ¢ = sx for some se 47 and
x € V; there is a K € 4 such that either u = Ksx or u = sKx; it is enough to prove
K = F in the first case, since in the case u = sKx we could prove K = F analogously.
If s contains no symbols other than K, then K = F is evident. Let s contain other
symbols than K. Then b, = Ksx, b, = K,Ksx for some K,e4,...,b, =K, ...
... K,Ksx for some K,, ..., K, € 4. Since F¥x < K, ... K,Ksx and k is greater than
the length of s, we get K = F.

Now consider the case when 4 is not unary. Then b;eb;_ 1[ l.jl for all j.
o i

If np = 1, it is easy to prove G; = F, so that u et [Fl 1]. Let np = 2. Since oj(a) <

< by, there exists a substitution f such that f(a) is a subterm of b, and f(x) ¢ V.
Now it is evident that f(x) is a subterm of ¢ and there exists a pe {0, ..., k — 1}

such that ¢ = f(a’) where a’ is the subterm of a belonging to xI: P ]; we have
, i

” . . 1 .
by = f(a") where a” is the subterm of a belonging to x [pF+ ].Hence (Gy, iy) =

. 1
= (F, i) and t .
(F,i) and y e [F’ i]

s 1

. ];eﬁnizt)ion. 020(X, Y, Z) = (05 & 3X’ ¢25(X", X, Y, Z)) VEL (7105 & ¢4(X) &
< 4).
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4.16. Lemma. ¢,,(X, Y, Z) in F, iff there are (F,i)e A" and t,ue W, such

that X = (F, i)*, Y=1t* Z = u* and either u et[ 1 )

or A is a unary type and
F,i

t = sx, u = sFx for some se A and xe V.

Definition. ¢30(X, X', Y, Z, U) = ¢3(X, X') & ¢;5(X, Y) & X' < Y& FA(w,(A) &
& 0,4(A4,Y,Z, U))& VB, C((Z <« B& B< C& C < U) — ¢,5(X, X', B, C)).

4.17. Lemma. Let A be a large type. Then ¢3o(X, X", Y, Z, U) in F 4 iff there

k
jl and t,ue W, such that X = F*, X' =

are (F,i)e AV, k22, xeV, aex[
i

= (F,i)*, Y= a* Z = t*, U = u* and either uetl: k ] or A is unary and t = sx,

F,i
u = sF*x for some se A7),

Definition. ¢3;(X, Y) = X < Y& (7105 & FA(xp(A) & 4 < X)) > X = Y) &
& (55 - VX, X}, X2, B, C, D, C', D((030(X,, X}, B, X, C) & 030(X 1, X}, B, ¥, D) &
& ‘/’zg(Xz, C, Cl) & (Pz9(X2, D, D’)) - C < D/))-

4.18. Lemma. Let A be not a large unary type. Then ¢3y(X, Y) in F, iff X = t*
and Y = (f())* for some term t and substitution f.

Proof. The converse implication is evident. Let @3,(X, Y), X = 1*, Y = u*; we
have ¢ < u. If 4 is not large, it is evident that u = f(¢) for some substitution f.
Let 4 be large (and not unary). There exist two different pairs (F, i), (G, j) in 4.

Let us take an integer k such that k = 2 and k > )»o(u); let cet [Fk .], deu [Fk :I,
L1 L0

1 . . .
c'e cI: : .], d’e d[G ] Since ¢3,(X, Y), we have ¢’ < d’. There exists a substitu-

G.Jj
tion f such that f(c’) is a subterm of d'. Since k > Ao(u), f(¢') is not a subterm of u.

Since (F, i) * (G, /), f(¢’) is not a subterm of d. Hence f(¢') = d’ and so f(f) = u.

)

Definition. ¢32(X, Y, Z) = (716, & ¢20(X, Y, Z)) VEL (6, & ¢4(X) & 1(Y) & 1(Z) &
& YA(x(4) > (931(4; Y) = 3B(025(X, 4, B) & 934(B, 2)))))-

4.19. Lemma. ¢3,5(X, Y, Z) in F 4 iff there are (F, i)e A" and terms ay, ..., a,,

such that X = (F, i)*, Y = af and either Z = (F(ay, ..., a,.))* or 4 is unary and
Z = (0% x(a1))* where x is the variable contained in a;.
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5. FINITE SEQUENCES OF TERMS AND THE CONSEQUENCE RELATION;
THE CASE OF A LARGE BUT NOT STRICTLY LARGE TYPE

Denote by 4 the set of quadruples (F, G, w, x) such that F, Ge 4, F =*
we A7), x € Vand either w = GF or 4 is unary and w = FG.

Definition. o3(X 1, X2, ¥) = (X 1) & 0 (X2) & Xy #+ X, & 3X; 920(X2. X3, X1, ),

5.1. Lemma. ¢,4(X,,X,,Y) in &, iff there is a quadruple (F, G, w, x) € 4
such that X; = F*, X, = G*, Y = (wx)*.

Definition. (i) ¢,,(X, X,, ¥, X1, X3, Z) = 033(X1, X5, Y) & 015(X1, X)) &
8 p3(X0 X5) & X, + X1 & X, + X5 & Y < Z& A 030(X,, 4, X3, X1, Z).
(ii) <P35(X1> X, Y, Z) = 3X1a X5 @34(X1’ X, Y, X1, X5, Z)-
(iii) (p36(X1,X2, Y, A, B) = (p33(X1,X2, Y)&A < B&g07(B)&
& VX, X5, 23X, X5, A', A", B, B”(<p34(X1, X,, Y, X1, X5, Z) -
- (¢30(X,, X1, X/, A, A’) & (p30(X2, X5, X5, A, A”) & (,030(X1, Xy, X}, B, B’) &
& (pso(Xz, X5, X5, B, B") &Z < A"&Z < B"& A" < B"& ((p35(X1, X,, Y, A”) -
- ‘pZ(Xi’ A)) & ((Pss(Xx, X, Y, B") - (Pz(Xu B))))
(iv) (p37(X1, X, Y, A, B) = <p33(X1, X, Y)& EZ((/)33(X1, X, Z) &Y+Z&
& ¢36(X1, X,,Z, A, B))
(V) 038(X1 X5, ¥, X, A, B) = 9035(X;, X5, V) & IX'(X < X' & ¢,9(X', 4, B)) &
& ((52 - (¢36(X1a X, ¥ X, B) & (P37(X1a X,, Y, 4, B)))
(Vi) ¢139(X1, X, L X, X', A, B) = 9933(X1, X,, Y)& ax” (p30(X, X", X', A, B) &
& ((52 - ((/736(X1, X, Y X, B) & ¢37(X1, X, Y A, B)))

5.2. Lemma. Let A be a large but not strictly large type. Then:

() ¢34(X1, X5, ¥, X1, X3, Z) in F 4 iff there are (F, G, w, x) e A® and n,m = 2
such that X; = F*, X, = G* Y= (wx)*, X| = (F'x)*, X} = (G"x)* and either
w = GF, Z = (G™F"x)* or w = FG, Z = (F"G™x)*.

(i) @35(Xy, X5, Y, Z) in F4 iff there are (F, G, w, x)e A® and n,m = 2 such
that X, = F*, X, = G*, Y = (wx)* and either w = GF, Z = (G"‘F"x)* or w =
= FG, Z = (F"G™x)*.

(i) @36(X1, X5, Y, A, B) in F 4 iff there are (F, G, w, x) € A and sy, s, € A
such that X, = F*, X, = G*, Y= (wx)*, A = (s;x)*, B = (s5,x)* and either
w = GF, s, is a beginning of s, or w = FG, s, is an end of s,.

(iv) @31(X1, X5, Y, A, B) in 4 iff A is unary and there are (F, G, w, x) € 4@
and sy, s, € A7) such that X, = F*, X, = G*, Y = (wx)*, 4 = (5,x)*, B = (s,%)*
and either w = GF, s, is an end of 5, or w = FG, sy is a beginning of s,.

(V) @38(X1, X5, Y, X, A, B) in #, iff there are (F, G, w,x) e A®, He 4,, s€ A)
and ye VU Ay such that X; = F*, X, = G*, Y= (wx)*, X = H*, A= (sy)*
and either w = GF, B = (Hsy)* or w = FG, B = (sHy)*.
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(Vi) @30(Xy, X5, Y, X, X', A, B) in F, iff there are (F, G, w,x)e 4™, He 4,,
n=2sed) and ye VU A, such that X, = F*, X, = G*, Y = (wx)*, X = H*,
X' = (H"x)*, A = (sy)* and either w = GF, B = (H"sy)* or w = FG, B = (sH"y)*.

Proof. We shall prove only the direct implication in (iii); everything else is evident.
Let ¢36(Xy, X5, Y, 4, B); let X, = F*, X, = G*, Y = (wx)*, A = (s;x)*, B =
= (s,x)*. If 4 is not unary then w = GF and it is evident that s, is a beginning of s,.
Let 4 be unary. It is enough to consider the case w = GF (the case w = FG would
be similar). Take an n = 2 such that n > Ao(s,x). Put X| = (F'x)*, X} = (G"x)*,
Z = (G"F"x)*. Since ¢34(X;, X», Y, A, B)is satisfied, there are sequences a’, a”, b’, b"e
€ A7) such that a’ € {F's,, s,F"}, a” € {G"a’, a'G"}, b’ € {F"s,, s,F"}, b" € {G"b’, b'G"},
G"F'x £ a’x, G"F'x < b"x, a’x £ b"x and such that if a” = G*F' for some k, | = 2
then s, contains only F and if b” = G*F' for some k, I = 2 then s, contains only F.
Since n > Ag(s,x), it is evident that a” = G"F"s; and b” = G"F"s,; since a” < b”,
it follows that s, is a beginning of s,.

Let 4 be not strictly large; let (F, G, w, x) € 4A® and let t,, ..., f, be a non-empty
finite sequence of terms. A pair (4, D) is said to be an (F, G, w, x)-code of 1y, ..., t,
(in #,) if Ae #,, D = (F'x)* and there are positive integers ky, ..., k, such that
either w = GF and I(4) = {F""GFGt,, ..., F"GF"Gt,}~ or w = FG and I(4) =
= {s,GFGF"y,, ..., s,GF"GF*"y,}~ where t; = s,y;, y;€ V.

Let Fe4, and let t = sy be a term (where se 4 and ye VU 4,). Define
a term z as follows: if y € 4, then z = y; if y = x; for some i = 1 then z = Fiy,
The pair (*, z*) is called the fine F-code of 1.

Let (F, G, w, x) € A and let t,, ..., t, be a non-empty finite sequence of terms.
A triple (4. B, D) is called a fine (F, G, w, x)-code of t,, ..., 1, (in F ) if (4, D) is an
(F, G, w, x)-code of t,,...,1, and (B, D) is an (F, G, w, x)-code of a sequence
Zy, ... z, such that for every ie {1, ..., n} the pair (¢, z) is the fine F-code of ;.

5.3. Lemma. Let A be not strictly large and let (F, G, w,x) € A®. Then every
non-empty finite sequence of terms has at least one (F, G, w, x)-code and at least
one fine (F, G, w, x)-code. If (A, D) is an (F, G, w, x)-code of two sequences ti, ..., 1,
anduy, ..., u,, thenn = mand t; ~ uy, ..., t, ~ u,. If (4, B, D) is a fine (F, G, w, x)-
code of two sequences ty, ..., t, and uy, ..., U,, then n = mand t; = uy, ..., t, = U,

Proof. Let t4,...,t, be a non-empty finite sequence of terms. Take an integer
k > Max (A(t), ..., A(t,)) and put D = (F"x)*. If w = GF, put A = {F*GFGt,, ...
..., F'GF"Gt,}*; if w = FG, put A = {s;GFGF"y,, ..., s,GF"GF*y,}* where t; =
= s;y;. Since k > A(t;) for all i, it is evident that the terms F*GF'Gt, (the terms
s;GF'GF*y,, resp.) are pairwise uncomparable and so (4, D) is an (F, G, w, x)-code
of ty, ..., t,. The existence of a fine code follows easily. The rest is obvious.

Definition. (i) 40(X1, X5,Y, A, Z, B, C) = ¢33(X 1, X,,Y) & ¢,3(X,, Z) & ¢,(B, 4) &
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& HZ', Cl’ C27 C3((pl3(Xl’ZI) & (,038(X1, XZ? Y; XZ’ C’ Cl) & (P39(X17 X2, Y9 Xla Z, Cl;
Cz) & ‘Pss(Xu X5, Y, X5, Cy, C3) & 4’39(X1, X,, Y, X,,Z, Cs, B))

(ii) (p41(X1, X, Y, A, D) = q)33(X1, X,, Y)& (p”(XI, D)& VB 3zZ, C((pl(B, A) —
- (Z < D&(p4O(X1,X2, Y,A,Z, B, C)))& VZ(XI <Z<D-3"B3C (p40(X1, X,,
Y, A, Z, B, €)).

(iii) (p42(X1,X2, Y, A, D) = ({’41(X1,X2, Y, A, D)&Vzp Z,, By, B,, C(((Pao(Xsz,
)’; Aa Zl’ Bls C)& (p40(X19 XZ; Ya A’ ZZ: BZ3 C)) - Zl = ZZ)

(iv) 943(U, A4, B) = o,(U) & ((¢+(4) & ¢,3(U, B)) VEL (2o(B) & B < A)).

(V) 044Xy, X2, Y, A, B, D) = ¢4y(X 1, X5, Y, A, D) & ¢44(X . X,, Y, B, D) &

& VZ 344, A,, By, Bz(X1 <XZ<D~- ((P40(X1a X,, YA Z, Ay, Az) & (P40(X1: X,,
Y; B’ Z’ Bl) BZ) & (P43(X1, AZ! BZ)))

5.4. Lemma. Let 4 be a large but not strictly large type. Then:

() @so(Xy, X5, Y. A, Z, B, C) in F 4 iff there are (F, G, w,x)e 4, n,m 2 1,
s1,52€ 4 and ye VU 4q such that X, = F*, X, = G*, Y = (wx)*, Z = (F'x)*,
B = (s,)*, C = (s,)*, s,y€l(A) and either w = GF, s, = F"GF"Gs, or w =
= FG, s, = s,GF"GF™.

(i) ¢41(Xy, X5, Y, A, D) in F 4 iff there are (F, G, w, x)€ A and a non-empty
finite sequence ti,...,t, of terms such that X, = F*, X, = G*, Y= (wx)* and
(4, D) is an (F, G, w, x)-code of ty, ..., ,.

(iil) @42(Xy, X5, Y, A, D) in F 4 iff there are (F, G, w, x) € A® and a non-empty
finite sequence ty, ..., t, of pairwise non-similar terms such that X, = F*, X, =
= G*, Y = (wx)* and (4, D) is an (F, G, w, x)-code of 1, ..., 1,

(iv) @43(U, 4, B) in & 4 iff there are F e A, and a term t such that U = F* and
(4, B) is the fine F-code of t.

(V) @sa(X1, X5, Y, A, B, D) in F, iff there are (F,G,w,x)e A® and a non-
empty finite sequence t,, ..., t, of terms such that X, = F*, X, = G*, Y = (wx)*
and (A, B, D) is a fine (F, G, w, x)-code of ty, ..., 1,

Definition. (i) @4s5(4, B)=13X,,X,, Y, A, B, Ay, A,, D(qos(A, A) & ¢s(B, B') &
& (P42(X1a X, Y, Ay, D) & (/742(X1, X5, Y, A,, D) & VC(§D36(X1, X,, Y, C, A’) «>
—3IZ,U@uo(X1, X5, Y, A1, Z, U, C)) & VC(@36(X 1, X5, Y, C, B') > 3Z, Up,o( X1, X5,
Y, 4,5, Z, U, C)).

(i) @ae(Xy1, X2, Y, A, B) = 34", D, Uy, Us(4s(X, X5, Y, A, D) & 0ao(X1, X5, Y,
A, X, Uy, A) & 0u0(Xy, X5, Y, A', D, Uy, B)&VZy, Z, 3X, By, B,, Cy, Co((Xx, <
RZ,1 &2, <Z&Z, < D) - (¢4O(X1, X5, Y, A", Zy, By, Cl) & (P40(X1’ X,, Y, A,
Z,, B, Cz) & (PSS(Xh X5, ¥, X, Cy, Cz))))

(ii)) @47(X1, X2, ¥, A, B, C) = 936(X1, X2, Y, 4, C) & @46(X;, X5, ¥, B, C) &

& (w4(A) » B = C) & (2,(4) = ¢35(X1, X5, ¥, 4, B, C)) & ((w4(4) & T105(4)) =
— 34,, C1(§039(X17 X2, Y, Xy, Ay, B, Cl) & ‘P45(A: Al) & (045(C, Cl)))'
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5.5. Lemma. Ler 4 be a large but not strictly large type. Then:

(i) @as(A, B) in F, iff A = t* and B = u* for some terms t, y with At) = iu).

(i) @4(Xy, X5, Y, A, B) in F 4 iff there are (F, G, w,x)€ 4 s s, €A and
yeVud, such that X, = F* X, =G* Y= (wx)* A= (s;y)% B=(s0)*
and either w = GF, s, is an end of s, or w = FG, sy is a beginning of s,.

(iii) 04(X1, X5, Y, A, B, C) in F 4 iff there are (F, G, w, X) € A4 gnd sy, s, € A7)
such that X, = F*, X, = G* Y= (wx)*, A= (s,x)* B= (s,x)* and either
w = GF, C = (s;5,x)* or w = FG, C = (sp5,x)*.

Definition. (i) ¢,8(X;, X5, Y, A, U, B,U,,C, U3, D,U)) =A< C&B < D&
& 943(X1, A, Uy) & 043(X 1, B, Uy) & 945(X ¢, C, Us) & @43(X 4, D, U, &34, B, C,
D', Cy, Cy, Dy, Dy, E(pg(A, A') & @4(B, B') & ¢4(C, C') & ¢g(D, D) & ¢4r(X 1, X5,
Y, A, Cy, Cz) & (P47(X1’ X, Y E, Cy, C') & (/747(X1, X,, Y, B, Dy, Dz) & <p47(X1, X,
Y, E, Dy, D') & (2(Uy) = 0,(C,)) & (2o(Us) — @4(D,)) & (@4(U,) & U, = U,) -
- (C, = D, & Uy = U,))).

In the following two definitions let s(4, B, D) be an abbreviation for ¢,4(X;, X,
Y, A, B, D) and let A(Z) = M be an abbreviation for 3H ¢4o(Xy, X,, Y, A, Z. H, M).

(i) @ao(Xy, X5, Y, Ay, By, Ay, By, D, Cy, Dy, C,, D) = s(Ay, By, D) &

& 5(A,, By, D) & 3P, Q, E(s(P, Q, E) & P(X,) = C; & Q(X;) = D, & P(E) = C, &
& Q(E) = D, &VZ,,Z,3Z, M{,N{, M), N,, P;, 0, P,, 05(X, <« Z, & Z, < Z, &
&Z, < E) > (A(Z) = M; & B,(Z) = N, & A5(Z) = M, & By(Z) = N, & P(Z,) =
=P & Q(Z1) =0 &P(Zz) =P & Q(Zz) = QZ&(§04B(XUX2, Y, M{,Ny, M5, N,,
Py, Q1. Py, 03) VEL 9us(X 1, X5, Y, My, Ny, My, N3, Po, O, Py, Q).

(iii) (pSO(Xla X, Y, A, Uy, B,U,, C, Us. D, U4) = 34,, By, 4,, Bz(‘P49(X1’ X5 Y,
Ay, By, A5, By, X, C, Uy, D, U,) & Ay(X) = A& By(X,) = U; & 4,(X,) = B&
& By(X,) = U,).

5.6. Lemma. Let A be a large but not strictly large type. Let F, Ge 4, F *+ G,
xeV, X, = F* X, = G*, Y = (GFx)*. Then:

(i) @4s(X1, X5, Y, A, Uy, B,U,, C,Us, D, U,) in F, iff there are terms a, b, ¢, d
such that (A, U,), (B, U,), (C, Us), (D, Uy) are the fine F-codes of a, b, ¢, d, respec-
tively, and (c, d) is an immediate consequence of (a, b).

(i) @ao(Xy, X5, Y, Ay, By, Ay, By, D, Cy, Dy, C,, Dy) in F 4 iff there are n = 1
and terms t,u, ty, ..., t,, Uy, ..., u, such that (A, By, D) is a fine (F, G, GF, x)-code
of ty, ..ty (Az, By, D) is a fine (F, G, GF, x)-code of uy, ..., u,, (Cy, Dy) is the
fine F-code of t, (C,, D,) is the fine F-code of u and (t,u) is a consequence of
{(t3, uy)y ooy (1 uy)} ‘

(i) ¢s5o(X1, X3, Y, 4, Uy, B, Uy, C, Uy, D, U,) in F 4 iff there are terms a, b, ¢, d
such that (A, U,), (B, U,), (C, Us), (D, U,) are the fine F-codes of a, b, c, d, respec-
tively, and (c, d) is a consequence of (a, b).
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6. FINITE SEQUENCES OF TERMS AND THE CONSEQUENCE RELATION;
THE CASE OF A STRICTLY LARGE TYPE

Let (al, o an) and (bl, v b,,,) be two finite sequences of terms. We write
(ag .. a,) ~ (by, ... by) if m = m and there is an automorphism f of W, with
fla,) = by, ..., f(a,) = b,

Let (F, i)e A® and x e V. Then for every finite sequence ay, ..., a, of terms we
define a term HF’,',x(al, o a,,) as follows: if n = 0, this term equals x; if n = 1
then Hp; (ay, ..., a,) = F(uy, ..yu,_q, Uy, ..oy u,,) Where uy = ... = u,, = a,
and t = Hp; (ay, s Gy1)-

Let (F,i)e 4® and let ay, ..., a, be a finite sequence of terms. Then we put
Hg (ay, ..., a,) = t* where t = Hy; (ay, ..., a,) and x is a variable not belonging
to var (a;) U ... v var(a,). Evidently, Hy {(a, ..., a,) = Hg(by, ..., b,) iff
(ags - ay) ~ (by, o-os byy).

Definition. (i) ¢s5(X, Y, Z, X', X", Z') = qo4(X) & o (X) & (X )& X + X' &
EX +X'&X + X' &IU(AU)&U < X&U < X' &U < X") & 0,9(X, Y, Z) &
&Z <7 &Z < Z &3A(93,(X', A, Z') & 935(X", A, Z')).

(ii) @s52(X, Y. U) = 04(X) & o(Y) & (U) & VA(93,(U, A) < 3Z(916(X, Y, Z) &

& 03,(Z, A) &YX, X", Z(05:i(X, Y, Z, X', X", Z') » ¢3:(Z', A)))).
(iil) @s3(X,Y) = 0u(X) & IX, Y(p13(X, Y) &X' < X K/ Y &Y < Y & %y(X")).
(iv) ¢0s54(X, Y, Z) = 0s53(X, Z) & (Y, 2) & VA((A < Y& T104(4, Z)) -

— 3B(psy(X, A, B)& B < Y)).
(v) @ss(X, Y) = 3Z(ps4(X, Y, 2) & VY (9 54(X, Y, Z) > Y < Y')).

6.1. Lemma. Let A be a strictly large type. Then:

() ¢5:(X, ¥, Z, X", X", Z') in F, iff there are F € A, three pairwise different
numbers i, j, ke {1,...,np}, a term t and pairwise different variables y,, ..., y,,.
not belonging to var (i) such that X = (F, i)*, X' = (F, j)*, X" = (F, k)*, Y = t*,
Z = 1 Where 4 = F{ysson Yoo b Yesse o g) and 7 = (2(0)* where y = v,
and z = y,.

(ii) @sx(X, Y, U) in &, iff there are (F, i)e AV, te Wy and x € V\var (1) such
that X = (F,i)*, Y=t*and U = (F(yy, ..., Yi—t> & Vit 15 s Vur))¥ Where yy = ...
e = Yy = X

k
(iii) @s3(X,Y) in F, iff there are (F,i)eA'®, k =z 0, xeV and aex[ :l
i

such that X = (F, i)* and Y = a*.
(iv) @ss(X, Y) in F, iff there are (F,i)e A and a finite sequence y, ..., y,
of pairwise different variables such that X = (F, i)* and Y = Hf',i()’b oo .Vn)~

Proof. Only (iv) is not quite obvious. Let ¢ss(X, Y). There are (F, i)e 4,
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teW,xeV,n=0anda ex|: " :Isuch that X = (F, i)*, Y= r* and ¢s4(X, Y, a*)

F,i
is satisfied. Let x, yy, ..., ¥, be pairwise different variables. It is easy to prove by
induction on ke {0, ..., n} that Hp; (yy, ..., ) < 1. Hence Hp; (V1,0 V) = 1.
On the other hand, we evidently have ¢s,(X, Hp (71, ..., ¥) a¥) and so ¢ <
< Hp i (i oo y,)- This proves t ~ Hp; (vy, ..., y)s L6 Y= Hpi(yis ooy ).

Conversely, let X = (F,i)* and Y= Hp (..., y,); put Z = a* where ae
€ x[Fn ] Evidently, ¢s4(X, Y, Z) is satisfied; if Y’ = u* and ¢s4(X, Y', Z), then

L

Hp; (y1, ..., yo) < u can be proved by induction on k€ {0, ..., n}, so that Y < Y".

Definition. (i) ¢so(X, ¥, U) = 3Z, U, Yy, Y, Yi(9s5(X, Z) & ¢53(X, U) &
&os3(X,U)&U < U & pg(Z, U) & Y < Y, & (Y, Y) & (Y1, V) & V' < Y1 &
& ¢34(Z, V)& 93, (U, Y;) & T193,(U", Y) &(¢s5(X, Y) VEL T19,6(X, ¥, Y)) &

& (04(U) > 04(Y)))
(ii) <p57(X, Y) =3JU <p56(X, Y, U).

6.2. Lemma. Let A be a strictly large type. Then:

() ¢se(X, Y, U) in F 4 iff there are (F, i)e A, x eV and a finite sequence
ay, ..., a, of terms such that X = (F, i)*, Y= Hp (ay, ..., a,) and U = a* where

h
aex .
-]

(i) @s+(X,Y) in F, iff there are (F,i)e A%® and a finite sequence aj, ..., a,
of terms such that X = (F, i)* and Y = Hy (ay, ..., a,).

Proof. Let ¢s54(X, Y, U), so that there are Z, U’, Y}, Y', Y; as above. We have
X = (F, i)* for some (F,i)ed®, Z = * where t = Hy; (yy,..., y,) for some

. . . n
n = 0 and pairwise different variables x, y;, ..., y,, U = a® where a € x [F :I
L

U’ = b* where bex|:nF+ _l:l and Y = (f(¢))* for some substitution f. If n = 0,
i

then re ¥V and everything is evident. Let n = 1. Then evidently Y; = (0% f(1))*
for some z e var (f(1)) and Ge A\ 4,. Since there are terms ce Q(f(¢)) and de
€ Q(o% (1)) with ¢ <d, z has a single occurrence in f(z). Since ¢3,(U’, Y;) &
& T1¢5,(U’, Y), we have z = f(x). Hence Y = Hp ((f(y1), --- /(3,))-

Conversely, if X = (F, i)*, Y= Hy (ay, ..., a,) and U = a* where a€ x[ " ],
. X
we can put Z = (Hp; (y1,-.-- ¥n))* where x,yy, ..., ¥, are pairwise different
variables, U’ = b* where b e xl:n + _l:l and Y; = (65(Hp i \(y1, ..., y,)))* and define
L i

Y', Yi by @g(Y, Y') and @g(Y;, Y;). (ii) is evident.
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Definition. (i) ¢4(X, Y, Z, U) = ¢55(X, Y) & 1(2) & (V) & (0,(Y) » Z = U) &
&(Y<X = ¢3,(X, Z, U) & (X < Y= VA(p,(4, 7)< 3B, C(¢30(B, X, Y, 4, C) &
& <P31(C’ U))))

(i) @so(X, v,, Y;) = 3U,, Uy, Us(ese(X, Yy, U)& (P56(X’ Y2, U,) & 954(X, Us,
Yy, Y5) & 054(X, Uy, Uy, Uy)).

(ii)) @oo(X, Y, Z, U) = 34, B, C(gse(X, Y, 4) & e B,Z)& ¢so(X, B, Y) &

& 94(C) & ¢3,(C, U, B)).

() 961(X, Y, ¥2) = 32,, Zo(05o(X, Y1, Z)) & g (X, Y2 2) & 2, < Z, &

& 031(Yo V) & VY5((056(X, Vs, Z5) & 93,(Ys, Yy)) = ga1(Yar Y2))).

6.3. Lemma. Let A be a strictly large type. Then.
k
() ¢ss(X, v, Z, U) in F, iff there are (F,i)e 42, k Z 0, xeV,aex [F i]

and terms tq, ..., t, such that X = (F, )*, Y = a*, 7 = 1o, U = ¢ and such that
whenever j & {1, ..., k} then t; = F(py, ..., Piys ;| pivts - Pu) for some terms
P15 -5 Pnpr

(i) @so(X, Yy, Y,) in F, iff there are (F, i)e A a finite sequence ay, ..., a,
of terms and a number ke {0, ..., n} such that X < (F, iy, Y= Hg (as, ..., @)
and Y, = Hp (ay, ..., a,).

(i) @so(X, Y, Z, U) in F, iff there are (F,i)e A, a finite sequence ay, ..., a,
of terms and a number ke {l,...,n} such that X < (F, i), Y= Hg(ay, ..., a,),

Z = a* whereaex[ ‘k.]ander,andU———a,’f.
L

(iv) @61(X, Yy, Y,) in F 4 iff there are (F,i)e A, a finite sequence ay, ..., a,
of terms and a number ke {1, ..., n + 1} such that X < (F, i), Y, = Hp {ay, ..., a,)
and Y, = Hy (ay, ..., a,).

Definition. (i) ¢¢(X, Y) = 3Z(ps6(X, Y, Z) & VY (956X, Y, Z) &
&VZ', A, B((peo(X, Y, Z', A) & @so(X, Y', Z', B)) — A = B)) - ¢a:(Y, Y))).
(ii) (Pss(X’ Y, Yo, Ys) = @62(X’ Ys)& 3Z,, Z,, Z5, X'((Pse(Xa Y, Zl)&
& (Pss(Xa Y,, Zz) & (Pss(X, Ys, 23) & (Pso(X'» X,Z,Z,, Z3) & (Psg(X’ Y, Y3) &
& ¢61(X, Y, 1))
(i) @ea(X, 4, Y) = IZ((Z) & ¢56(X, Y, Z) & @6o(X, Y, Z, A)).
(iv) @6s(X, Y, A, Y') = Y (06a(X, 4, Yy) & 963(X, Y, Yy, Y')).
(V) 966(X, Y, 4, Y') = 3 (06a(X, A, Y1) & 063(X, ¥y, Y, Y')).

6.4. Lemma. Let A be a strictly large type. Then:

(i) 62X, Y) in F, iff there are (F,i)e A” and a finite sequence ay, ..., a,
of terms with pairwise disjoint sets of variables such that X = (F, i) and Y =
= Hg (ay, ..., a,).

(i) @es(X, Yy, Ya, Y3) in F 4 iff there are (F, i) e A%, a finite sequence ay, ..., ay
of terms with pairwise disjoint sets of variables and a number k e {0, v "} such

596



that X = (F,i)*, Y, = Hp(ay, ..., a), Y, = Hp (ay41,...,a,) and Y, =
= Hp (ay, ..., a,).

(iii) @sa(X, 4, Y) in F, iff there are (F,i)e A® and a term a such that X =
= (F,i)*, A =a* Y= Hg (a).

(iv) @6s(X, Y, A, Y') in F 4 iff there are (F, i) e A®, a term a and a finite sequence
ai, ..., a, of terms such that the terms ay, ..., a,, a have pairwise disjoint sets of
variables, X = (F, i)*, Y = Hg (ay, ..., q,), A= a* and Y' = Hy (ay, ..., a,, a).

(V) 06s(X, Y, A, Y') in F 4 iff there are (F, i) € A®, a term a and a finite sequence
ay, ..., a, of terms such that the terms a, ay, ..., a, have pairwise disjoint sets of
variables, X = (F, i)*, Y= Hp (ay,...,q,), A= a* and Y' = Hy (a, ay, ..., a,).

For every term t and every finite sequence e of elements of A we define (by
induction on the length of e) an element t{e) of W, u {Q)} as follows: if e is empty,
put ey =t; if e = ((Gyji) ... (Gijx)) is non-empty and #{(Gy, ji), ...
e (Gio g, jk-1)> = Gylay, ..., a,) (Where n = ng,) for some terms ay, ..., a,, put
1{ey = a;,; in all other cases put 1{e) = 0. We denote by E(¢) the set of all the se-
quences e such that #{e) is a term. Evidently, E(t) is finite and {t{e); e e E(t)} is
just the set of subterms of t.

If (F, i)e 4% and e = ((Gy, jy), ---» (G ji)) is a finite sequence of elements of 4™,
put H{')e) = Hy (ay, ..., ;) where ay, ..., a; are terms with pairwise disjoint sets
of variables such that af = (G, j,)*, ..., ai = (G, ji)*.

Definition. (i) ¢g+(X, 4, Y, B) = 962X, Y)&3Y', Z, Z', Z,(0s56(X, ¥, Z) &
&@so(X, Y, ZNV&Z<Z &o(Z))&Z, < X & oo X,Y', Zy, A) & 04o(X, Y', Z', B) &
&VZ,,7,3U0,, U,, U3((Z1 RZ,&Zy <Z3&Z3 < Z') > (960X, Y, Z5, U, &

& (Peo(X, Y, Z,, Uz) & (PGO(X5 Y', Zs, U3) & (Psz(Up Us, Uz))))

(i) (p68(X, A, Y,, Y, B) = (pm(X, A, Y, B)& ¢061(X, A, Y,, B) &

& VA, B ((p31(4, A) & 95(X, A, Yy, B)) = 96+(X, A, Y, B')).

6.5. Lemma. Let A be a strictly large type. Then:

(i) @o7(X, 4, Y, B) in F, iff there are (F,i)e 4, a term t and a sequence
e€ E(t) such that X = (F, i)*, A = t*, Y = H{!)(e) and B = (1{e))*.

(i) @es(X, A, Yy, Yy, B) in F 4 iff there are (F, i)e 4, a term t and two se-
quences e, fe E(t) such that X = (F,i)*, A=1* Y, = H{)e), Y, = HEXS).
B = (t{ey)* = (Kf))* and t{ey = 1{f)-

Definition. (i) ¢so(X, Yy, Y5) = 3V, Z, 2, 1, J, X', B(@so(X, Y3, Z) &
& se(X, Y1, Z)&X < Z' & Z' < Z & ¢s5o(X, Y1, Y3) & 056(X, Yo, X) &
& 96i(X, Ya, Y,) & pso(X, I, Z) & VZ,((T04(21) & Z1 < Z') > 960(X, I Z4, X)) &
& pu(X) & X + X' & IXo(#(Xo) & Xo < X & Xo < X) & 960X, 1, Z, X') &
& ¢ou(X, X', J) & 96s(X, Y3, 1, J, B)).
(ii) @70(X, Y) = 3Zo, Zy, Z3, Z3, Zas X', T, T2 I35 I3, T3, L 1y, I, 1, By,
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By0so(X, Y, Z,) & 0,(Z0) & Zo < Z,; 8 Z1 <228 7, < Z, & Z5 < Z, & 04(X') &
&Z, KX &X + X' & 0ou(X, X. J}) & 065(Xs I\, X, J,) & 0os(X, Jo, X, J3) &
& pos(X, J3, X, J) & Ps(X, J2, X', le) & ¢66(X, LX,1,)& (P66(X= I, X', 1/1) &
& pss(X, I, X, L) & 0es(X, Y, J1, 14, B1) & 96s(X, Y, J5 15, By) &
&K, K, K,, Ki(0s6(Xs K. X', K;) & 966(X> K. X', K1) & 6(X, K}, X, K;) &
& T19so(X, K, 1) & T1959(X, I, K) & (3C1 967X Y, K, C;) VEL 3C, 94:(X, Y,
K3, C5))) » 3C Pes(X> ¥, Ky, K, Q).

(ii)) @4,(X, Yy, V) = 0s6(X, Yy, X) & 056(X, Yy, X) & 3Y;, Yy(056(X, Vs, X) &
& 931(Y1, Ya) & 0o(X, Ya) & @5o(X, Ys, Ya) & 064(X, ¥, 1y)).

(iv) @75(X, Y) = @s6o(X, ¥, X) & 3X0, X', I, J, B(p,(X') & X0 < X & Xo < X' &
EX + X & pou(X, X', J) & 06(X, J, X, 1) & 064(X, Y, 1, J, B)).

6.6. Lemma. Let A be a strictly large type. Then:

(i) @eo(X, Yy, Ys) in F 4 iff there are (F, i) € A? and a finite sequence ay, ..., a,
of terms such that n = 2, X = (F,i)*, Y; = Hy (ay, ..., a,) and Y, = Hp (a,, a,).

(i) @70(X, Y) in F, iff there are (F,i)e A® and terms a, b, c,d such that
X = (F,i)*, Y= Hy(a, b, c,d), a is a subterm of ¢ and d arises from ¢ by re-
placing one occurrence of a by b.

(iii) @44(X, Yy, Y,) in F 4 iff there are (F, i) € A and terms a, b, ¢, d such that
X = (F,i)%, Y, = Hp{a,b), Y, = Hg(c,d) and (c,d) is an immediate con-
sequence of (a, b).

(iv) @72(X, Y) in F 4 iff there are (F, i) € A® and a term a such that X = (F, i)
and Y = Hy (a, a).

If (F,i)eA® and (ay, b,),...,(a, b,) is a finite sequence of equations, put
HZ(ay, by), - (ap by)) = Hp (uy, ..., u,) where uy, ..., u, are terms with pairwise
disjoint sets of variables such that u} = Hy (ay, b,), ..., u¥ = Hp (a,, b,).

Definition. (i) ¢;3(X, Y) = @ea(X, Y) & VZ, U(geo(X, Y, Z, U) - ¢54(X, U, X)).

(ii) ‘P74(X’ Y, V) = ‘973(X’ Yl)& 3y, Za((ﬂss(Xa Ys, Zs)& ‘PGQ(Xa Y, Yz)&
& VU1~ U, 3Us, U4((¢’56(X’ U,, X) & ‘959(X’ Ui, UZ) & (P61(X, Ys, UZ)) -
= ((¢+2(X, Us) VEL 3Z 94((X, Yy, Z, Uy)) & (U = U, VEL @go(X, Us, Uy)) &
& ¢7,(X, Us, Uy))))-

(iil) @75(X, Y1, Y2) = 3Y3(@ealX, Y1, Y3) & 0q4(X, Y3, 1))

6.7. Lemma. Let A be a strictly large type. Then:

() @q3(X. Y) in F, iff there are (F,i)e A and a finite sequence (ay, by), ...
..« (ay, b,) of equations such that X = (F, i)* and Y = H®((ay, by), .- (ay by)-

(ii) @74(X, Y1, o) in F 4 iff there are (F,i)e 4®, a finite sequence (ay, b,), ...
.. (ay, b,) of equations and an equation (a, b) such that X = (F,i)*, Y, =
HZ(ay, 1;11), e (@ b)), Yo = Hp (a, b) and (a, b) is a consequence of {(ay, b,), ...,
v (ays b))
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(iii) @75(X, Yy, Y3) in F 4 iff there are (F, i) A® and terms a, b, ¢, d such that
X = (F,i)* Y, = Hg (a, b), Y, = Hg (c, d) and (c, d) is a consequence of (a, b).

7. DEFINABILITY UP TO AUTOMORPHISMS IN %4

Denote by S, the group of all permutations of 4, by S, the group of all permu-
tations of 4, and by S{V the group of permutations f of A‘*? with the following two
properties: if f(F, i) = (G, j) then np = ng; if f(F, i) = (G, j) and f(F, k) = (H, )
then G = H.Iffe S{V and F € 4\ 4,, then the first member of f(F, 1) will be denoted
by f(F).

For every type 4 define a group G, as follows: if 4 is not a large unary type then
G, = S,, x S{;if A is a large unary type then G, = C, x S, where C, is the two-
element group {1, 2} with unit 1.

For every pair (¢, f) e G, define a permutation P, , of W, as follows:

(1) Let 4 be not a large unary type and let te W,. If te V, put P, ((t) = t. If t € 4,
put P, ,(t) = c(t). If t=F(ty,....1,) where Fed, n=1 and f(F,1)=
= (G, i(1)), ... f/(F, n) = (G, i(n), put P (1) = G(Pe ((ti-1(1)), -+ Pe,f(ti-10n))-

(2) Let 4 be a large unary type and t = F, ... F,x where x € Vand f(F;) = Gy, ...
v f(F) =G If ¢ =1, put P, [(t) = G,...Gyx. If ¢ =2, put P, [(t) =
= G, ... Gx.

7.1. Lemma. We have P, r,yc,.r1y = Pey 5iPei.r,- If h is a substitution then
P, ((h(t)) = k(P [(t)) where k is the substitution with k(x) = P, (h(x)) for all
xe V. We havet < u iff P, [(t) £ P, (u).

For every pair (c, /) € G, define a mapping P, of #, into %, as follows:
P. J(U) = {P, [(u); ueU}.

7.2. Lemma. For every (c, f) € G4 the mapping P, ; is an automorphism of F ;.
Moreover, the mapping (c, f) > P, ; is an isomorphism of G, onto a subgroup of
the automorphism group of F 4.

Let t,, ..., ¢, be a non-empty finite sequence of terms. By a supporting sequence
for ty,...,t, we mean a finite sequence ((Hy, ..., H,), (Fy, py), - (Fio Pi))s
(€1,05 --os €1,51)s --os (€n,00 -+ €n,)) Such that Hy, ..., H, are all pairwise different
nullary symbols occurring in a term from {ty, ..., t,}, (Fy, py), ..., (Fi pi) are all
pairwise different pairs from A4‘" whose first members are symbols occurring in
a term from {¢,, ..., t,} and if ie {1, ..., n} then e; o, ..., e; ,, are all pairwise different
elements of E(t;) and e; o is the empty sequence. ‘

Let A4 be a strictly large type, ty,..., 1, a non-empty finite sequence of terms
from W, and r = ((Hy, ..., H,), (F1, P1). o (Fio ) (€1,05 -+ €1,6,)s -5 (€my05 - -

.+ €,.5,)) @ supporting sequence for fy, ..., 1,. We denote by

By oo (X oo X Yo ooos Yoo Zyyoens Z4)

.....
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the formula
3X, Ay 05 oes Ay gy oes Apgs --os Anysys B1,0s s Bisys s Bugs oo
B (9:189,&9:8& 9,8 95& gs& 9718 95 & 9o & 910 & g11)
where
g, is the conjunction of the formulas @s7(X, X, 4, ;, B; ;)
(1=ig=n02j<s),
g, is the conjunction of the formulas »;(B; ;)
(1<isn0=gj<s, tlepeV),
g is the conjunction of the formulas B; ; = Y, & ao(Y)
(1sign0sjss, 1slsm tle;)=H,),
g is the conjunction of the formulas (,068(X, X, A;jy A, By )
(1<isn 0=),1<s, te ) = te; ),
g5 is the conjunction of the formulas _lqoég(X, X, Aij A, By )
(I=ign 05,15, te ) * 1e)),
ge is the conjunction of the formulas @4s(X, A;is Zys A;)
(1 Sign0=5j,l<s, LEh=sk e, = ei,j(F,,,p,,)),

g- is the conjunction of the formulas w,(4; o)

@=isn),
gs is the conjunction of the formulas 3U(x(U)& U < Z; & U < Z;)
(1S 0J Sk o= Fy b= np),

go is the conjunction of the formulas 71 IU((U)& U < Z, & U < Z))
(1<i,j<k F,+F),

g10 1s the conjunction of the formulas Z; #+ Z,
(1<ijsk i+)),

g1 is the conjunction of the formulas Y; * Y;
1sijsm i*])).

7.3. Lemma. Let 4 be a strictly large type, t,,...,t, a non-empty finite se-
quence of terms from W, and r = ((Hy, ..., H,), (Fy p1), oo (Foo D&))s--.) @
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supporting sequence for ty, ..., t,. Then uj (X, ... X, Yy, .., Y Zy, ..o, Z)
in F 4 iff there is a pair (c, f) € G4 such that if 1 < i < n then X, = (P, /(1,))*,
if 1 £i < mthen Y; = (c(H,)))* and if 1 £ i < k then Z; = (f(F,, py))*-

7.4. Lemma. Let A be a strictly large type and let h be an automorphism of & 4
Then h = P, , for some (c, f) € G,.

Proof. If H € A, then ay(H*) is satisfied in Z 4, so that og(h(H*)) is satisfied and
so h(H*) = (c(H))* for some c(H) € 4,. If (F, i) € AV, then ¢ ((F, i)*) is satisfied
in # 4, so that ¢, (h((F, i)*)) is satisfied and h((F, i)*) = (f(F, i))* for some f(F, i) e
€ A, We get two mappings c, f and it is easy to see that (¢, f) e G,. Let te W,.
There exists a supporting sequence r = ((Hy, ..., H,), (Fy, P1), - (Fio D)) ---)
for . Evidently, pj(t*, HY, ..., Hy, (Fy, py)*, ..., (Fi, pi)*) is satisfied in & ,. Hence
wi(h(t*), h(HY), ..., h(Hy), h((Fy, p1)*), ..., h((Fi pi)*)) is satisfied in 4, too. It
follows from 7.3 that h(1¥*) = (P, /(1))*. Now let 4 € #,. For every term ¢ we have
te Aiff t* = Aiff h(t*) < h(A) iff (P, (t))* = h(A) iff P, (1) € h(A), so that h(4) =
=P, ;(A). Wegeth=P,_,.

Let 4 be a large but not strictly large type and let ¢4, ..., t, be a non-empty finite
sequence of terms from W,. For every ie { 1, ... n}, the term t; can be uniquely
expressed in the form t; = F; ... F; ;y; where y;e Vu do and F; , ..., F;; € 4,.
We denote by

ﬂrl,...,t,,(Ah A2a B: Xls ey Xn’ YI’ LR Yn’ Zl,l’ i Zl,kl’ cce Z"yl’ cc Z”.kn)

the formula
(p33(A1’ AZ’ B) & 3ljl,O’ LR Ul,kx’ e Un,()’ oo

o Upi(9: & 9, & 95 & 9, & 958 9 & 97 & g5 & go)
where

g, is the conjunction of the formulas w,(Y;)
1=gisn yeV),

g, is the conjunction of the formulas ao(Y:)
(1<i<n, yedy),

g5 1s the conjunction of the formulas ocl(Zi,j)
(lsisn15j<k),

g4 1s the conjunction of the formulas qus(Al’ A2 B, 23, Ui -1, Uy y)
(lsisn1=5j=sky),

gs is the conjunction of the formulas Z;,; = Zin

(USilsnm1<jsk, 1 EFEk Fiy=Fu),
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ge is the conjunction of the formulas Z;,; + Z

Is
(1<gilsn1gj<k, 1= §k Fij#F.),

h
g+ is the conjunction of the formulas Y; = Y;

(Lij=n y=yed)
gy is the conunction of the formulas Y; * Y;

(L=ij=Zn yi+y, yuyi€do).
g is the conjunction of the formulas U; o = Y; & U, = X;

(1<i<n).

7.5. Lemma. Let A be a large but not strictly large type and let t, ..., t, be
a non-empty finite sequence of terms from Wy; let t; = F;,, ... F; ;y; where y; e
eVudy Thenp,, . (A, A2, B, Xy, oo X Yoo oo Yoo Zy iy oy Z s o Zig 15 o
wiis Zyy,) in F 4 iff there are (F, G, w, x)eA(‘” and (c f)e G, such that A, = F*,
A, = G*, B = (wx)*, if 1 £i<n then X; = (P, (t)))*, Y; = (P.,(»))* Zi1 =
= (f(F‘-,l))*, oo Zig, = (f(Fix))* and if A is unary then either w = GF, ¢ = 1
or w=FG, c = 2.

7.6. Lemma. Let A be not a strictly large type and let h be an automorphism
of F4. Then h = P, for some (c,f) € G.

Proof. If 4 is small, all is evident. If 4 all large and not unary, the proof is analogous
to that of 7.4. Let 4 be a large unary type. Similarly as in the proof of 7.4, there is
a permutation f of 4 such that h(F¥) = (f(F))* for all F € 4. Let F, G be two different
symbols from 4 and let xe V; put F; = f(F), G, = f(G). Evidently, ¢s5(F*, G*,
(GFx)*) is satisfied in & ,. Hence @33(h(F*), h(G*), h((GFx)*)) is satisfied, too. By
5.1 we have either h((GFx)*) = (G{F;x)* or h((GFx)*) = (F,G,x)*. In the former
case put ¢ = 1, while in the latter put ¢ = 2. We have (c, f) e G,. Using 5.2(v),
it is easy to see that the definition of ¢ does not depend on the choice of the pair
F,G. Now we get easily from 7.5 that h(¢*) = (P, /(1))* for any term #; this implies
h = P, similarly as in the proof of 7.4.

Combmmg 7.2, 7.4 and 7.6, we get the following result.

7.7. Theorem. Le A be any type. For every automorphism h of & , there exists
a pair (c,f)e G, such that h = P, ;. The automorphism group of F, is iso-
morphic to G,.

For every type 4 and every non-empty finite sequence t,, ..., t, of terms from W,
we define a formula 9,,, . (X) as follows. If 4 is strictly large, fix a supporting

sequence r = ((Hy, ..., H,), (Fy, py), ---» (Fi» Pt))s --.) for ty, ..., 1, and put
JX) =3X,, L X Yy, Y Zy,

,,,,,,

. Zk(.u:l,...,r,.(Xl’ LRETY Xm Y19 sy Yma Zl, ceey Zk)&X = X1 V...V Xn) .
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If 4 is large but not strictly large and t; = F;,, ... F; 1y; where y; € V' U 4,, put
SptieX) =34, 43, B, Xy, ... X Y1, o Yo Zy s
A4 Zn,k,.(:un ..... t"(Al, AZ’ Bs Xl; vy Xm Yl; LXKS) an Zl,l’ A Zn,k,,)&
&X=X;v..vX,).

Finally, let 4 be small. Then for every i e {1, ..., n} we can express ¢; in the form
t; = F*y, where y, € 4, k; = 0 and if k; + O then F € 4,. Put

LR ,”(X) =
=3X;, .. X, Yy, o Y9, &9, & 93 & g1 & g5 &X =X, v ... v X,)
where

g, is the conjunction of the formulas w,(Y;)
A£ign yeV),

g, is the conjunction of the formulas o(Y;)
(I=iZn, yed,),

g3 is the conjunction of the formulas Y; = Y;
(L=ij<n y,=yed),

g4 is the conjunction of the formulas Y; + Y;
(I=ijsn yi+y, yoyjedy),

gs is the conjunction of the formulas 3Z,, ..., Z,(Zy = Y, & Z;, = X, & Z, <
<Z2,&..&2,,_, <Z)

1=isgn).

The following theorem is an easy combination of the above results.

7.8. Theorem. Let A be any type and let t,, ..., t, be a non-empty finite sequence
of terms from Wy. Then 84, . .(X)in F, iff X = P, [({ty, ..., t,}*) for some
(c.f)e Gy

7.9. Corollary. Every finitely generated element of & , is definable up to auto-
morphisms in F 4.
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