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Introduction. Let G = R™ be a nonempty open bounded convex set. Denote by
ZF = Z(G) the system of all bounded convex functions on G and put #/ = & n
0 C/(G). The set # equipped with the usual supremum metric is obviously a complete
metric space.

P. M. Gruber [2] 1977 proved that a typical function from & is smooth but not
too smooth. More specifically, one of his results reads as follows:

Sets F\F"' and F? are of the first category.

The aim of this note is to give a more detailed information concerning the “gap”
between &' and Z 2. A special case of our result shows that a typical function of #
is of the class C*** on no (nonempty) open subset of G.

Notation. Let Q stand for the set of all continuous increasing functions o :
: [0, o[ - [0, oo[ such that w(0) = 0 and @ > 0 on |0, oo[. For w,, w, € Q, we
write w; < @, if w,(f) = O(w,(1)), t > 0+. A set Q' = Q is said to be majorized,
if there is w, € Q such that » < w,, whenever w € Q'.

If M = R"™, » € Q, then 9,(M) is the set of functions g defined on M and satisfying

la(x) — 9(»)| £ o(|x — ¥}, x yeM.

In what follows, J denotes the set { 1,2,..., m} and 0;f means the j-th partial deriva-
tive of f.

Theorem. Let Q* = Q be majorized and let F* be the set of all fe F possessing the
following property: There exist je J, we€ Q¥ and a nonempty open set G* < G
such that ;f € 9,(G*). Then the set F* is of the first category.

Remark. The proof of Theorem is postponed to the'end of this note.

Denote by Qj the set of all functions w for which there are K > 0 and o« > 0
such that (t) = K, t € [0, oo[. It is easily seen that Q is majorized. (For instance,
if wo(t) = —1flogt for te€]0, 1/e[, wy(0) =0, wy =1 on [1fe, oo[, then w,e Q
and o < o, for every w € Qy.)
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It follows from Theorem that, in an obvious sense, a typical function from F
has nowhere Holder continuous partial derivatives. In particular, #2 is of the first
category.

Similar assertions could be stated for other scales of moduli of continuity. In this
connection, the following notion seems to be appropriate.

A set Q; = Q is said to have countable character, if there is a countable set
Q, = Q, such that for every w, e Q; there is w, e Q, with o, < w,. (Clearly.
Qy has countable character.) The proof of the following assertion is left to the reader:

Every subset of Q having countable character is majorized.

The proof of Theorem is based on two lemmas. In Lemma 2, & is considered as
the subspace of the metric space .

Lemma 1. Let je J, we Q and let B be an open ball with center at z,€ R™. Sup-
pose that ¢ > 0,d > 0. Then there is a convex function ¢ with the following pro-
perties: )

e C(R™), sup{|o(z); |z — zo| < d} <&
and there are distinct points X, Yo € B such that
ajﬁ”(xo) - 51'(0()’0) = 30’([7‘0 - ,Vol)-

Proof. Without loss of generality we can suppose that B = {ze R™; |z| < 2r}
and d > r > 0. Define o(t) = 0 for t < 0 and

h(s) = J :w‘/z(t —dr, s

Notice that o = h(d) > 0 and that k is a continuously differentiable convex function
on [0, co[ vanishing near the origin. Consequently, the function ¢ : x — (¢/x) (|x])
is convex in R, ¢ € C'(R™) and |¢(z)| < & provided |2| < d.

Put e¢; = (0,...,1,...,0) (1 is on the j-th place) and find o€ (0, r) such that
o(to) < (¢/32)>. If xo = (r + 1o) €;, yo = rej, then x,, yo € B, |xo — y,| = 1, and

950(x0) — 0,0(v0) = (¢fo) (W'(r + to) — H'(r)) = (e/) @' "*(t) -
Since (3¢/e) w'/?(,) < 1, we conclude that

9;0(x0) — 0;0(v0) = 3w(ty) = 3w(|x0 - yol).

v

0.

Lemma 2. Suppose that we Q, jeJ and B < G is an open ball. Denote by
&(j, w, B) the set of all fe F' such that 0;f € D,(B). Then (j, », B) is nowhere
dense in F1.

Proof. Let N be the set of positive integers. Write &/ = #/(j, w, B) and prove
first that ¢ is a closed subset of #’.

To this end assume that the sequence {f,} of functions belonging to s/ converges
uniformly on G to a function f € #*'. We are going to show that f e s7.
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Fix x, ye B and choose é > 0 such that x + dej;, ¥ + Je;e B. For te[0, [
and n e N define

o(1) = fulx + te)) = fi(x) = (v + t€)) = £u(¥)) -
Notice that a,(0) = 0 and for se 10, 5[,
ay(s) = 0,f(x + se;) — ;f(y + sej).

Since f, € &/, the inequality |a;,(s)| < w([x - y|) holds whenever se 0, 5[. Thus
we have
o ()| < 1. oo(|x — y|) forevery te[0,4[.

Given te 0, [,
lim a,(t) = f(x + 1)) — f(x) = (f(y + te;) = 1(»))
so that

s+ t6) = 1) _ SO+ 10) = SO < g — ).
t t i B

Letting t — 0+, we conclude that |9;f(x) — 8,f(y)] £ o(|x — y|). Consequently,
feof and o is closed (in 7).
Fix now ¢ > 0 and f € &/. To finish the proof of the lemma, it is sufficient to find
a function g € #* such that g ¢ o/ and the distance o(f, g) of f and g is less than e.
Let d be the diameter of G and ¢, x,, y, have the same meaning as in Lemma 1.
Define g(z) = f(z) + ¢(z), ze G. Then g € F' and o(f, g) < &. We have

9;9(x0) — 9;9(vo) = 0;f(x0) = 0;/(vo) + 9;0(x0) — 9;0(yo) Z
> -—w(lxo - y0|) + 3w(|x0 - yol) = 2w(|xo - y0|).
Consequently, g ¢ <.

The proof of the lemma is complete.

Proof of Theorem. Choose a countable system {B;; i € I} of open balls B; = G
such that G = (JB; and for every nonempty open set G' = G there is B; = G'.
Since Q* is majorized, there is w* € Q such that w < * whenever w € Q*. It is easily
seen that for every w € Q* there is k € N such that w < ko* on [0, d]. It follows that

F*c (FNFHu(U U U L(j, ko* B)).
iel jeJ keN
Gruber’s result states that # \ &' is of the first category. By Lemma 2, 2/(j, kow*,
Bi) is nowhere dense in #* and, a fortiori, in #. We conclude that #* is of the first
category.

Remark. Various questions related to differential properties of convex functions
are studied e.g. in [1]—[4] where further references can be found.
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