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1.0. Introduction. Let F be a map from the (n + 1)-dimensional Euclidean space
R' x R" into the family #™ of all convex compact nonempty subsets of R", i.e.
F:G - ™" where G = R"*'. We denote by Sol F the set of all solutions (in the
usual sense) of the differential relation

(1.1) % e F(t, x).

Let U be a set of functions u : I, — R" where the definition domain I, = R = R!
of u is an interval. It was shown in [ 1] that under certain conditions on U it is possible
to find a map Q:R"*' — A% where X7y = 4™ U {0}, the map Q(t,.) is upper
semicontinuous for almost all ¢, U < Sol Q and Q is the minimal map with this
property, that is: if H: R"""' - %%, H(t,.) is upper semicontinuous for almost all ¢
and U < Sol H, then there is a set N < R of measure zero such that Q(t, x) c
< H(t, x) provided t ¢ N.

The aim of the present paper is to find conditions under which U = Sol Q or,
more generally, to determine the structure of the set Sol Q. This is achieved in Part 1
by introducing a certain operation @ which is described in the next section.

Roughly speaking, the operation © assigns a set U of continuous functions another
set @(U) which contains uniform limits of sequences of functions that belong
“piecewise” to U and whose jump functions approach zero uniformly.

The main results are Theorems 1.2 and 1.4. Theorem 1.2 states that U < Sol F
implies ®(U) < Sol F while Theorem 1.4 asserts that, given a “reasonable” set U,
there exists a differential relation X € Q(t, x) such that Sol Q@ = O(U).

1.1. Notations and definitions. Given a set U of continuous functions u : I, -
— R", I, = R an interval, we denote by #°(U) the set of all functions w : I,, > R"
(I, = R a compact interval) with the following property: '

(1.2) For each we #'(U) there exists a positive integer k and a decomposition of
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the interval I,
00 ST, <0, S1,<0,S .. .ST, <0y £ Ty s

such that for each i = 1,2, ..., k there is a function u;e U, [t;,0,] = 1,,
satisfying

uy(zy) for te oy 1,],
w(t) =uyt) for te(t,0), i=1,..,k,
ufo;)) for tefo,1q], i=1,..,k.

The only possible points of discontinuity of the function w are the points 7;; never-
theless, the one-sided limits at these points evidently exist. Hence each we %" (U)
can be assigned in a unique way a piecewise constant function Jw : I, - R" so that
w — Jw is continuous, (Jw) (t) = 0 for t€ [oy, 7,].

For we #7(U) let us denote

'I(W) = é:o(fiﬂ - ”i) .

Further, we denote by ©(U) the set of all functions g : I, » R" (I, = R an interval)
which fulfil the following condition:
(1.3) If [, B] = I, then there exists a sequence of functions w; e#(U), j = 1,2,...,
such that I, = [a, f],

limw; =¢q, limJw; =20
Jj—oo Jjoo

both uniformly on [a, 8], and lim n(w;) = 0.
 ad]

1.2. Theorem. Let U be a set of functions u :1, - R" where I, is an interval.
Let H: R x R" — Aj satisfy
(1.4) H(t,.) is upper semicontinuous for almost every t € R;
(1.5) there exists a locally integrable function ¢ : R — R* = [0, + o) such that
H(t, x) = B(0, o(t)) for almost every t € R.
(B(¢, 6) stands for a ball in B" with centre ¢ and radius 5.) Further, let

(1.6) UcSolH.

Then
(1.7) O(U) < Sol H .

1.3. Proof. Let us notice first of all that (1.6) and (1.5) imply
(1.8) u is absolutely continuous on 7,
(1.9 ()| < o(t) for almostall tel,

provided u e U.
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Now let g € ©(U) have a definition interval I, let [, B] = I,. Let w, j = 1,2, ...
be the functions from (1.3) so that lim n(w;) = 0 and

jo o

limw; =g, limJwj=0

j= o j= o
both uniformly on [a, §]. Denote w; = w; — Jw;; then evidently
Jlin; w;=q
again uniformly on [a, £].
Denote by T < [a, f] a set with #(T) = B — a (» denotes the Lebesgue measure
of a set in IR) such that the following conditions are satisfied for t € T:

(i) H(t, .) is upper semicontinuous,
(ii) ¢ is not a point of discontinuity for any wj, j = 1,2, ... (cf. (1.2)),
(iii) for all functions u € U appearing in the “decomposition” of w;, j =1,2,...
as described in (1.2), the derivatives @ exist and u(z) € H(¢, u(t)).

Existence of such a set (with full measure in [a, ]) follows from (1.4), from the fact
that the number of the points of discontinuity in (i) as well as the number of the
functions u in (iii) is at most countable, and from (1.6), (1.8).

Now we apply Lemma in [1, p. 313] or Lemma 2 in [2, p. 2] to the functions w;.
We conclude that g is absolutely continuous and

(1.10) (i) eﬁlam (0,) &1l -}

where conv stands for the closed convex hull, for te Ty = T with »(Ty) = f — a.
We want to prove that §(f) e H(t, g(t)) for almost all ¢ € [a, f]. Let us assume, on
the contrary, that there is a set T, = T;, »(T,) = v > 0, such that 4(¢) ¢ H(t, 4(t))
for t e T,. Passing from the sequence w; to a subsequence if necessary (but keeping
the original notation) we find an index j so large that

M8

n(w,) < 4v

i

(cf. (1.3) for the notation). Consequently, if D < [a, f] is the union of such sub-
intervals of [a, f] in which all w, [ 2 j, coincide with some functions u € U, then
m(D) > B — a — 4v. Since for te T, = T; () D the values of d(t), @;4,(0), ...
coincide with some of those u(f) considered in (iii), we evidently have

@ <0
(1.11) 4(t) e Nconv U H(t, u 1))
j=1 i=j
for te T,; moreover,

(112) lim 1) = ().
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Let ¢ > 0, te Tp,. By (1.12)
H(1, u (1)) = QH(t, q(1)), €)

for i sufficiently large, where Q(M, ¢) denotes the e-neighbourhood of the set M.
Consequently,

conv U H(t, uft)) = Q (H(1, q(1)), ¢)
i=j
for j sufficiently large and
N conv U H(t, u(t)) = H(t, q(t)) .
i=1 i=j

In view of (1.11), this proves () € H(t, (1)) for t € T,, which contradicts the existence
of the set T, introduced above. Consequently, the inclusion g(t) € H(t, q(t)) holds
for almost all ¢ € [«, f], i.e. g € Sol H and (1.7) immediately follows.

1.4. Theorem. Let U be a set of functions u :I, — R" which satisfy (1.8), (1.9).
Further, let us assume that

(1.13) if w;eU, i=1,2, I, n1,, * 0 and u,(t) = u,(t) provided iel, N1,
then the function u*:I, UlI, — R" defined by u*(t) = u(t) for tel,,
i = 1,2, belongs to U as well.

Then there exists Q : R"*! — %, which satisfies (1.4), (1.5) with H replaced by Q and

(1.14) Sol @ = O(U).

uz

1.5. Corollary. A4 set U satisfying (1.8), (1.9) and (1.13) is the set of all solutions
of a differential relation (i.e. there exists H : R"*' — A" satisfying (1.4), (1.5)
and U = Sol H) if and only if U = 6(U).

1.6. Proof of Theorem 1.4. As was proved in [1], the set U has an at most countable
subset, say
V= {vl, vy, } U,
which is dense with respect to the metric » introduced as follows: If u;e U, I, =
= [a; b;], i = 1,2, we set
u(t) for tel,,
1) = Juya;) for 1t <a;,
uib;) for t> b,
and define )
x(uy, up) = max [ﬁl(t) - ﬁz(l)l + |a, - azl + Ib1 - bzl.
t
Let us define

(1.15) 0(t ) = NG {505 o) < B, 171}
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we shall prove that Q is the mapping whose existence is claimed in Theorem 1.4.
The proof of (1.4) and (1.5) is easy; moreover, it was proved in [1] that U < Sol Q,
hence by Theorem 1.2

O(U) = Sol Q.

In order to prove (1.14) it remains to establish the converse inclusion.
Let g :1, > R", g€ Sol Q, [«, B] = I,. According to (1.3) we have to construct
a sequence of functions g, €% (U) which converge to g in the sense described by (1.3).

Set
Ly = {te [« B]; tis a Lebesgue point of ¢ and 4(t) € Q(t, 4(1))} ,
L; = {te[a, f]; if tel,, then tis a Lebesgue point of #;} ,
i=12..,

Then »(L) = p — a.
Now let Te Land & > 0. By (1.15) there exists a finite number m = m(z, ¢) of

functions uy, Uy, ..., u,, from V (ie. uy = v;, uy = v;,, ..., u,, = v; ), 2> 0 and
positive numbers o, ®,, ..., &, With a; + «, + ... + o, = 1 such that
(1.16) ld(r) = X oy (r)| < ¢
j=1

and
(1.17) |a(t) — uj(1)] < ¢
for j=1,2,..,m and 7 £t < 7 + 1. Further, since te L, there exists 1 =
= A1, &), 0 < 4 < 7 such that

t+d
(1.18) f ld(e) = 4(x)| do < &5,

f (o) = i) do < £
T m

for j=1,2,...,m 0<d < A

Moreover, we choose A so that

(1.19) jt+ig(a) do < &.

T

Let us now consider the family of all intervals of the form [7, 7 + ¢~ '] where
teL,¢=1,2,... and A corresponds to 7 in the way just described so that (1.16)—
—(1.19) hold. This family of intervals covers the set Lin the sense of Vitali. Thus
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there exists an at most countable disjoint subfamily which covers the set L, and
hence also the interval [cx, ﬁ], except for a set of zero measure. Let us denote the
intervals of this countable family by A; = [t, 1, + 4], i = 1,2,....

Let v > 0 be such that [, o(c)do < & provided A4 < [o, B], »(A) < v. There
exists a positive integer p = p(v) such that

p
4/1(UA,-)> [3—1 — V.
i=1
We may assume without loss of generality that

ST <T A+ 4L <...<1,<t,+4i =f.

Denoting My = [a, 7y), M, = (v, + 4,, B], M; = (t; + A 1i4,) for i =1,2,...,
p — 1 we have

(1.20) (UMY <y,
i=0
p 14
YoUM= [ f]

and the union on the left hand side of the last identity is disjoint.

Now we can define the sequence of functions g, € #'(U) such that g, — ¢, Jg, — 0
both uniformly on [a, [J’]. To this end, let &, &, ... be a sequence of positive reals,
&, — 0, and put ¢ = &, with k arbitrary but fixed in the above considerations.

Let us first define g, on A, i=1,2,..,p. Let 1, =) < o? < ... < ¢¥ =
=1, 4+ Ay 00 — 02 = ;) for j = 1,2,...,m (cf. (1.16)) and define

j
(1.21) qt) = uft) for te(ol2,,ol"]
for j = 1,2,..., m (more precisely, u,(t) = u}"(t)). Further, we define
(1.22) ai(t) = uy(ry) for teM, or t=r1,,
| at) = qt; + 4;) for teM; or t=1.,
i=1,..,p.
In this way, g, is defined on the whole interval [a, f] and obviously g, € % (U).

Let us first estimate the difference |qk(t) - q(t)[. Ifted;, i=1,2,..., p, we have
(L17). If teM,, i = 0,1, ..., p, then

lau(t) — a(®)] = |au(z: + 2) = a(0)] <

< la(m + 4) — a(z + )| + oz + 2) = a(1)] <

t
< & +j o(c) do
it
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by (1.17) and (1.5); moreover, 0 < ¢ — (1; + 4;) £ v in virtue of (1.20). Hence
lax(®) — q(1)] < 2&, for te[a, B]

(cf. p. 559, line 4), which guarantees the uniform convergence g, — q.
Secondly, we have to estimate the value of the “jump function” Jg,. To this end
we need an estimate for the expression

A= a(es+ 1) = a(e) = T [fe?) = ufe2,)].

We have (omitting for the moment the index i)

f:wq.(o) do — ,-i f :_’a,.(a) do

T

|4q,| =

[ ate) = 0o = 5 [ 1afe) = o +

T

+ 4L = 3, 215)

Taking into account (1.18) and (1.16) we obtain
[da < 28, + 5 ¥ (5,-7) + 24, < 3.
m =1
We proceed by estimating Jq,(t,):

Jqit) =z§:[q,;(‘5i+) = qti—)] +

-1 m-1

+i; j; [a(ef”+) — a(ey” )] =:;z:[‘1k(‘fi+) = ati-1 + Aig)] +
+ 3 [~ ale + 2 + a(e) + e + 1) — aer)] =

-1 -1
= 3+ Slo) ~ ok 2] +

+ ‘1(‘51) - Qk(ﬁ +) + ‘Ik(ft—l + )'lﬂ) - q(Ti—l + /11—1)-

Taking into account the above estimate of 4i4x> the choice of v together with (1.20)
and the inequality (1.17), we conclude that

-1 -2
V() =36 X4 + X | olo)do + 26 S 36(8 — ) + & + 2.
= = M,

If te (Tl, T+ 1), then
Iqu(t)I = l-]‘lk(fl)l + Idl

>
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where d, represents the contribution of jumps on [, f]. We can estimate it similarly
as 4,4;. As the function g, has no jumps on M, = (1, + 4, 1,,,) We may assume
without loss of generality that ¢ e A;; hence there is a positive integer s such that
o, <t = 0,., Wehave

|di| = |j§::0[qk(6,~+) - alo;-)]| =
= |§=::[”f+ 1(0) = u551(0541)] + ti4(0) = auln—)| £
2, j i;11(0) do
+ |q(o‘s) - Q(Tt)l + I‘I(Tt) - ‘1(11~1 + Al—l)l +
+ I‘I(Tl—l + 11—1) - ‘Ik(Tl—x + )~l—1—)l + l‘lk(ft—l + /1!—1"‘) - Qk(fl_)‘ .

Now the first and the third term in absolute value is estimated by (1.19), the second
and the fifth is estimated by (1.17), while the fourth and the last is estimated by
[ 4 ¢(0) do where the set 4 in both cases has a measure less than v (cf. (1.20)). Hence
we conclude

= +

ui1(0) = aq(o))| +

|d) <6,
[Jau(t)| < [3(8 — «) +9]¢.
Thus Jg; — 0 uniformly and g € ©(U), which completes the proof of Theorem 1.4.

1.7. Remark. As was proved in [1], the map Q defined by (1.15) has the minimal
property mentioned in Introduction. This implies that Q is unique and does not
depend on the choice of the dense countable subset V of the set U (see the beginning
of 1.6).

1.8. Let us assume that the set U has, in addition to the assumptions of Theorem
1.4, the following property:

(1.23) for every t, € R, x, € R" there is 6 > 0 and a function u, : (t, — 9, fo + J) —
— R", such that ug e U, u(ty) = x,.

Then the functions g, from the proof of Theorem 1.4 (see (1.21), (1.22)) can be defined
on M; in the following way: For every t e M; we find 6 = &(¢) from (1.23); the in-
tervals (¢ — (1), ¢ + 0(t)) form an open covering of the compact set M, hence we
can select a finite covering. Diminuishing the intervals of this finite covering, we can
achieve that they are disjoint and still cover the set M, (except for a finite number of
their endpoints). On each interval thus obtained we define g, to be equal to a function
from U (such functions exist in virtue of (1.23)). After this modification, the func-
tions g, coincide with certain functions from the set U at every point ¢. Obviously,
q, may have a finite number of discontinuities at the endpoints of the intervals of
the covering. However, due to (1.9) and the fact that m(M) < v (cf. (1.20)) these

561



discontinuities contribute to the “jump functions™ Jg, only by 2 f, o(f) dt < 2¢.

This suggests that we could have introduced a set # °(U) analogously to #(U)
with the only change that ¢; = 7t;,, i = 0, ..., k (which essentially corresponds to
the condition n(w) = 0 for we #w°(U), cf. (1.3) and above) and define ©°(U) again
by (1.3) with #°(U) replaced by # °(U) (the condition n — 0 is then automatically
satisﬁed). Thus we obtain the following modification of Theorem 1.4, which can be
proved in the same way as Theorem 1.4 with the above mentioned change in the
definition of g, on the sets M.

1.9. Theorem. Let U be a set which satisfies the assumptions of Theorem 1.4 and,
moreover, (1.23). Then there exists Q:R""' — A"y which satisfies (1.4), (1.5)
with H replaced by Q and

Sol Q0 = ©°(U).

1.10. Example. The following example shows that Theorem 1.9 is not valid if the
assumption (1.23) (or a similar one) is omitted. Let U be the family of all functions u
defined by one of the following relations:

u(t) = const > 0, re[27,27 1], iodd;
u(t) = const < 0, re[27% 27" 1], ieven;
u(1) = const , te(—o0,0].

Then, defining Q(t, x) by (1.15), we evidently have 0 e Q(t, 0) for 1€ (— oo, 1] and
hence y € Sol Q, where y(f) = 0 for t € (— o0, 1]. However, ¥, ¢ ©°(U) provided y/,
is the restriction of i to any interval containing a neighbourhood of zero.

2

2.1. Given a differential relation (1.1), we denote
(2.1 d(y, 7, 1) = {u(t); ueSol F, u(t) = y}

for ye R", te R.

Let us assume that the mapping F : R"*! — "y satisfies conditions of Theorem
1.2, i.e. F(t,.) is upper semicontinuous for almost every ¢ and there exists a locally
integrable function ¢ : R —» R™ such that F(t, x) = B(0, o(t)) for (¢, x)e R**'. The
following lemma establishes the main properties of @.

2.2. Lemma. The set ®(y, 7, 1) has the following properties:
(2.2) ®(y, 7, t) is closed, (v, 7, 1) = B(y, Ui o(o) dal);
(2.3) d)(y, T, t) = U <I>(z, s, t)

zed(y,1,s)

provided se [z, 1];
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(2.4) for every y, 7, t and ¢ > 0 there exists 6 > 0 such that the following implication
holds: if k is a positive integer, se [r, t], g,eR, 0Z 1,eR, z;eR", i =
=0,1,..., k satisfy

T=0020g+ Uy <0, S0+ <...<0, 20+ =5,
k J
Y <9, lZz,-|<¢5 for j=0,1,....k,
i=0 i=0

then, introducing the notation Z, = ®(y + zo, g4 + [o, 04),
Z; = U ‘p(ux'~1 + Zi—y, Oy + #i—pUi)
ui-1€Zi—y

for i = 2,..., k, we have

(2.4y) Z, = QP(y, 1. 5), ¢) .

2.3. Remark. Note that the condition (2.4) implies upper semicontinuity of
&(., 7, 1). Indeed, putting o = p; = 0, k = 1 in (2.4) we obtain

(2.5) for every y,t,t and & > 0 there exists 6 > 0 such that if se [, 7], ze R",
|z| < 6. then

(2.5y) oy + z,1,5) = AP(y, 7, 5), €) .

2.4. Proof of Lemma 2.2. The properties (2.2) and (2.3) are evident. Let us prove
(2.4). Assume on the contrary that there is ¢ > 0 such that for every j there are
ol, ul, z] satisfying the conditions of (2.4) with 6 = j~', k = kj, and that (2.4,)

is not fulfilled, that is, there is w; € Zy,s
(2.6) ;¢ QAd(y, 1, 5), ¢) -
According to the definition of ®(y, 1, t) (see (2.1)), for every i = 1,2, ..., k; we find
a function v} : [0}, + pl_,, 6] > R", vie Sol F, vi(ol_, + pl_\)=vi_, (sl ) +
+ z;-y, vi(0]) = ®;. Then u;e #(Sol F) provided u; :[7,s] - R" is defined by

v{(o‘{) + ud) for o€ [a{;? ah + w],

ufo) = qvi(e) for ee(ol_y +ply,0l), i=1,..k;,

vi(el) for oelol ol + pl], i=1,..,k;.
The equicontinuity of the functions u; — Ju; implies that we can find a uniformly
convergent subsequence (denoted again by {u;}):

lim (u; — Ju;) = w

jow

uniformly on [z, s]. Since lim Ju; = 0 uniformly on [z, s], we have by Theorem 1.2

Jjo o

we O(Sol F) = Sol F
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and hence
w(s)e &(y, 1, 5)

by (2.1). However, this contradicts (2.6) since w(s) = lim w;. Lemma 2.2 is proved.

J=?®©

2.5. Lemma. Let & :R" x R x R — P(R") (the family of all subsets of R")
satisfy (2.2), (2.3) and (2.5). Let t,t€ R, y,qe R", g ®(y, 1, t). Then there exists
u: [z, ] > R" with u(t) = y, u(t) = q, such that

(2.7) u is absolutely continuous and [t'l(a)' < o(0) for almost all o€ [1, t];

(2.8) if 9, se[r, 1], 8 < s, then u(s) € D(u(9), 9, s).

2.6. Proof. Without loss of generality let us put © = 0, t = 1. We shall construct
the function u successively at the points 277, j = 1,2, ..., r integer, 0 < r < 2/.
Put u(0) = y, u(l) = q. ‘

According to (2.3) there is ze ®(y,0,%) such that ge &(z,4,1). We define
u(}) =z

Assume that u(c) has been defined for ¢ = r 27/ of the form described above with
a fixed j. Let p be an odd integer, 0 < p < 2/*'. Again according to (2.3) there is
z = z(p,j + 1) such that

sepfu(P=1y pP=-1 _p
2i+1 ? 2i+1 ’ 2j+l

u p+l ed|z P ptl
2i+1 ’2j+1’ i1 :

We define u(p/2'*') = z = z(p, j + 1). In this way we define u on a dense subset
of [0, 1]. By (2.2) we have

HOMIE)

hence u is uniformly continuous on its definition domain and consequently, it can
be extended in a unique way as a uniformly continuous function to the whole
interval [0, 1]. It is clear that (2.7) holds.

Let us pass to the proof of (2.8). Recall that 0 < 9 < s < 1 as we have putt =0,
t = 1. Let p, q,j, k be integers to be fixed later, 0 S p£2/, 0 g <25 j >0,
k > 0, and assume g27% £ 9 < s £ p277. Then by construction

u(&)ed5<u<g—>, i, B)
2/ 2k 2k 2

and

q/27
< J o(0) do

p/27
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Hence by (2.3)

(2.9) u (2—”J> eye (z, 9, %) :

where the union is taken over z € ®(u(q/2), q/2*, 9).
Let ¢ > 0, ze ®(u(q[2"), /2, 9). Then (2.5) implies that there is 6 > 0 such
that

(2.10) o (z, 3, g) co (<p (u(9), 3, ;L) : s)

provided |z — u(9)] < 6. In view of (2.7) — the absolute continuity of u — there
exists , > O such that |u(9) — u(q/2")| < 6/2if |9 — g/2*| < 3,. On the other hand,
by virtue of the inclusion in (2.2) there is 5, > 0 such that

|z — u(q[2Y)| <82 if |9 —q[2 <3,

(Replace y, 7, t in the inclusion by u(g/2"), q/2*, 9, respectively.)

Consequently, if 27% < min (6, 6,) then we can find an integer g so that 0 <
< 9 — q[2* <min(8,,5,). Then |z — u(9)] <& for ze d(u(q2"), g/2", 9) and
(2.10) holds. Since ¢ > 0 was arbitrary, this together with (2.9) yields

u <§3) ed <u(.9), 9, %) :

By the same argument as above, (2.3) yields

(2.11) u (%) U (:, s, %) ,

the union being taken over z € ®(u(9), 9, s).
Let ¢ > 0. Then by the uniform continuity of u there is 65 > 0 such that

P
u(s) —u (5})
Thus (2.11) yields

(2.12) u(s)e Q(Lz)cb(z, s, p[27), €[2)

<2 if <35,

.
2J

provided ls - p/2j| < 83. Further, there is §, > 0 such that
(2.13) ®(z, s, p|2) < B(z,¢f2) if |s — p[2| < s

(cf. the inclusion in (2.2)). Consequently, if we assume 27/ < min (83, 6,) then we
can find an integer p so that 0 < p[2/ — s < min (33, J,) and (2.12) together with
(2.13) vyields u(s) e Q((D(u(9), 9, s), £[2), ¢/2), which immediately implies (2.8).
Lemma 2.5 is proved.
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Now we shall prove a theorem which actually represents a conversion of Lemma
2.2.

2.7. Theorem. Let @ : R" x R x R — P(R") satisfy (2.2)—(2.4).
Then there exists F: R"*' — A7y such that (2.1) holds. Moreover, the map F
has the following properties:

(i) for almost every te R, F(t,.) is upper semicontinuous;
(ii) there exists a locally integrable function ¢ : R — R* such that F(t, x) <
< B(0, o(?)) for (t, x) e R"**.

2.8. Proof. Let U be the set of all functions u : [z, {] — R" such that (2.7) and (2.8)
hold. The crucial point of the proof consists in establishing the identity
(2.14) o) =U

(cf. (1.3)). Let g€ O(U), [«, ] = I,. Let w;e #(U) be the function from (1.3) so
that w; - g, Jw; - 0 both uniformly on [«, ]. In virtue of (2.4) this means: for
every ¢ > 0 there is j* such that

(2.15) w(s) € Q(@(4q(9), 9, 5), £)
for every 9, s € [, ] and every j > j*. However, this evidently implies
q(s) € 2(q(9), 9, s)

for every 9, s € [, B]. Thus g satisfies (2.8) with «, 8, g instead of 7, t, u, respectively.
As (2.7) with the same change of notation is obviously fulfilled, we conclude that
g € U, which proves the identity (2.14) since the inclusion @(U) = U is evident.
By Theorem 1.4 there exists F : R**! — o™ such that Sol F = U and F has the pro-
perties (i), (ii) from Theorem 2.7. The validity of (2.1) is easily verified.

Given M < R", let us denote by M the boundary of M.

2.9. Definition. Let x : [t, {] > R", x € Sol F. If
x(s) € 00(x(), 7, 5)

for all se[r, t], then x is called a Fukuhara solution. Let us denote by Fuk F the
family of all Fukuhara solutions of (1.1).

2.10. Theorem. If F : R"*' — Ay satisfies (i), (ii) from Theorem 2.7, then
(2.16) O(Fuk F) = Sol F .

2.11. Corollary. If F,G: R*"*! — 4™ and Fuk F < Sol G, then Sol F < Sol G.
This corollary is a consequence of Theorem 1.2.

2.12. Proof of Theorem 2.10. The inclusion @(Fuk F) = Sol F is obvious (cf.
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Theorem 1.2). Thus, let we Sol F, w : [, B] — R". For every positive integer k we
define a function w, : [, f] —» R"in the following way: First, we find a decomposition
0=Ty<Ty <...< 7Ty <T1;=f,

-t =B - for i=1,...Jj,
such that

(2.17) Pw(ti-1), tio 1, (B — @)]j) = B(w(ti—y), 1/k);
this is possible in virtue of (2.2).

Find a Fukuhara solution f} of (1.1), f1 : [1,, 7;] — R". such that f;(zo) = w(to)
and put
wi(s) = fi(s) for se[ty 4]
Evidently

lwk(‘t,) - w(_tl)[ <

-

in virtue of (2.17).
If w(ty) = wt,), put
wi(s) = fi(s) for se(ry, 1,],
where f; is an arbitrarily chosen Fukuhara solution satisfying f7(t;) = w(,).

If w(t,) #+ wy(t,), find the point z, in 9&(w(t,), 7, t,) which has the form z, =
= w(tz) + po[w(ty) — wi(ry)] with y, = 0, and put

wi(s) = fi(s) for se(ry,1,],
where f7 is the Fukuhara solution satisfying

flf(ﬂ) = W(Tl) . ff(Tz) =2Zz.

Then in both cases

JWk(Tz) = W(Tl) - Wk(ﬁ) s
hence

1
Jwi(t,) = =,
e = L
Moreover, w(t;) — w(tz) = w(t2) — 2, = —y, Jw(t,) with 7, = 0 and
w(z2) = wilea)| < 1k
Now assume that w is defined on [z, Ti—l], i > 2 and that
1
Jwitig)| = =,
| Twi(zi- )| p

w(tio1) = wlTic1) = —vie, Jwt,_y) with y,-;, 20
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and
1
IW(Ti—l) - Wk(Ti—1)| < E .

If Jwy(t;_,) = 0, choose any Fukuhara solution f} such that fi(z,_,) = w(t;_,)
and set

wi(s) = fils) for se(ri—y, 7).
If Jw,(t,_) =+ O, then find the point z; in dP(w(t;_,), T;— 1, ;) which has the form
z; = w(ty) + y: Jwi(r;) with y; = 0, and put

wi(s) = fi(s) for se(ri-y 7],

where f} is the Fukuhara solution satisfying

f/ic(Ti—x) = W(Ti—l) > ./-Ii(‘[i) = Zj.
Then

Jwi(t)) = Jwrimy) + [.w(ri_l) - z;4].

Since the two vectors on the right hand side have opposite directions while their
magnitudes are less or equal to 1/k, we in both cases have |Jw,(1;)| < 1/k.

Taking into account the fact that w, is continuous on each (r;_,, 7;), we conclude
by induction that |Jw(s)| < 1/k for se[«, B]. Evidently, |wy(s) — w(s)| = 1/k for
s € [, b]. This easily yields

we O(Fuk F),
which again implies (2.16), thus completing the proof of Theorem 2.10.
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