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A solution of the functional equation x = T'(x) is often sought in a partially ordered
set E with the operator T : E — E showing some monotonicity properties. The theory
has been mostly developed on the assumption that T is isotone (see [1], [2]). In this
paper the fixed points of T are investigated when T is antitone and completely con-
tinuous. The results are applied to the study of initial- and boundary value problems
for ordinary differential equations. Some results obtained by L. Erbe, A. Ja. Choch-
rjakov are improved here.

1. FIXED POINTS OF ANTITONE OPERATORS

Let (E, <) be a partially ordered set, T: E — E. T'is called isotone (antitone) if
for any two elements x, ye E, x <y implies that T(x) < T(y) (T(x) = T(»)).
If xo < y, are two points of E, then the subset [Xq, yo] ={z€E :x9 < z < y,}
is called an order interval. If E is a real Banach space (or more generally a real
HausdorfT topological vector space) and P < E is a cone (i.e. P is closed, P + P <
< P, cP < P for each ¢ > 0 and P n (—P) = {0}), then a partial ordering < can
be induced in E by the rule x < y iff y — x e P. E with this ordering is called an
ordered Banach space (OBS) with positive cone P and it is denoted by (E, P). The
positive cone is called normal if every order interval is bounded. This happens iff
there exists a constant § > 0 such that 0 £ x < y implies “x“ < 5||y“ (Theorem 1.5,
[L, p. 627]). Finally, a map from a Banach space into itself is called completely conti-
nuous if it is continuous and maps bounded sets into compact sets.

The investigation of the fixed points (for short f.p.) of an antitone operator starts
with the lemma which asserts that any two different f.p. of such a mapping are
incomparable.

Lemma 1. If T is an antitone operator which maps a partially ordered set (E, <)
into itself and x < y are two of its f.p., then x = y. Moreover, if the set S; of all
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f.p. of T shows the property that any two-point subset of S| has an upper bound
or a lower bound (in S,) (S, is up- or down-directed), then there exists at most one

f.p.of T

Proof. If x, ye S; and x < y, then x = T(x) = T(y) = y and the first part of
the lemma is proved. If u, ve S; and x (y) is an upper bound (a lower bound)
of the pair {u, v} lying in S,, then, by what has been already proved, u = x = v
(u = y = v). The proof of the lemma is complete.

The existence of f.p. of an antitone operator is a more delicate question than that
of their uniqueness. The following considerations will be of use.

If T is antitone, then T? is isotone. Denote by S,(S,) the set of all f.p. of T(T?).
Clearly S; = S, and, if ae S, — Sy, then there exists a unique be S, — S, b * a,
such that T(a) = b, T(b) = a. Further, we see that T'is the identity mapping on S,
T(S,) = S, and Tis an injection on S,. This implies that if ¢ = sup S, € S, (c is the
maximal f.p. of T?) or if ¢ = inf S, € S, (c is the minimal f.p. of T?), then T(c) =

= inf S, e S, or T(c) = sup S, € S,, respectively. Further, if S, has an odd number
of elements, then S; * 0.

The following lemma is an application of the Tarski theorem. Here as usual a con-
ditionally complete lattice means such a lattice that each of its bounded subsets
has the sup and the inf.

Lemma 2. Let (E, §) be a conditionally complete lattice, x, £ y, two elements of
E. Let T:[x, yo] = E be antitone and such that

(1) X = T(Yo) = T(Xo) = Jyo-
Let there be no such x € [x,, yo] that x = Tz(x) < T(x). Then T has a unique f.p.

Proof. Since E is a conditionally complete lattice, [xo, Vo] is a complete lattice.
In view of (1), the isotone operator T> maps [x,, yo] into itself. By the Tarski theo-
rem ([12]) there exists the least u and the greatest v f.p. of T2 As u = T*(u) £ -
< T(u) = v, by the assumption u = v and hence u is the unique f.p. of T? as well
asof T.

More interesting results can be obtained in the case of a completely continuous
operator.

Lemma 3. Let (E, P) be an OBS with a normal positive cone and let T:E — E
be a completely continuous antitone mapping. Further, let there exist two points
Xos Yo € E such that (1) is true. Then T has at least one f.p. in the order interval
[x0s ¥o]-

Proof. (1) implies that the antitone operator T maps [X,, yo] into itself. Since
[x0, ¥o] = (xo + P) A (yo — P) is a closed, convex and bounded set and T is
completely continuous, by the Schauder f.p. theorem the assertion follows.
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The uniqueness of the f.p. of T and its construction is guaranteed by the next
lemma.

Lemma 4. Let all assumptions of Lemma 3 be fulfilled and suppose further
that there is no such x in the order interval [x,, yo] that x = T?*(x) < T(x). Then T
has a unique f.p. u in [Xo, yo] and the sequences {x,} 5o, {y,} -0 defined by

Xpi1 = T(x,)s yper1 =T(,) (p=01,2..)

converge to u and

I\

(2) XS Vi EX SV3S . S X, S Y41 S-S U
CE Xopr1 SV S S X3S P S X Sy

Proof. Consider T?. From (1) it follows that x, < T(yo) < T?(x,) < T*(yo) <
< T(xo) < y, and further, T? is isotone and completely continuous. By Corollary
2.2 ([2, p. 369]) there exists a minimal u and a maximal v f.p. of T? in [xo, yo]-
Similarly as in the proof of Lemma 2 we get that u = v and hence u is the unique
f.p. of T? as well as of Tin [xo, yo]. Moreover, both sequences {x,,}7- 0, {V2,}i=0
converge to u. By induction we get (2) and due to the normality of the positive cone
P and (2) the convergence of the whole sequences {x,} o, {y,}5z0 t0 u as p - o
is guaranteed.

With help of Lemmas 3 and 4 the next theorem and its corollary will be proved.

Theorem 1. Let (E, P) be an OBS with a normal positive cone, let T: E — E be
a completely continuous antitone mapping. Let there exist an a € E such that

(3) T(x)za (T(x)£a) (xeE).

Then the set S of all f.p. of Tis nonempty, S; < [a, T(a)] (S, = [T(a), a]) and S,
is compact.

Proof. Denote x, = a, yo = T(a) (xo = T(a), yo = a). Then x, < y, and
in view of (3) and of the fact that T is antitone, xo < T(yo) £ T(Xo) < yo (xo <
< T(yo) £ T(xo) £ yo). Hence (1) is satisfied and by Lemma 3, S; + 0. If u = T(u),
then again using (3) and the monotonicity of T we have a < T(u) = u < T(a)
(T(a) £ T(u) = u < a). Hence S; < [a, T(a)](S; = [T(a), a]). Thus S, is bounded
and T(Sl) = S, lies in a compact subset of E. S is closed and this gives that S, is
compact. The proof is complete.

Corollary. If all assumptions of Theorem 1 are satisfied and there is no such x in
[a, T(a)] ([T(a), a]) that x = T*(x) < T(x), then T has a unique f.p. u and the
sequence (xbo=0 ({¥p)i=o) defined by xo =a, x,.1 = T(x,) (yo = a, Vpr1 =
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=T(y,) (p =0,1,2,...) converges to u and

Xo S X S .S X, S SUS S Xgpe1 S0

IIA
IIA

X3 = Xy

IIA

1Sy Sy S Sus Sy, S Sy, S ).

Proof. The result follows from Lemma 4 and Theorem 1.

Remark. If all assumptions of Theorem 1 are fulfilled except (3) which is replaced
by the hypothesis

x = a implies T(x) 2 a (x < a implies T(x) < a),

then T has at least one f.p.in [a, T(a)] ([ T(a), a]). The proof proceeds as that of the
first part of Theorem 1.

2. INITIAL-VALUE PROBLEMS

First, by means of Lemma 1 the Peano uniqueness theorem will be extended to the
case when in the differential (for short d.) equation

4) x' = f(t. %)

f satisfies Carathéodory conditions. f as well as all functions which will be considered
throughout the paper will be supposed to be real.

Theorem 2. Suppose ty, xo, a > 0, b > 0 are reals, f is a function defined on
Q0 ={(t,x)eR*: |t - to| <a, ]x - x0| < b} which satisfies Carathéodory con-
ditions, i.e.

(i) f(-, x) is measurable in [t, — a, to + a] for each fixed x € [xy — b, xo + b],
(i) f(2,.) is continuous in [x, — b, xo + b] for each fixed te [ty — a, ty + a],
(iii) there is an me L([to — a, t, + a]) such that

5 6,9 = m) (%)< ).
Suppose further that f is nondecreasing (nonincreasing) in x € [xo — b, x4 + b]
for each te [ty — a,ty] (te[to, to + a]).

Then there exists a unique solution in the extended sense of the initial-value
problem (for short IVP) (4),

(6 x(to) = Xo
on an interval [ty — ay, to + a,]| with 0 < a; < a.

Proof. The existence of a solution to (4), {6) is guaranteed by the Carathéodory
existence theorem ([4, p. 43]). In order to prove the uniqueness, put M,(t) =
= |fi, m(s) ds| for |t — to| < a. Then there exists an a;, 0 < a; < a, such that
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M(t) £ b for all te[ty — ay, to + a;]. Let K ={ge C([to — ay, t, + a,]):
t|g(t) = xo| £ My(1), 1o —ay St <t + a;}. Then with respect to (5), the
operator T: K — C([t, — ay, to + a,]) which is defined by

0 T(g) (1) = xo + '[ Sl g6l ds (to — ay <t < to + ay)

maps K into itself. Moreover, each solution x of (4), (6) on an interval i satisfies
!x(t) - xol < M (t)in i n [ty — ay, tp + a;] and hence it can be extended to the
interval [1, — ay, to + a,] (if necessary) and its reduction to that interval belongs
to K. When K is ordered in the natural way, T'is antitone. The existence of a maximum
solution to the Cauchy problem (4), (6) as it is assured by Theorem 1.2 ([4, p. 45]),
implies that Lemma 1 can be applied. By this lemma there exists at most one solution
of the mentioned problem in K and hence in C([t, — ay, t, + a,]).

Lemma 2 yields an existence and uniqueness statement which is not based on the
Carathéodory existence theorem. Roughly speaking, condition (i) in Theorem 2
will be replaced by another one. First we recall the definition of the superpositional-
ly measurable (integrable) function. The set of all real measurable functions on
[to — a, to + a] will be denoted by M([t, — a, t, + a]).

Definition. Let f: Q — R, where Q is defined above. f will be called superposi-
tionally measurable (superpositionally integrable) on Q if for each function g e
e M([to — a, to + a]) (g € L([to — a, to + a])) such that [g(t) — xo| S b(to — a <
<t <ty + a) the composite function f[.,g(.)] is measurable (integrable) in
[to — a, to + a].

If f satisfies Carathéodory conditions in Q, then it is superpositionally integrable
on Q. On the other hand, when f is superpositionally measurable, then it satisfies
the condition (i) from Theorem 2. (ii) need not be fulfilled as the following example
shows.

Example. Let

0x=1
x=0
—1=<x<0 and 0Zt<1.

I A

16,9 = {:

Then f is superpositionally integrable in [0, 1] x [—1, 1], yet (ii) is not satisfied.

Ll

Theorem 3. Let f be a superpositionally measurable function on Q which satisfies
all assumptions of Theorem 2 except (ii). Let the IVP

(8) x' =f(t,z), x(to) = xo
z' = f(t,x), z(to) = %o
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have at most one solution. Then there exists a unique solution in the extended sense
of (4), (6) on an interval [ty — ay, to + a;].

Proof. Keeping the notation from the proof of Theorem 2, we consider the set
Ky ={gel([to — ay, to + a,]) : |g(t) — xo| < M(t), te [ty — ay, to + a;] ae.}.
f is superpositionally integrable on Q, = {(t,x)e R* : |t — to| < ay, |[x — xo| < b}
and the operator T which is given by (7) maps K| into itself. Since u < v means in
L([to — ay, to + a,] that u(f) < o(r) for almost all te[t, — ay, to + a,], K, is
a complete lattice and T is antitone. The functions u(r) = xo — My(t), (1) = xo +
+ My(t) (to —ay £t =ty + a,) show the property u < T(v) < T(u) < v. If
x = T*(x), then denoting z = T(x) we have z(t) = xo + [i, f[s, x(s)] ds, x(t) =
= xo + (1, /s, z(s)] ds (t€ [to — ay, to + a,]). This implies that the ordered pair
(x, z) as well as (z, x) is a solution of (8). Since (8) has at most one solution, T2 has
at most one f.p.. By Lemma 2, there exists a unique solution of (4), (6) in K. Since
any solution in [, — ay, to + a,] of that problem has to lie in K, the proof is
complete.

Remark. Both Theorems 2 and 3 remain to be true when the onesided problem is
considered (to the right or to the left of the initial point ,). When f, is the function
from the example above, then by Theorem 3 the problem x’ = fy(t, x), x(0) = 0
has a unique solution in an interval [0, a,].

3. BOUNDARY VALUE PROBLEMS

Boundary value problems (for short BVP-s) represent a rich source of problems
with isotone and antitone operators. Consider the following class of problems
(compare with [3, pp. 158 —159]).

Let n = 2 be a natural number, a < b real numbers. Let, further, p; e I([a, b])
(=1.. n) and f:[a, b] x R —> R satisfy locally Carathéodory conditions.

Let By(x) = }: o;;xY7V(a) + Z BixY™V(b) (i=1,2,...,n) be a set of n linearly

independent boundary condmons where o;;, B;; (i, =1, ..., n) are real numbers.
Let I([a, b]) be the class of all functions with x € L([a, b]). Denote by L, the
differential operator

Lo(x) = x™ +,-§1pj(t) x"7) (xe L([a, b])) .

Definition. We shall say that the linear differential operator L, is inverse monotone
(inverse antimonotone) with respect to boundary conditions

9) B(x)=0 (i=1,2,...,n)

if for any x € '”([a, b]) satisfying (9) the following implication holds:
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Lo(x)(t) = 0 a.e. in [a, b] implies x(¢) = 0 (x(t) < 0) in [a, b].
Since the set of all solutions of the BVP (9),
(10) Ly(x)=0
forms a linear subspace of I([a, b]), L, is inverse monotone (inverse antimonotone)

iff (9), (10) has only the trivial solution and the Green function G of the problem (10),
(9) satisfies the inequality

G(t,s) 20 (G(t,5) £0) in [a,b] x [a, b].

If this is the case, the linear integral operator
b
(11) U(x) = J 6(t,5) x(s)ds  (xe C([a, b))

maps the OBS (C, P) into itself. Here and in what follows C will mean the Banach
space C([a, b]) with the sup norm |.| and P = C the normal positive cone of all
nonnegative functions. P is generating, i.e. C = P — P and U is completely con-
tinuous.

The eigenvalues of the homogeneous BVP (10), (9), i.e. the numbers 4 (they may
be complex) for which there exists a nontrivial solution u (the so called eigenfunction)
of the problem

m: Lo(x) =2x, B(x)=0 (i=12,...,n)

(if they exist) are different from zero. A is an eigenvalue and u is the corresponding
eigenfunction of (10), (9) iff 1/4 is an eigenvalue and u is the eigenfunction of U.
Thus the one-to-one correspondence between the eigenvalues of (10), (9) and nonzero
eigenvalues of U is established. As for the operator U we shall consider first the case
that G(t, s) = 0 in [a, b] x [a, b]. Then U is positive and either its spectral radius
r(U) = 0 or r(U) > 0. In the former case U has no eigenvalues different from zero.
If (U) > 0, by Lemma 5.2 ([7, p. 77]) (U) is an eigenvalue of U, and there exists
an eigenfunction u € P corresponding to r(U). All the other eigenvalues A of U
satisfy |l| < r(U). The case G(t,s) < 0 in [a, b] x [a, b] can be reduced to the
above one by observing that the eigenvalues of —U differ from those of U only by
the sign and the corresponding eigenfunctions remain the same. Hence in this case
—r(U) is the eigenvalue of (11) with the greatest absolute value and the corresponding
eigenfunction u again belongs to P. Coming back to the problem (10), (9) we see
that the following alternative holds. Either this problem has no eigenvalues (this
corresponds to the case r(U) = 0) or there is a positive (a negative) eigenvalue 4,
and a nonnegative function u such that all eigenvalues 4 of (10), (9) satisfy |4| = 4,
(|4] 2 —4o) and u is the eigenfunction of (10), (9) corresponding to .

By means of these remarks we shall prove the following fundamental lemma for
inverse monotone (inverse antimonotone) operators.
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Lemma 5. Let L, be an inverse monotone (inverse antimonotone) operator. Let 1,
be the positive (negative) eigenvalue of (10), (9) such that all eigenvalues A of that
problem (if they exist) satisfy |/1] > |/10]. If (10), (9) has no eigenvalue at all,
put Ao = +00 (o = —o0). Let f satisfy the Lipschitz condition

(12) lf(t.x) = f(t.y)| SLx—y| (a<t<b,x, y€R)

with a constant 0 £ L < 4y (0 £ L < —A;). Then for any real numbers C,
(i =12,..., n), there exists a unique solution z of the BVP

(13) Lo(x) = f(1, )
(14) B(x)=C; (i=1,2,...,n)
and for any function x, € C the sequence {x,}7_, defined by
(15) Lo(xp+1) = f[1: x,(1)]
Bx,41) =C; (i=12,...n) (p=0,1,2,..)
is such that the sequence {x’}>_, converges uniformly to z (j=01,...,n-1)
on [a, b].

Proof. The problem (13), (14) is equivalent to the integral equation
b
(16) x®=w@+fG@Qﬂymﬂm @st=b),

where w is the unique solution of (10), (14), G is the Green function of (10), (9).
Let T: C — C be the operator

) ﬂﬂ@=w@+j%@ﬁ@&@ﬁs@eQa§t§M.

a

In view of (12), for any x, y € C we have
18 T () - T0) () < Lﬁa(,, I [x(s) = vl ds (@ <128,

By the remarks above, the spectral radius g of the operator V:C — C which is
defined by V(x) (1) = L[2|G(t, s)| x(s)ds (xe C, a < t < b)is ¢ = Lf|4o| (if 4| =
= + 00, then ¢ = 0). As L < ||, ¢ < 1. Hence there exists a norm |. |, equivalent
to the sup-norm |. | in C([a, b]) ([7, pp. 15—16]) such that ||V|, < Lf|io| + & <1
with ¢ > 0 being sufficiently small. As V is a positive operator and the norm |. || is
monotone, that is, 0 < x < y implies |x|| < |y||, the norm |.|, is monotone, too.
Hence (18) implies that |T(x) — T(y)|; < |V]: |x — »|:- T is a contraction and
by the Banach f.p. theorem we have that for any x, € C([a, b]) the sequence given
by x,+; = T(x,) (p = 0,1,2,...) and hence by (15) converges in the norm [.|
as well as in ||.|| to the unique solution z of (16) and thus, of (13), (14). With respect
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to the meaning of the sup norm , the sequence {xp};‘; o uniformly converges to z
on [a, b] and it is uniformly bounded there. Let je {1,... , 1}. Then

. .  3G(t, s
x;lgl(t) = w(n(t) + J’ _._,é(tj__)f[s, xp(s)] ds (a St<h p=0,1,2, )

a

and as there exists an m € L(%a, b]) such that
) b (50
X2, ()] < [wO ()] +J' &'G(t, 5)
a

or

all sequences {x’};Lo (j = 1,...,n — 1) are uniformly bounded on [a, b]. From
the uniform continuity of "~1G/0:"~ ! on the triangles a S s < t < banda <t <
< s < b it follows that {x" D}, is equicontinuous on [a, b]. Hence {x,}2.,
has the property that each of its subsequences {x,,}%, has a subsequence {x,}2o
such that {x{”}2 , uniformly converges to z on [a, b] (j = 0,1, ..., n — 1). Then
the whole sequence {x,}7-, possesses the same property and the proof of the lemma
is complete.

m(s)ds, (a<t<b, p=0,1,2..),

Remark. Lemma 5 strengthens the Uniqueness theorem III in ([13, p. 272]).
Although this lemma does not concern the theory of antitone operators directly,
because the operator T given by (17) is not antitone in general, the lemma has been
given here because of its importants. In special cases when L is inverse monotone
and f(¢,.) in nonincreasing in R or when L is inverse antimonotone and f(t,.) is
nondecreasing in R, T is antitone.

Suppose that k, 1 < k < n — 1, is a natural number. We shall deal with a special
case of the boundary conditions (9), namely with the conditions

(19) xP@)=0 (i=0,...k—1), xPb)=0 (i=0,...,n—k—1).

A sufficient condition for the operator L, to be inverse monotone or inverse anti-
monotone with respect to (19) is given by the following lemma.

Levin’s lemma. ([8, pp. 80—81]). If the differential equation (10) is disconjugate
on [a, b], then there exists the Green function G of the BVP (10), (19), its sign is
determined by the inequality

(20 G(t,s)(t—b)*20 (a1, s<b)

and G(t,s) + 0 ina<t, s <b.
By means of Lemma 1 we prove the next theorem.

Theorem 4. Let the differential equation (10) be disconjugate in [a, b], let (—1)".
Sf(t,.) (f(t,.)) be nondecreasing in R for each fixed te [a, b]. Suppose further
that the solutions of all IVP-s for the differential equation (13) at the point b (a)
are unique. Then for any real numbers A;, B; (i =0, ...,n — 2) there exists at
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most one solution of the BVP (13),
(21 x(a) = 4y, xP(b)=B;, (i=0,...,n-2)
((22) xa)=4;, x(b)=B, (i=0,....,n—2).

Proof. Consider only the BVP (13), (21). The problem (13), (22) can be dealt with
in a similar way. Suppose that there are two different solutions x,, x, of (13), (21).
Let S = {t€e[a, b] : x,(f) = x,(1)}. If b were a limit point of S, then together with
xP(b) = xP(b) (i=0,..,n —2), x""D(b) = x§"V(b) would hold and by the
last assumption of the theorem, x,; = x,. Therefore there exists a t;, a < t; < b,
such that x,(t,) = x,(t,) = A4, and x,(¢) + x,(¢) in (y, b), say x,(t) > x,(¢). Thus
X3, X, are two comparable solutions of the BVP (13),

(23) x(ty) = 4o, xU(b)=B, (i=0,...,n—2).

By Levin’s lemma there exists the Green function G of the corresponding homo-
geneous problem (10), (19) for k = 1 and (20) implies that (—1)" G(t, s) < 0 in the
square t; < 1,5 < b. The problem (13), (23) is thus equivalent to the integral equation

b
(24) *(i) = (1) + 'f 6(t, 5) /s, x(s)] ds (< [t2, b)),

ty
where y is the solution of (10) satisfying (23). The right-hand side of (24) defines an
antitone operator T which maps C([t,, b]) into itself. By Lemma 1, the existence of

two comparable f.p. of Tis impossible and this proves the theorem.

Corollary. Suppose that p', q,re C((0, ©)), f = f(t,x), 0f|oxe C(D) where

D = (0, ©) x R and
ot x) _ 0 <6f(t, x) o 0)
ox ox

in D. Suppose further that
2 ’
(25) X+ <q(t) AU, ‘f') - pT(t)) x=0

is disconjugate in (0, oo). Then for any real numbers 0 < a < b, Ay, Ay, By, B,
there exists at most one solution of the BVP

(26) x" + p(t)x" + q(t) x' = f(t, %),
(27) x(a) = 4o, xO(b)=B; (i=0,1),
((28) x(a) = 4; (i=0,1), x(b) = Bo).

Proof. Since the substitution y = x exp (—% [; p(s) ds) transforms (25) into the
form y” + p(t) y' + q(t) ¥ = 0, the last equation is disconjugate, too. Using Rolle’s
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theorem we can prove that the equation x” + p(f) x” + ¢(t) x' = 0 is disconjugate
on (0, oo). Since all assumptions of Theorem 4 are satisfied in [a, b], by this theorem
the statement of Corollary follows.

Remark. If x" + (q(r) — 3 p'(t)) x = 0 is disconjugate in (0, ), so is (25).
Therefore the corollary stregthens the result of Theorem 4.6 in [5, p. 720].

The existence of a solution to the BVP (13), (21) and (13), (22), respectively, is
ensured by the following theorem.

Theorem 5. Let all assumptions of Theorem 4 be satisfied and further, let the
solution of all IVP-s for the differential equation (13) at the point b (a) be ex-
tensible to the whole interval [a, b]. Then for any real numbers A, B; (i =
=0,...,n — 2) there exists a unique solution of the BVP (13), (21) ((13), (22)).

Proof. Since the method of the proof in the case (13), (22) is very similar to that
of (13), (21), only the latter will be given here. For any ¢ € R we denote the solution
of the IVP (13),

(29) xXP(b) =B, (i=0,...n—2), x""Y(b)=c,

by x(., ¢). By the assumption of the theorem x(., c) exists on [a, b] and hence the
mapping F : R » R with F(c) = x(a, c) is well defined. Theorem 4 implies that F
is one-to-one and in the case n is even (n is odd) F is decreasing (increasing). In case a
is sufficiently close to b this follows by considering of the sign of derivative, and by
Theorem 4 this is true in the general case, too. To make clear further properties of F,
denote by y(., ) the solution of (10), (29) and by K = K(t, s) the Cauchy function
for the d. equation (10), i.e. K(., s) is the solution of (10) which is determined by
the initial conditions

XO(s) =0 (i=0,..,n—2), 50 (s)= 1.

Suppose that n is even, ¢ > 0. Then K(f,s) <0 for a £t <5< b, x(s,¢) <
< x(s,0) (@ < s < b) and f(t, .) is nondecreasing in R, hence

(30) F(c) = x(a, ¢) = y(a, ¢) + J,aK(a, s) f[s, x(s, ¢)] ds = y(a, 0) +

b

IIA

+ cK(a, b) + JWK(a, s) f[s, x(s, ¢)] ds < y(a, 0) +

It

+ cK(a, b) + J:K(a, s) f s, x(s, 0)] ds

= cK(a, b) + x(a,0) =

Il

cK(a, b) + F(0).
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When ¢ < 0, then we get

(31) F(c) = cK(a, b) + F(0).

Similarly in the case n is odd, ¢ > 0 (¢ < 0), we come to the inequality
(32) F(c) = cK(a, b) + F(0)
((33) F(c) £ c¢K(a, b) + F(0)).

In (30), (31) K(a, b) < 0, while in (32), (33) K(a, b) > 0. Hence these four ine-
qualities imply that F attains arbitrarily large positive and negative values. The
proof of the theorem will be complete if we show that F is a continuous function.
This will be done in the case n is even. Let {c,,} be a nondecreasing sequence tending
to ¢. Then x(t, ¢;) > x(t, ¢;) > ... > x(t,¢,) > ... > x(t, ¢) for each 1, a < ¢t < b.
Denote lim x(1, ¢,) = z(t). As the theorem on continuous dependence of the solution

n—oo

on initial conditions is true for the linear d. equation (10), lim y(t, ¢) = ¥(t, ¢) and
n—+o0

from
x(t ) = ¥(t, ) + L'K(t, 9 f[s, x(s, c)]ds (1 [a, b])

by the limit process we conclude that the integrable function z satisfies
t
1) = ¥(t, ) + J K(t, $) /s, 2(s)] ds (¢ [a, b])
b

and thus, z is a solution of (13), (29). The uniqueness of this IVP guarantees that
z(f) = ¥(t, ¢) (@ < t < b) and F is continuous from the left. Similarly the right-hand
side continuity of F can be proved.

Corollary. Let the hypotheses of Corollary to Theorem 4 hold and suppose further
that the solution of all IVP-s for (26) can be extended to the whole interval (0, o).
Then for any real numbers 0 < a < b, Ay, Ay, By, By there exists a unique solution
of the BVP (26), (27) and (26), (28).

The next theorem is a consequence of Theorems 4 and 5.

Theorem 6. Let the following hypotheses be satisfied:
1. pjeLi((0,0) (j=1,....,n) and f:H = (0,0) x R — R satisfies locally
Carathéodory conditions in H.
2. The differential equation (10) is disconjugate in (0, o).
. (=1y"f(t,.) (f(t,.)) is nondecreasing in R for each fixed t € (0, ).
. The solutions of all IVP-s for (13) are unique and can be extended to the whole
interval (0, o0).

oW
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Then for any solution x4 of (13) on (0, 00), any T > 0, any A > Ay = 0 where
n—1
> [x§UT))* = A3 there is a pair of solutions x, y of (13) on (0, o) such that
i=0

(34 M =T BT = 42
and
x(f) 2 xo(t) 2 ¥(1) (0<t<o0).

Moreover, if for any s € (0, o) the Cauchy function K for (10) is such that

(35) 6K(tt 5)

then x(1) > xo(t) > (1) (0 <t < ) and x'(t) — xo(t) £ 0, y'(t) — x(t) 2 0 in
(0, ) (and x'(1) — xp(2) = 0, y'(t) — xo(t) < 0 in (0, 00)).

=0 forallt, 0<t<s (forallt,s<t< ),

Proof. Consider the case (—1)" f(¢, .) is nondecreasing in R. Suppose that a solu-
tion x, of (13),a T > O and an A > A, are given. Consider a sequence of BVP-s (13),
(36 SO = 47, x0T+ m) = T+ m)

T i=0n—am=12.).
Fix an m and denote the solution of the IVP (13),
(37) xXNT+m)=xP(T+m) (i=0,..,n-2),
(T + m) =x§"(T+ m) + ¢

by x(., ¢). Clearly x(t, 0) = x,(¢) in (0, o) and by Theorem 5, there exist ¢y, ¢, with
¢; < 0 < ¢, when n is even and ¢; > 0> ¢, when n is odd such that x(T, ¢,) = 4,
x(T, ¢;) = —A, hence "lil[x(i)(T, a)]? = A% (k = 1,2). Using the Theorem on
continuous dependence c;F golutions on the initial condition we get that there is a ¢
lying between 0 and ¢, such that x(T; c5) > x,(T) and'ti1 [x(T, ¢)]* = A% Similarly
there is a ¢, € (0, c,] (if n is even) or ¢4 € [c,, 0) (if 1;=1(s) odd) with x(T; ¢,) < xo(T)
and '.Ii:[x(‘”)(T, cs)]> = A% By Theorem 4, x(t, c3) # xo(f), x(t, cs) * Xo(f) in

(0, T+ m) and in view of the above inequalities x(t, c3) > xo(t) > x(¢, c,) in that
interval. Denote x(., ¢3) and x(., ¢4), by x,, and y,,, respectively. If there are more
solutions x(., c3) and x(., ¢4) of (13), (36), then we choose the one with the smallest
|es| and the smallest |c,|, respectively.

Consider the sequence {x,}m-;. Since all x,, satisfy (34), there is a subsequence
{%n.} and a solution x of (13) such that x” is a locally uniform limit of x{;) on (0, o)
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(i=0,1,...,n — 1). With respect to the inequality x,,(t) > x,(t) in (0, T+ m)
we have x(f) = x,() in (0, o0). Similarly there exists a subsequence {y,,} and a limit
solution y of (13) with the above mentioned properties which satisfies (34) and y(f) <
< x0(1) in (0, ).

If (35) is true, then in the case n is even (n is odd)

oK(1, s) >0 oK(t, s) < 0)
ot ot

for 0 <t <s < oo and ¢; <0 (c; > 0). x,, satisfies the integral equation x,() =
= ¥(t, ¢3) + [7um K(t, ) f[s, x,(s)] ds (0 <t < T+ m) while x(t) = y(,0) +
+ [74m K(1, 5) f[s, %o(s)] ds (0 < t £ T+ m). Here y(., c) is the solution of (10),
(37). Hence y(t, ¢c3) = ¥(t,0) + ¢; K(t, T+ m), (0 < t < o). This implies that

(i) ) = o T 1 SOy 0] o))

S00<t=T+ m),

and by the limit process, x'(f) — xo(t) < 0 in the whole interval (0, o). Since x(t) —
— xo(t) 2 0 and x(1) % x,(t) in (0, ), we have x(f) — xo(t) > 0 in this interval.
Similarly we obtain y'(f) — xg(tf) Z 0 and, in view of y(f) — xo(t) < 0 we arrive at
the inequality y(¢) — xo(t) < 0 in (0, c0).

In the case f(¢,.) is nondecreasing in R, instead of (13), (36) we consider the se-
quence of the BVP-s (13),
(38)
1

;;) (i=0,...,n—2, mzm)

:Z;[ﬂb(T)]z = A2, xO (_nl;> _ ng><

with 1/mo < T. Then the existence of a pair of solutions x,,, y,, of (13), (38) such that
xp(t) > xo(t) > y,(t) in (1/m, oc) can be proved. Again there exist subsequences
{*m} and {y,,}, the limit of which x and y, respectively, is the solution of (13) for
which the statement of the theorem is true. If (35) is valid, then 0K(t, s)/dt > O for
0 <s <t< ooand from

2 = i) = e P 1 [ B 4T 9] D i

with a ¢s > 0 we come to the conclusion that x'(f) — x4(¢) = 0 in (0, o). This
implies that x(f) — xo(tf) > 0 in the same interval. Similarly the statements y(f) —
— xo(t) < 0, y'() — xo(f) < 0 hold and the proof of Theorem 6 is complete.

Corollary. Let the hypotheses of Corollary to Theorem 5 hold. Then for any
2

solution x, of (26), any T> 0, and any A > Ay = 0 where Y [x{(T)]* = 42
i=0
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there is a pair of solutions x, y of (26) on (0, o0) such that (34) is true for n = 3 and

x(t) > xo(t) > ¥(t), x'(t) — xo(t) £ 0, y(t) — xo(1) 2 0
in (0, ),
(x(1) > xo(t) > (1), x'(t) — x5(t) = 0, y'(t) — xo(t) £ 0
in (0, c0)).
Proof. The assumptions 1—4 of Theorem 6 can be easily checked to be fulfilled.
As to (35), since y” + p(t) y' + q(t) y = 0 is disconjugate in (0, c0), there is no non-
trivial solution x of x” + p(f) x" + ¢(t) x' = 0 with two different zeros of x'.

Remarks. 1. When n is even and all assumptions of Theorem § as well as (35)
are fulfilled, to any solution x, of (13) there exist two “funnels” of solutions x, y
of (13). The first of them consists of infinitely many pairs x, y satisfying x(r) =
> xo(t) = y(t) in (0, ) and such that the differences [x(t) = xot)], |¥(r) = xo(1)]
decrease as t — oco. For the pairs of the second one these differences increase for
t — oC.

2. The last corollary improves the result of Theorem 4.9 ([5, p. 721]) in the case
when the hypotheses of Theorem 4.6 hold.

The next theorems bring existence statements for the BVP (13),

(39) xPa)=4, (i=0,...,k—1) xPb)=B;, (i=0,...,n—k—1)
with A4;, B; being given numbers. The proofs are based on the notion of a lower and
an upper solution.

Suppose again that p;e L([a,b]) (j =1,....,n), f:[a, b] x R — R satisfies
locally Carathéodory conditions, 1 < k < n — 1 is a natural number. Following
[10, p. 281] we shall call x a lower solution (y an upper solution) of the d. equation
(13) if x (y) € L([a, b]) and x (y) satisfies the d. inequality Ly(x) < (1, x) (Lo(y) =
= f(t, y)) a.e. on the whole interval [a, b]. In this definition a lower and an upper

solution need not satisfy any further conditions. However, if a lower solution x and
an upper solution y of the d. equation (13) satisfy

Lo(x) < f(t, ¥) £ f(t, x) £ Lo(y) ae.in [a,b],
then we shall say that they are conjugate to each other.
Finally, for a y € I'’’([a, b]) let v, be the solution of the problem (10),
xYa) = ya) (i=0,...,k—1),
x(b)=y?(b) (i=0,...n—k—1).
v, will be called the solution of (10) associated with the function y with respect to

the BVP (10), (39).
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Lemma 6. Let the following assumptions be satisfied:
1. n — k is an even (odd) number.
2. (10) is disconjugate in [a, b].
3. f(t,.) is nonincreasing (nondecreasing) in R for each fixed t € [a, b].
4. There exist a lower and an upper solution xo, yo, respectively, of the equation
(13) with the properties
a) xo(t) < yo(t) (xo(t) = yo(t)) for all te[a, b],
b) v.,(1) < w(t) < vy(t) (veo(t) = () = v,(t)) for each te[a, b] where w is
the solution of the problem (10), (39),
C) Xq, Yo are conjugate each to other.

Then there exists at least one solution x of the problem (13), (39) which satisfies
xo()) £ X(0) £ o) (o) 2 x(0) 2 o)) (@S 1= ).

Any two solutions x,y of that problem are incomparable, i.e. there exist two
distinct numbers ty, t, € (a, b) such that (x(t,) — ¥(t,)) (x(t2) — ¥(t2)) < 0.

Proof. Similarly as in the proof of Theorem 4 the problem (13), (39) is equivalent
to the integral equation

(40) x(t) = w(t) + J "6t )T, x(5)] ds (a =1 = b),

where G is the Green function of the corresponding homogeneous problem (10), (19).
In view of Levin’s lemma, the right-hand side of (40) defines an antitone operator T
which maps C into itself. T is completely continuous. By Lemma 2 the inequalities
(1) have to be shown in order to complete the proof of the existence of a f.p. of T
and thus of the existence of a solution to (13), (39).

If n — kis an even number, then by the assumptions 3 and 4 we have

xo(t) = v(1) + JbG(t, s) Lo(xo) (s) ds < w(r) + be(t, ) s yo(s)] ds <

a a

< w(t) + 'rG(t, s) fs, xo(s)] ds < v,(1) + JbG(t, s) Lo(yo) (s) ds = yo(1),

a

which means that x,(t) £ T(yo) (1) £ T(xo) (t) £ yo(t) in [a, b]. When n — k is
odd, the last inequalities change their sign. In both cases we get the existence of
a f.p. of Tin [xq, o] and [y, X,], respectively. If there are more, by Lemma 1 they
must be incomparable.

The next theorem is an easy consequence of Theorem 1.

Theorem 7. Let the assumptions 1—3 of Lemma 6 be satisfied. Further, le;

4'. there exist a constant ¢y such that f(t,x) = ¢; ((t,x)e[a,b] x R a.e.) or
f(t,x) < ¢y ((t, x) € [a, b] x R a.e.).
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Denote by u the solution of the BVP Ly(x) = cy, (39), and by z the solution of
Lo(x) = f[t, u(t)], (39). Let G be the Green function of (10), (19). Then the set of all
solutions of the BVP (13), (39) is nonempty, compact in the sup-norm |.| and each
solution x of that BVP satisfies in the case G(t,s) 2 0 (n — k is even), f(t, x) = ¢,
and G(t,5) £ 0 (n — k is odd), f(t, x) < ¢, the inequalities

u(t) S x(t) £ 2(t) (a £t b)
while for G(t,s) 2 0, f(t, x) < ¢; and G(t,s) < 0, f(t, x) = ¢, the inequalities
Z() S x()Su(t) (a<t<h).

Proof. Only the case G(f, s) = 0 will be considered. The other case can be dealt
with in a similar way. Keeping the notations from the proof of Lemma 6, if f(z, x) =
> ¢, (f(t,x) < ¢y), then for any xe C, T(x) (t) = w(t) + 5 G(t, 5) f[s, x(s)] ds =
> w(t) + [2G(t,5) ¢y ds = u(t) (T(x) (1) < u(?)) (@ < t < b). Hence the assumption
(3) of Theorem 1 is satisfied and in this case [a, T(a)] is the order interval [u, z].
The other assumptions of Theorem 1 have been shown in the proof of Lemma 6.
Thus Theorem 1 implies the statement of Theorem 7.

In the next theorem the requirement that the lower and the upper solutions should
be conjugate is replaced by the condition that f satisfies a local Lipschitz condition
in x and that there exists a non negative (non positive) Green function for the BVP

(19),
(41) Ly(x) + Kx =0,

where K > 0 (K < 0) is an arbitrary constant.

Theorem 8. Let the assumptions 1—4a of Lemma 6 be satisfied. Let further the
following assumptions hold:

4b'. xo and y, satisfy the boundary conditions (39).

5. For any K > 0 (K < 0) the linear differential operator Lo(x) + Kx is inverse
monotone (inverse antimonotone) with respect to the boundary conditions (19),
i.e. the problem (41), (19) has only the trivial solution and its corresponding Green
function G, satisfies

Gy(t,s) 20 (Gy(t,s) =0) in [a,b] x [a, b].

6. f satisfies a Lipschitz condition in the second variable from R locally on the
set [a, b] x R.

Then there are two sequences {x,}_o, {ym} =0 of lower and upper solutions of
(13), respectively, which satisfy

(42) o) € %1(H) £ oo S xp(t) S oo < Yult) < - < ¥1(1) < 2o(2)
(o) Zx,() = oo Zxu(t) Z oo Zpu(t) Z .o Z yi(1) Z yo(D)) (a S £ S b)

and which converge uniformly to a solution of (13), (39).

IIA
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Proof. Consider the case n — k is even. Then by the assumption of the theorem
there exists a lower solution x, and an upper y, of (13) such that x,(t) < y(t) for
all t € [a, b]. By the assumption 6 there is a K > 0 such that

|7(t x) = f(t. )| < Kx — ¥
for all 1€ [a, b], xo(t) £ x < y < yo(1).

Let a(t) = Lo(x) () — £t xo(0s Bolt) = La(ro) () — STt 3o(0] (a < 1 < b)
By the assumption 4, ao(f) < 0, Bo(f) = 0 a.e. in [a, b].

Consider the BVP (19),

(43) Lo(x) + Kx = —ay(1)
and the BVP (19),
(44) Lo(x) + Kx = —Byft) -

Denote the solution of the former (of the latter) BVP as z, (u,). Since zo(f) =
= — {2 Gy(t, 5) op(s) ds, uo(t) = =[5 Gy(t, 5). Bo(s)ds (a <t £ b), we have

(45) zo(t) =2 0, ue(t)<0 in [a,b].
Further,
Lo(xo + z0) (1) = ft, xo(t) + zo(1)] = Lo(x0) (1) — fLt. xo(1)] +
+ Lo(zo) (1) + fTt. xo(2)] = L1, x0(t) + zo(t)] £ 2o(t) — K zo(t) —
— oo(f) + K zo(t) = 0 ae. in [a, b]
and similarly Lo(yo + uo) (1) Z Bo(t) — K uo(t) — Bo(t) — Klug(t)] = 0 ae. in

[a, b].

Clearly x, + zo, (yo + o) € I([a, b]) and hence, x; = xo + 2z, is a lower
solution of (13), while y; = y, + u, is an upper solution of that equation. (45)
implies that

xo(t) £ x4(t), y1(t) £ yo(t) in [a, b].
Further, we have

Lo()’o — Xo) (t) = ﬁo(’) - “0(‘) - lf[t’ yo(t)] - f[t’ xo(t)]l =

= Bolt) — 2o(t) — K]yo(t) — xo(t)] ae.in [a,b].
Hence

(46) Lo(yo = x0) (1) + K[yo(t) = xo(t)] Z Bo(t) = ato(1) .

On the other hand v

(47)  Lo(zo — uo) (1) + K[zo(t) — uo(t)] = Bo(t) — #o(t) (a-e.in [a, b])

Both functions y, — Xo and z, — u, fulfil (19) and therefore, (46), (47) give that they
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satisfy the inequality
(48)  yo(t) — xo(1) = J Gy(t, 5) [Bols) — ao(s)] ds = zo(1) — uo(t) (te[a, b]),

which yields y,(t) 2 x,(¢) in [a, b].

We can continue the process by constructing a sequence of lower solutions {x,,}r-o
and a sequence of upper solutions {,}w_, of (13) satisfying (42) and the boundary
conditions (39). Denote x() = lim x,,(2), y(t) = lim y,(t) (a £ t £ b). In order to

show that x and y satisfy (13), (39) we have to investigate x,, and y,, in more detail.
Similarly as above, let a,(t) = Lo(x,) (1) — [t x.(t)], Bult) = Lo(ym) (t) —
— f[t, ya(1)] (ae. in [a, b]), let z,, () be the solution of (43) ((44)) with a,, and
B, instead of «, and B, respectively, which satisfies (19). Then x,.+; = X, + 2z,
and V.5 = Vm+ thy Hence Lo(Xp41) (1) = Lo(x,) (1) + Lo(z.) (1) = f[1, x,.(1)] —
— K z,(t) and

(49)  xpes(t) = w() + be(t, $) [—K z,(s) + /s, xu(s)]ds (a £ 12 D).

a

As z,(t) = X,41(t) — x,(t) = 0 for m — o (a < t < b), by the Lebesgue theorem
we get b
*(i) = w(t) + f G(t, 5) f[s. x(s)] ds (@ S 1S b).

Here w is the solution of (10), (39). Similarly, y satisfies the same integral equation
and hence problem (13), (39). As the convergence of x,, to x as well as that of y,, to y
is monotone and all the functions involved are continuous, by Dini’s theorem the
convergence is uniform on [a, b]. x and y are comparable solutions of the BVP
(13), (39) and thus f.p. of an antitone operator. Lemma 1 implies that x = y.

In the case n — k is odd we proceed similarly as above. Instead of (43) we consider
the equation Lo(x) — Kx = —ay(t) and (44) is replaced by Lo(x) — Kx = —fo(t).
Then z,, u, are provided with opposite signs as in (45). Instead of (48) we come to
the inequality xo(f) — yo(t) = uo(f) — zo(t) and hence the inequalities (42) reverse
their order. (49) changes its form into x,.,(t) = w(t) + [ G(t, 5) [z.(s) +
+ f[s, x,(s)]] ds. The final result is the same as above and the theorem is proved.

Remark. By similar considerations as those made in the proof of Lemma 5 which
use (49) as their starting point we can show that the sequences {x{}, {y$} converge
uniformly to x4 (j = 1,...,n — 1).

Under the assumption that all functions standing in the d. equation (13) are con-
tinuous the hypothesis on the local Lipschitz continuity of f can be omitted.

Theorem 9. Suppose that the following assumptions are satisfied:

1. n — k is an even (odd) number.
2. All coefficients p; (j = 1, ..., n) in (10) are continuous in [a, b] and (10) is dis-
conjugate in [a, b]-
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3. f is continuous in [a, b] x R and f(t,.) is nonincreasing (nondecreasing) in R
for each fixed t € [a, b].

4. For any K > 0 (K < 0) the linear differential operator Ly(x) + Kx is inverse
monotone (inverse antimonotone) with respect to the boundary conditions (19).
Then there exists at least one solution x of the BVP (13), (39).

Proof. Since the proofin the case n — k is odd does not differ substantially from
that in the case n — k is even, only the latter case will be investigated.

First we show that there exist a strict lower solution x, and a strict upper one y, of
the equation (13), i.e. xo, yo € C,([a, b]) and x, (y,) satisfies the strict d. inequality
Lo(xo) (1) < f1t, xo(2)] (Lo(y0) () > ft. yo(1)]) in [a, b]. Further, x, and y, possess
the following properties:

a) xo(f) £ yo(1) (in the case n — k is odd x,(t) = y,(t) would hold) in [a, b].

b) x, and y, satisfy the boundary conditions (39).

Let k > 0 and let x, be the solution of the BVP Ly(x) = —k, (39) and y, the solu-
tion of Lo(x) = k, (39). If w is the solution of (10), (39) and G is the Green
function of (10), (19), then x4(t) = w(t) — [2 G(t, s) k ds < w(1) < w(t) +
+ [0 G(1, s) k ds = yo(t). Further, Lo(x,) (1) = —k < f[t, w(t)] < k = Lo(y,) (t)
(a =t £ b) for a sufficiently great k. This implies that for such a k Lo(x,) (t) <
< f[t, xo(t)] and Ly(yo) (1) > f[t. yo(t)] in [a, b].

Denote W = {(t, x) € R* : xo(t) £ x < yo(t), a < t < b}. Let A4 be the set of all
functions g e C(W) such that g(t,.) is nonincreasing in [xo(f), yo(t)] for each te
€ [a, b] and g satisfies a Lipschitz condition in the second variable on W. 4 =+ 0
since for g4(t, x) = —x ((t, x) € W), g, € A. We shall show that 4 is a lattice of con-
tinuous functions on W with the property:

(o) For every pair (14, x,), (t,, X,) of distinct points of W there exists a function
g € A such that g(1;, x;) = f(t;, x;) (i = 1,2).

Then by the Stone theorem ([9, p. 184]) there exists a sequence {g,,} of functions
gm € A which uniformly converges to f on W.

First of all, similarly as in remark b) in [9, p. 183], we get that the maximum and
the minimum of two continuous functions satisfying a Lipschitz condition in the
second variable on W also enjoy this property. If both functions are nonincreasing in
the second variable, then the same property is shared by their maximum and mini-
mum. For, if gy, g,€ 4, (t,x;)e W (i =1,2), x; < x, and g, x,) = gy (i, k =
=1,2), then g, =g;; (i =1,2). Suppose that g;; < g1, g12 Z g2,- Then
min (9127 922) = 922 = g12 < gy = min (911, g»1) and max (912, gz:) =gz =
=< gy1 £ 921 = max (g4, g,;)- The same result can be obtained in the other cases.
Thus A is a lattice of continuous functions on W. Now to prove the property (o)
of A, consider two arbitrary distinct points (t,, x,), (t,, x,) of W. Two cases may
occur. If t; = t,, then by the linear interpolation and the constant extrapolation
we obtain a function g, which is Lipschitz continuous in R, nonincreasing and such
that go(x;) = f(t1, x;) (i = 1,2). The function g defined in W by g(t, x) = go(x)
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is the searched function in 4 mentioned in (cx). If 1, + t,, then we define g, at straight
lines t = t;, t = t, (x € R) by go(t;, x) = f(t1, x1), go(t2, x) = f(t2, x,) and then by
the linear interpolation and the constant extrapolation we extend g, to R?. g(,]W is
again the searched function in A. Thus the existence of a sequence {g,,} = A which
uniformly converges to f on Wis proved.

The next step in the proof will consist in showing that x, is a lower solution of
almost all equations Lg(x) = g,(t, x). In fact, Lg(xo)(¢) < f[t, xo(t)] in [a, b].
Since both sides of this inequality are continuous in [a, b], there is an ¢ > 0 such
that Lo(xo) (1) < f[t. xo(f)] — ¢. But {g,[., xo(-)]} uniformly converges to
S+ xo(+)] in [a, b] and hence there is an m, such that Ly(x,) (t) < [t xo(1)] —
— £ < g, [t, xo(t)] (@ £ t £ b) forall m = m,. Similarly there exists an m, with the
property: m = m, implies that Ly(vo)(f) > g.[t, yo(t)] (a £t < b). As g, can
be extended from W to the whole strip [a, b] x R preserving the properties shared by
the functions from A, Theorem 8 can be applied to all BVP-s Ly(x) = g,(t, x)
(m = m; = max (m,, m,)), (39). By this theorem there exists at least one solution
to each of the mentioned BVP-s. Choose one of them (if necessary by the help of
the axiom of choice) and denote it by x,,. x,, satisfies the integral equation

(50) xp(t) = w(t) + JbG(t, $) Gul S Xu(s)]ds (e St < b, m = my)

from which we get

b Ai~
£0) = w00 + | Gl 3) o 1 snfs)] ds
. ot
(agt<hb i=1..,n—-1 mzm;).
Since
(51) xo(t) £ x,(1) < yo(t) (a £t = b, m = my)

and g, is uniformly bounded in W, all sequences {x’} (i =0,1,...,n — 1) are
uniformly bounded in [a, b]. Using the d. equation L(x,) = g(t, x,,) we get that
{x%} is uniformly bounded, too. By the Ascoli lemma there is a subsequence {x,, }
and a function x such that {x{)} (i = 0,1, ..., n — 1) are uniformly convergent on

[a, b] to x". The limiting process in (50) gives that x satisfies x(t) = w(f) + |5 G(1,s) .
fIs, x(s)] ds (a £ t < b) and thus x satisfies the BVP (13), (39).

Remarks. 1. By (51) we have got that the obtained solution x satisfies the in-
equalities xo(f) < x(f) £ yo(1) (a £ t £ b).

2. Lemma 6 and Theorems 7—9 have guaranteed the existence of a solution to the
BVP (13), (39). Looking through their proof we see that they also hold in the general
case of the boundary conditions (14) when the linear d. operator Ly is inverse mono-
tone (inverse antimonotone) with respect to (9). In this case the solution v, of (10)
associated with the function y with respect to (10), (14) is determined by the boundary
conditions By(x) = B(y) (i = 1,2...., n). Lemma 6 has the following form.
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Lemma 6'. Let the following assumptions be satisfied:

1. The differential operator L, is inverse monotone (inverse antimonotone) with
respect to the boundary conditions (9).

2. f(t,.) is nonincreasing (nondecreasing) in R for each fixed t € [a, b].

3. There exist a lower and an upper solution x,, yo, respectively, of the equation
(13) with the properties:

a) xo(t) £ yo(t) (xo(t) = yo(?) for all te[a, b))

b) v,,(1) £ W(t) £ v,(1) (v,0(1) = W(t) = v,,(t)) for each te [a, b] where w is the
solution of (10), (14).

c) Xg, Yo are conjugate to each other.

Then there exists at least one solution x of the problem (13), (14) which satisfies
xo(i) £ x() < yolt) (xolt) 2 X0 Z 3o(1) (a 515 ).

Any two solutions of this problem are incomparable.

Theorems 7—9 can be generalized in the same way. By a modification of Theorem
7 we can prove the following theorem.

Theorem 10. Let g : R*— R be continuous in (t, x), periodic in t with a period
T > 0 and let there exist two numbers 0 < a < ﬂt/Tand ¢, such that a*x + g(t, x)
is nonincreasing in x € R for each fixed t € R and either a*x + g(t, x) = ¢, ((t, x) €
€ R?) or a*x + ¢(t, x) < ¢; ((t, x) € R?). Then the differential equation

x" = g(t, x)
has a periodic solution of the period T.
Proof. The searched periodic solution can be obtained as the solution of the BVP
x" 4+ a’x = a’x + ¢(t, x),
x(0) = x(T), x'(0) = x'(T).

Since the Green function of the corresponding homogeneous BVP is of the form

G(t, s) = mﬁ (sin [a(T — t + s)] + sin[a (t — 5]} =

=h—sinﬂcos a—T+a(s—t) 0=ss=st=T)
a(l — cos aT) 2 2

and G(t,s) = G(s, 1) for 0 =t < s < T ([L1, p. 168]), we have that G(z, s) = 0
in[a, b] x [a, b] for 0 < n/T. A modification of Theorem 7 gives the result.
Consider now the d. equation

(52) x" = g(t, x)
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where g is continuous in R?, periodic in ¢ with a period T > 0. The existence of a
T-periodic solution to this equation can be shown thanks to Theorem 2 ([6, p. 641])
which asserts that the operator Lo(x) = x” + a(t) x (x € C5([0, T])) is inverse mono-
tone (inverse antimonotone) with respect to the boundary conditions

(53) x0(0) = x(T) (i =0, 1,2)
when a € C([0, T]), a(r) % 0 in [0, T] and a(t) = 0 (a(t) < 0) in that interval.

Theorem 11. Let g : R> - R be continuous in (i, x), periodic in t with period
T > 0 and let there exist a function ae C([0, T]) such that a(t) % 0, a(f) = 0
(a(t) £ 0) in [0, T] and a(t). x + g(t, x) is nonincreasing (nondecreasing) in x € R
for each te [0, T]. Then there exists a T-periodic solution of (52).

Proof. With the help of a modification of Theorem 9 the existence of a solution
to the BVP x” + a(t) x = a(t) x + g(t, x), (53), can be proved, the periodic extension
of which is the mentioned solution.

Remark. Theorem stregthens the existence statement of Theorem 5 in [6, p. 642].
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