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DIMENSION OF THE SUM OF TWO COPIES OF A GRAPH

PAveL KR1vkA, Pardubice

(Received September 3, 1979)

The dimension of a graph G (see [2], [3], [4], [5]) is the minimum number of
complete graphs the product of which contains G as a spanned subgraph. This paper
describes some methods how to estimate the dimension of the sum of two copies of
a graph. Some theorems also hold for more than two copies but this will be the
subject of another paper as there are some other problems connected. There are
two basic estimation methods: one involving the maximum degree; the other in-
volving the chromatic number. These estimations are of interest because recently it
has been proved that solving the question of the dimension in general is an NP-
complete problem [3], [1].

1. PRELIMINARIES

1.1. Conventions and notation. The word graph is used for a symmetric graph
without loops. If G is a graph, we will denote by V(G) and E(G) the sets of vertices
and edges of G, respectively. For convenience, the symbol E(G) will be used also
for the associated binary relation on ¥(G). For V(G) we will usually take some suitable
set of natural numbers. )

A homomorphism f : G > H is a mapping f : V(G) — V(H) such that {f(x), f(»)} €
€ E(H) whenever {x, y} € E(G).

A spanned subgraph of G is a graph H with V(H) = V(G) and E(H) = E(G) n
n (V(H) x V(H)).

The degree of a vertex x in G will be denoted by d4(x). Further, we put 4(G) =
= sup {dg(x) : x e V(G)}.

The cardinality of G, denoted |G|, is understood to be the cardinality of V(G).

The complete graph with n vertices is denoted by K,,.

Let X be a set. Then we use the notation P(X) = {Y: Y < X} and P .,(X) =
={YeX:|Y| =d}.

Let I' : X - P(X). Then I' : X — P(X) is defined as follows:
yel(x)exel(y).
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Obviously, I corresponds to a graph iff I' = I" and x ¢ I'(x). Such I will be sometimes
denoted by I'g, where G is the associated graph, and will be called a graph-mapping.

The symbol I(N X d) denotes a matrix N x d, the i-th row of which is the vector
iii ... i. This vector will be sometimes denoted by I(d).

1.2. Some constructions. Let G, H be graphs. We assume them disjoint; if they
are not, we make them so formally e.g. by replacing the vertices x of the first one
by (x, 0) and the vertices y of the second one by (y, 1). The graph G + H is defined by

V(G + H) = V(G) u V(H), E(G + H) = E(G) U E(H)

and is referred to as the sum of G and H.
Graph G o H is defined by

V(G o H) = {(i,j): ie V(G), je V(H)},
E(G = H) = {{(iy, j1)> (i2, j2)} : either i; = i, and
{j1, )2} € E(H), or {iy, i,} € E(G) and j, = j,}

and is referred to as the cartesian product of G and H.
Let G;, i € J, be graphs. The (categorial) product of this system, denoted by X G,
is defined by iel
V(XG) = XV(G),

E(XGy) = {{(x:)» (v))s} : Vi(xs, i} € E(G)} -
The homomorphisms p; : XG; - G; sending (xi),-s 5 to x; will be sometimes called
J

projections. If J = {1, 2} we denote XG,, as usual, by G; x G,. If G; = G for all i,
the symbol G" is used. 4

1.3. Encodings. The dimension of a finite graph is the least natural n such that G
can be embedded into N" (where N" is the n-th categorial power of the complete graph
whose vertices are all the natural numbers, i.e. V(/\/") is the n-th power of the set of
all natural numbers and E(N") = {{(x))ic;, (0:)ics} : Vi xi + y;}, J being the set
1,...,n).

Thus,) the inequality dim G < n can be proved by associating the vertices x € V(G)
with distinct vectors v(x) = (v,(x), ..., v,(x)) in natural numbers so that for {x, y} €
€ E(G) the vectors v(x) and v(y) differ in all the coordinates (we say that the vectors
v(x) and ¢(y) do not meet), and for {x, y} ¢ E(G) they agree in at least one coordinate
(the vectors v(x) and v(y) meet). The vectors will be written simply as words in the
coordinates (i.e., e.g. 0102 stands for (0, 1, 0, 2)). A patticular choice of the vectors
above will be referred to as an encoding.

1.4. We shall need the following easy proposition, which is taken from [2].

Proposition. For n 2 2, dim (K, + K,)=n. [
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2. THE BASIC FACTS

2.1. Theorem. Let G, H be graphs, ¢ : G — H, ¢ a homomorphism.
a) Then dim (G + G) < dim G + dim (H + H).
b) Let there exist an encoding of the sum H + H in m coordinates

(m = dim (H + H)) such that the first dim H coordinates constitute two identical
encodings of H. Then

dim (G + G) £dimG + m — dimH .

Proof. Let u(f), ie V(H + H) be the encoding of H + H, u(j), je V(G) the
encoding of G and v'(i), ie V(H + H) the encoding of H + H after removing the first
dim H coordinates (the second proposition of the theorem). Define ¢ + ¢ : G +
+ G - H + H in the obvious way. For x € V(G + G) we denote y = (¢ + ¢) (x)
and define z(x) = u(x) v(y) (resp. z(x) = u(x)v'(y)). We shall prove that z(x)
constitute an encoding of G + G.

Let x, and x, be connected (i.e. u(x;) and u(x,) do not meet). Then y, and y,
are also connected and thus v(y,) and v(y,) (v'(y,) and v'(y,)) do not meet. Hence
z(x,) and z(x,) cannot meet.

Let x, and x, be not connected. Then one of the following three cases occurs:

a) x,, x, are in one copy of G: then u(x,) and u(x,) do meet.
b) xy, x, are in distinct copies and the corresponding vertices in one copy are not
connected: then u(x,) and u(x,) obviously meet again.

¢) xy, x, are in distinct copies and the corresponding vertices in one copy are con-
nected. Then also y; and y, are in distinct copies of H and the corresponding
vertices in one copy of H are connected, thus v(y,) and v(y,) meet in the part v’. []

2.2. Lemma. Let I' : X - P _,(X) be such that I : X —» P ,(X) again. Then
there exist d permutations py, ..., py of the set X such that

F(x) - {pl(x), e pd(x)}

for all xe X. The matrix [Xl x d with columns py, ..., py will be called the
Generalized Latin Rectangle corresponding to I (further GLRT).

Proof. Let us define arbitrarily P, (1) = {p,(1), ..., p,(1)} = I'(1), where t; =
= |I(1)|. Let P, (i) be defined for i {1,...,j — 1} = J in such a way that p,(x) *
+ p.(y) whenever both the expressions are defined, x # y and x, y < j — 1.

For all x € I'(j) there exists an « < d such that x ¢ p,(J) = {p,(1), ..., p,(j — 1)}
(otherwise |I'"!(x)| > d — a contradiction). Now, if there exists an injection
@ :I(j) > P = {pi, ..., pa} such that &(x) = p, = x ¢ p,(J), it suffices to define P,
as the image of I'(j), p,(j) = x = &~ '(p,).

If such an injection does not exist, we take any @ with &(x) = p, = x ¢ p,(J).
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Then there exist a, be I'(j) and o, § < d such that &(a) = &(b) = p, and " 1(p,) =
= 0 (as for all x e V(G) the inequality |I'(x)| < |P| holds), with a, b e py(J). Thus
there exists y € J such that py(y) = b. The continuation is clear from the following
diagram:

enter: @ non-injection

find: a, b, p,, ps; y such that py(y) = b

(does there exist y' e J such that py(y’) = pa(y)'D

yes no

P¥) © py(y) Py) < py(y)
y oy Py — ‘D(a)
pPg — ¢(b)

. yes P no
£0 to the next point -.—————( is @ injection? )————r go back

Throughout this diagram p, is always an injection and at last in the ( j — 1)th
step we find that )’ does not exist, thus py(J) is an injection (after commutation) and
does not contain b.

This procedure applied to the vertices 2, ..., IX I will generate partial mappings
(injections) p, : X — X and it suffices to complete them (in any way) to permuta-
tions. [

2.3. Theorem. dim (G + G) < dim G + 4(G).

Proof. Let us take GLR I'; and let its rows be u(i), i € V(G) (I'(i) < u(i)) and the
respective encoding v(i), i € V(G). Putting

w(i, 0) = v(i) I(4(G)) and w(i, 1) = v(i) u(i)
we have an encoding of the sum G + G:

The vectors w(i, j) for fixed j form an encoding of G. Let w(a, 0), w(b, 1) be an
arbitrary pair. If {a, b} ¢ E(G), the vectors meet in the part v, if {a, b} € E(G), then
a e I'(b) and, due to I'(b) < u(b), the vectors meet in the part u. [

2.4. Corollary. dim (K, + K,) = n. [

2.5. Theorem. Let G be a A-chromatic graph. Then
dim (G + G) £ dimG + 1 — 1.
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Proof. G is A-chromatic means that there exists a homomorphism ¢ : G - K.
According to 2.3 (and 2.4) there exists such an encoding of K; + K that its length
is 2 and the first coordinates constitute two identical encodings of K ;. From 2.1 b) we
immediately obtain the theorem. [J

2.6. Corollary. Let there exists a homomorphism ¢ : G — H, let Ay be the chro-
matic number of H. Then
dim (G + G) < dim G + min (4(H), iy — 1).

Proof. According to 2.3 and 2.5 we have an encoding of H + H of length dim H +
+ A(H) (resp. dim H + 4, — 1) such that the first dim H coordinates constitute
identical encodings of H. By 2.1 b) we get the rest. []

3. SOME FURTHER APPLICATIONS

3.1. Theorem. (about the dimension of categorial products):
Let Gy, ..., G, be graphs and dim (G; + G;) = h;. Then:

n n
a) dim (X G; + X G,) < dim (XG,) + min h; .
i=1 i=1
b) If we put p; = min (4(G,), A; — 1), where 2, is the chromatic number of G,, then
dim (XG; + XG;) £ dim (XG;) + min p; .

Proof. Recalling that the projections p;: XG; - G; are homomorphisms, we
see that the proposition a) follows from 2.1 and b) from 2.1 and 2.6. [

3.2. For comparison, we present here an analogous theorem for cartesian products:

Theorem. Let Gy, ..., G, be graphs and dim (G; + G;) = h;. Then

2) dim ( iljlci + Hl G)) < dim ([[G) + iglh,- .

b) If we put p; = min (4(G,), ; — 1), where Z; is the chromatic number of G,
then

dim ([]G; + []G;) < dim (J]G) +§1p,~.

Proof. For the sake of simplicity we shall prove the case n = 2. The proof for
n > 2 follows easily by induction.

Let u;0(j), u;1(j), j € V(G;) be the corresponding encoding of G; + G,. As each
vector u;, meets each vector u;y (for fixed i), we can assume that either the set of the
symbols in the j-th coordinate of the vectors u;q is included in the set of the symbols
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in the same coordinate of the vectors u;; or vice versa, and both of them are subsets
of ¥(G).

Let us define vectors uo(k, m), ke V(G,), me V(G,) as follows: if uo(k) =
= ay ... ay, thenu,o(k, m) = a, ... a,, wherea; = a; + (m — 1) |G|, if uyo(m) =
= by ... by, then u,o(k, m) = by ... by, where b; = b, + (k — 1).|G,|.

The vectors u;;(k, m) are defined in the same way (again using the vectors u;,(k),
resp. u;;(m)). For m fixed, the vectors u,o(k, m) and u,(k, m) constitute an encoding
of G; + G, and for k fixed, the vectors u,(k, m)and u,,(k, m) constitute an encoding
of G, + G,. Now, let v(k, m) be the corresponding encoding of G; &0 G, and let
us put

w(k, m, i) = v(k, m) uy(k, m)uy(k,m), i=0,1.

For i fixed, the vectors w(k, m, i) form an encoding of G;=G,: Let vertices (k,, m,)
and (k,, m,) be not connected; then the vectors w meet in the part v. Let the vertices
be connected; then cither k; = k, and m, and m, are connected in G, and they
meet neither in the part u,, nor in the part u, (since the elements of the vector
uy(ky, m,) are between (m, — 1).|G,| and m, . |G,| but the elements of u,;(k;, m,)
are between (m, — 1).|G,|and m, .|G,|), or k; is connected with k, in G, and
m,; = m,; for analogous reasons the vectors w meet neither in the part u,, nor in the
part u,.

Now, let us take w(k,, m,, 0) and w(k,, m,. 1) arbitrarily. Either the vertices
(ky, my) and (k,, m,) are not connected and then the vectors w meet in the part v,
or k; = k, and m, and m, are connected in G, and then the vectors w meet in the
part u,, or finally m; = m, and k; and k, are connected in G, and then the vectors w
meet in the part u,. Thus the vectors w really do constitute an encoding of G, =@ G, +
+ Gy, 2 G,.

To prove the second proposition of the theorem we shall prove the following
proposition: If there exists an encoding of G; + G; of length h; such that the first k;
coordinates constitute encodings of G;, then

n
dim (G, @ G, + G, O G,) < dim (G, =@ G,) + Y, (h; — k) .
i=1
To prove this proposition it suffices to take vectors i1; obtained from u; by removing
the first k; coordinates and to make the same operations with these vectors as we

did in the first part of this proof with u;. By 2.4 and 2.5 we immediately get the second
proposition of the theorem. []

3.3. Corollary. Let there exist a homomorphism ¢ : G — [[ H;, let
i=1

dim (H; + H;) = h;, then
dim (G + G) £ dim G + Y h;.
=1
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If we put p; = min (4(H,), A; — 1), then
dim (G + G) < dimG + Y p,. O
i=1

Acknowledgement. I am indebted to A. Pultr for turning my attention to these
problems.
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