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The dimension of a (symmetric loopless) graph G is the minimal n for which G is
an induced subgraph of the product of n complete graphs. The dimension of G is
denoted by dim G. (Let us note that every graph G is embeddable into the product of
sufficiently many complete graphs, and hence the number dim G is well defined.)
The notion of the dimension was introduced and studied in several papers ([1], [2],
[4]). For information about results see [3].

We will use the following notation. The product G x H of two graphs G and H
is defined by

V(G x H) = V(G) x V(H),

E(G x H) = {((ay, a3), (by, b3)); (ay, by) € E(G), (a,, b,) e E(H)} .

The n-th power G" of a graph G is the product G X G X ... X G of n copies of G.
The sum of n copies of a graph G is denoted by nG.
The three-path P is defined by

V(Ps) = {0,1,2,3}, E(P3) = {(0, 1), (1,2), (2. 3)} .

The complete graph with the vertex set n = {0, 1,...,n — 1} is denoted by K,.
In this note we prove the following theorems.

Theorem 1. For any integer n, dim P3 = 2n.

Theorem 2. For any connected component F, of P5 we have dim F, = n + 1.
For a bipartite graph G, the number bid G is the minimal »n for which G is an in-
duced subgraph of Pj. The number bid G was introduced in [5]. Theorems 1 and 2
imply
Corollary.
dim G £ 1 + bid G for any connected bipartite graph G,
dimG £2.bid G  for any bipartite graph G,

and these bounds are the best possible.
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We will use the following facts to prove the above theorems.

Proposition 1 (for the proof see [2]).
dim pK, = 1 + {log, p}
(where the symbol { } means the upper integral approximation).

Proposition 2. For each n the graph P% consists of 2"~ isomorphic components;
any of them is denoted by F,.

Proposition 3. The maximal integer p such that pK, is an induced subgraph
of F, is exactly

n

]

The proofs of Propositions 2 and 3 are given in [5].
From the Stirling formula or by easy induction one obtains the following

Proposition 4.

n 2"
n

H

Proof of Theorem 1. Since Py < K, X K3, i.e. P3 is an induced subgraph of
K, x K;, we obtain

v

for n=>2.

Py < (K; x K3y
and hence
dim P < 2n.

In order to prove the converse inequality we show that

-
(1) lim 958

n— o n
By Propositions 2 and 3

H

22n—1

2" 'K,< P},

hence by Proposition 4

K, <P}

h
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and by Proposition 1
2n = dim P§ = 2n — log, n .

Thus, (1) is proved.
Now, suppose that there exists k such that
dim P4 <2k — 1.

Then

: k\ir
i 4im (P3)" < lim n(2k — 1)

n_ o 2kn n- o 2kn

<1,

which contradicts (1).

Proof of Theorem 2. Let us consider the component F, of P} containing the
vertex (0, 0, ..., 0). This component F, is the following graph:

V(F,)=Vou V,, where V,={(as, a5 ..,a,); V; a;e{0,2}},
Vi={(@5 a2 @) Vi a;e (1,3},
((ay, ass ..., a,), (by, by, ..., b)) € E(F,) iff [ai — bil =1 foralli.

Let us define the system of homomorphisms ¢, : F, » K3, i = 1,2, ..., n, by

putting
0 for a;=0,3,

ofay, az, ...,a,) =—1 for a;=1,
2 for a;=2,

and homomorphism  : F, - K, (a 2-coloring)

0 for aeV,,

/
N

One can easily check that the product of homomorphisms

¥(a) =

1 for aeV;.

U X @ X @y X..Xq,

gives an embedding of F, into K, x K3, and hence

dmF, <n+1.

Now, suppose that there exists k such that
dim F, < k,
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i.e. there is an embedding ¢ : F, — K* for some r. By Proposition 2
2 Py~ 2'F, =Y (F A {1,2,..,k—1}),
where F{*) denotes the A-th copy of F,. Let us define a system of homomorphisms ¥,
i=12..,k—-1,
Vit YFO - K,
by putting
0 for xeV,, ied or xeV,, i¢A,

/

1 for xeV,, i¢A or xeV;, i€ed,

=) =

and a homomorphism ¥, : Y F{ — K¥ by putting
() = o(x) .

One can easily check that

Yy X Yy X X Yy
is an embedding. Hence by (2)

Vet TF - K5 xS

X

A

dim P{ <2k — 1,

which contradicts Theorem 1.
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