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0. Introduction. A groupoid (G, o) is said to be distributive if it satisfies (xy) z =
= (xz) (yz) and x(yz) = (xy)(xz) for all x, y, ze G. If the groupoid satisfies the
first of the above laws, then it is called right-distributive and if the second one, then
it is called left-distributive. Our terminology and notations are those of [5] and [9].

In this note we give a characterization for distributive groupoids with algebraic
constants (Theorem 1) and a characterization theorem for idempotent distributive
groupoids with at most two essentially binary algebraic operations (polynomials)
(Theorem 2). The variety of all distributive groupoids is denoted by D.

1. EXAMPLES

1.1. Nil-semigroups. A semigroup (S, .) is said to be an n-nil-semigroup if x, ...
...x, = 0 for a fixed element 0 € S and all x,, ..., x, € S. Denote by S, the variety
of all n-nil-semigroups. It is easy to see that S; is properly contained in D. The
name “‘nil-semigroup” was proposed to me by B. Gleichgewicht.

1.2. Diagonal semigroups. Let T be the variety of all idempotent semigroups (G, .)
with xyz = xz for all x, y, ze G (see [4], [11]). These groupoids will be called
diagonal semigroups. Of course, T < D.

Let us say that a groupoid (G, x o y) is dual with a given groupoid (G, xy), if
X o y = yx. If K is a class of groupoids, then K* denotes the class of dual groupoids
from K. Of course, if xy = yx then K* = K.

1.3. n-groupoids. Let P, be the class of all idempotent semigroups with xyz = xzy.
This class was considered in [7] and [12]. Note that P, and P} are subvarieties of D.
Indeed, let us show that P, = D. We have (xz)(yz) = ((xz)y) z = x(zyz) =
= xyz(z) = xyz. Analogously we prove the left-distributive law.

Let P, denote the variety of all idempotent groupoids which satisfy (xy) z = yz,
x(yz) = y(xz), x(xy) = y, and let P; be the variety of all groupoids which are idem-
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potent and which satisfy x(xy) = xy, while the other two identities are the same as
for the class P,. It is not difficult to prove that P, D and P¥ = D for i = 2, 3.
These groupoids are considered in [2], [8] and [12] and are completely described
in [12]. In [8] such groupoids are called n-groupoids (the same for their duals).

1.4. Semilattices and medial groupoids. Of course, the class of all semilattices (idem-
potent commutative semigroups) is a subvariety of the variety D. The same we have
for the class M of all idempotent commutative and medial groupoids (the medial
law for groupoids means (xy) (uv) = (xu) (yv)). The class M is considered in [3]
and [6].

1.5. Commutative Steiner quasigroups. A distributive groupoid (G, .) is said to be
a commutative Steiner quasigroup if it is commutative and (xy) y = x forallx, ye G
(see [1]). This class is considered in [3]. As is shown in [14] there exists a Steiner
commutative quasigroup which is nonmedial. In [3] it is proved that any medial
commutative Steiner quasigroup is a member of the variety HSP(({0, 1, 2}, 2x +; 2y))
and every member of this variety is a medial commutative Steiner quasigroup.

1.6. Noncommutative Steiner quasigroups. In [10] the following class of groupoids
(G, .) is considered, namely, all groupoids which are idempotent and satisfy (xy) z =
= (zy)x and (xy)x = y. In [10] also a characterization for these groupoids is
given. Observe that if an idempotent groupoid (G, ) satisfies the above identities,
then it is a noncommutative distributive groupoid. Indeed, let as check the right-
distributive law. We have (xz)(yz) = ((yz)z)x = ((zz) y) x = (zy) x = (xy) z.
Suppose now that a x = b for a, b € G, then x = (ax) a = ba and since the groupoid
is cancellative we infer that (G, .) is a distributive quasigroup. It is also easy to see
that if card G = 2 then (G, ) is noncommutative. The above variety of groupoids
leads us to the following definition: a groupoid (G, .) is called a noncommutative
Steiner quasigroup if it is distributive and satisfies (xy) x = y and x(xy) = yx.
Denote by Q the variety of all noncommutative Steiner quasigroups.

2. MAIN RESULTS

In this section we prove two characterization theorems for some distributive
groupoids.

Theorem 1. A distributive groupoid contains an algebraic constant if and only
if it is a three-nil-semigroup.

Proof. As was mentioned in 1.1 every three-nil-semigroup with 0 is a distributive
groupoid for which 0 is an algebraic constant. Let us suppose that (G,.) is a dis-
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tributive groupoid with an algebraic constant 0. To prove that (G,.) is a three-nil-
semigroup we use the formula of [9]. First we prove that for every distributive
groupoid (G, .) we have A)(G,.) = {x, x2, x*}, where A™(2) denotes the set of
all n-ary algebraic operations of an algebra 2. For this definition and others used
here see [9]. To prove that 4(G,.) = {x, x2, x*} we use the distributive laws and
the formula from [9] for the set A™(A) for a given algebra A = (4, F), namely,

AW = AD(A) = A""(QI) where AJ(A) = {e, ..., &M} and (x4, ..., X,) = X;

for i=1,...,n and AL () = AP O {f(f1s.-os ) 1 f; € AM(A), feF and

j=1,. m} In our case A® = U AP, where AV = {x}. We have A" = {x, x?}
k=0

and A% = {x, x?, xx, x x%, x’x*} = {x, x?, x*}. Hence x?x = (x x)x = x?x?

= (xx)(x x) = x x2. Now the proof follows by induction on k. Suppose that
ALY = {x, x2, x3}. Take AL, = Aﬁ” w {x3x, x x*, x*x?, x?x3, x*x?, x*x*}. Hence
¥*x = (x*x) x = x3 x = (xx?) x* = (xx?) (x x) = x(x?x) = x x> = (x’x) x* =
= (x*x?) (x x2) = x = (x? x) (x x) = x*x? = x> and x*x* = x*(x*x) = (x*x?) .
S(x%x) = %7 = X3 We get A%, = AWM.

Thus we infer that 4?) = {x, xz, x*}. But 0 is an algebraic constant in the groupoid
(G,.), therefore there exists an algebraic operation f(xy, ..., x,) such that
f(xy, ..., x,) = 0 and hence f(x, ..., x) = 0. This means that in the groupoid the
identity x = 0 or x2 = 0 or x® = 0 holds. The first case says that the groupoid is
a one — element groupoid and therefore it also is a three-nil-semigroup. If a dis-
tributive groupoid (G, .) satisfies x* = 0, then it satisfies also x = 0. Indeed, x* =
=x>x>=00= 0 So, let us assume that (G,.) satisfies x> = 0. Then we have
Ox=xx=xx>=x0=x>=0 and (xy)z = (x2) (yz) = (x2) y) (x2) 2) =
= ((x2)y) ((XZ) (%) = ((x2) ») ((xz*) () = ((x2) ») ((x2*) 0) = ((x2) ) 0 = 0.

Analogously, one can prove that x(yz) = 0 for all x, y, z € G. The proof of Theo-
rem 1 is complete.

Remark. An example of a three-nil-semigroup (G, .) with x* = 0 can be obtained

in the following way. Let (G, o) be a nilpotent group of class 2 and take (G, .), where

xy=x"'oy 'oxoyfor x,yeG. Then (G,.) is a three-nil-semigroup. However,

there are three-nil-semigroups (see [13]) for which x? is not an algebraic constant.

Theorem 2. Let (G, ) be an idempotent distributive groupoid with at most two
essentially binary algebraic operations. Then one of the following possibilities
oceurs:

(1) (G, .) is a semilattice,

(2) (G, .) is a diagonal semigroup,

(3) (G, .) is an n-groupoid,

(4) (G,.) is a commutative Steiner quasigroup,
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(5) (G, .) is a noncommutative Steiner quasigroup,

(6) (G,.) is dual to an n-groupoid or (G, o) is dual to a noncommutative Steiner
quasigroup.

This theorem can be regarded as a characterization theorem for idempotent dis-
tributive groupoids with @, < 2. To prove this theorem we need some lemmas. For
a given groupoid (G,.) we agree to write xy" instead of (... ((xy) y)...) y, where
n=1.

Lemma 1. If (G, +) is idempotent commutative and nontrivial (card G = 2),
then x + ny # y for all n.

Proof. Let (G, +) be an idempotent commutative and non-one-element groupoid.
Contrary to the lemma let us assume that the groupoid satisfies x + ny = y for some
n and all x, y € G. Let m be the smallest number such that x + my = y holds in
(G, +). Putting in this identity y + (m — 1)x for y we get y + (m — 1)x =
=x+({(r+m-Dx)+(m-1)@+m-1)x)=(y+(m—-1)x)+x) +
+m=-D+m=-D)x)=@p+mx)+m-1)(p+m-1)x)=x+
+m-1)p+m=-D)x)=x+@+m-1)x)+m-2)(y +(m—1)x) =
=(+m-1D)x)+x)+(m-=-2)(y +(m—1)x)=(y + mx) + (m — 2).
y+rm-Dx)=x+m-2)(p+m-Dx)=...=x+(p+(m—-1)x) =
=(y+(m-1)x)+x=y+mx=x

So we get x + (m - 1) y = y for all x, y e G which contradicts the minimality
of m.

Lemma 2. There is no idempotent commutative distributive groupoid (G, +) for
which 0,(G, +) = 2.

Proof. Consider an algebraic operation x + 2y. Because of Lemma 1, one can
assume that x + 2y depends on x. If x + 2y = x then the groupoid is a com-
mutative Steiner quasigroup and for such non-trivial groupoids (as can easily be
checked) we have w, = 1. Now assume that x + 2y is essentially binary. Since
,(G, +) = 2 we infer that x + 2y is symmetric, i.e., x + 2y = y + 2x. Using
the last identity we have x + 2y = (x + 2y) + (x + 2y) = (x + 2y) + (y + 2x) =
=((x+»++(x++x)=Ex+y)+Ex+y)=x+y

It is easy to see that in this case w,(G, +) = 1 provided card G = 2, a contra-
diction.

Lemma 3. If (G,.) is an idempotent distributive groupoid with w,(G,.) =1,
then it is either a semilattice or a commutative Steiner quasigroup.

Proof. By the assumption and Lemma 1 we infer that the groupoid (G, o) satisfies
xy? = x or xy? = xy. If the first case occurs then the groupoid is a commutative
Steiner quasigroup. Assume now that xy? = xy. Then we have (xy) z = (xz) (yz) =
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= (x(y2)) (z(yz)) = (x(v2)) (¥2) z) = (x (y2)) (vz) = x(yz). This proves that (G, .)
is a semilattice. The proof of the lemma is complete.

Lemma 4. An idempotent distributive groupoid (G, ) is a diagonal semigroup
if and only if it satisfies (xy) X = x.

Proof. If a groupoid (G, ) is a diagonal semigroup, then it is distributive idem-
potent and (xy) x = x (see 1.2 of Chapter 1). Let now (G, .) be idempotent distributive
and (xy) x = x. Then we have x = x(yx), x(xy) = ((xy) x) (xy) = xy and (yx) x =
= (yx) (x(yx)) = yx. Applying these facts we get (xy)z = (xz)(yz) = ((xz) y) .
((xz) z) = ((xz) y) (xz) = xz and hence x(yz) = (xy)(xz) == x(xz) = xz, which
proves that (G, .) is a diagonal semigroup.

Lemma 5. If (G, .) is idempotent distributive and w,(G,.) < 2 and (xy)x =y,
then it is either a commutative Steiner quasigroup or a noncommutative Steiner
quasigroup.

Proof. If xy = yx then the groupoid is a commutative Steiner quasigroup since
x = (yx)y = (xy) y = xy*. Assume now that xy + yx and consider a binary
polynomial xy2. Since y = (xy) x = x(yx) we infer that (G, .) is cancellative and
since @,(G,.) <2, it is enough to examine the following identities xy* = x and
(xy) y = yx because otherwise the groupoid is trivial. If the first case occurs then
we have yx = y(xy?) = y((xy) y) = xy, a contradiction. If (xy)y = yx in the
groupoid then one has y(yx) = y((xy) ) = xy and hence (G, .) is a noncommutative
Steiner quasigroup.

Lemma 6. If an idempotent distributive groupoid (G,.) satisfies w,(G,.) <2
and (xy) x € {xy, yx}, then it is either a semilattice or an n-groupoid.

Proof. First of all, assume that (xy) x = xy. Then we have x(yz) = (xy) (xz) =
= ((x») x) ((xy) z) = (xy) ((xy) z). If x(xy) = y, then we get x(yz) = z and hence
x = x(yx) = (xy)x = xy = x(yy) = y and the groupoid in this case is one-
element. Suppose now that x(xy) = x. Then x(yz) = (xy) ((xy) z) = xy and (xy) z =
= (xz) (yz) = (xz) y. So, the groupoid (G, .) satisfies x* = x, (xy) z = (xz) y and
x(yz) = xy. Since w,(G,.) £2 and card G = 2, we infer that (xy)y = x or
(xy) y = xy in the groupoid. Thus the groupoid is an n-groupoid. For example, let
us prove that in such groupoids (xy) y # y if card G = 2. Indeed, if (xy)y = y,
then using x(yz) = xy we get xy = x((xy) y) = x(xy) = xx = x and hence y =
= (xy) y = xy = x, a contradiction.

Assume now that x(xy) = xy. Then we have x(yz) = (xy) (xz) = ((xy) x) .
((xy)2) = (x¥) ((xy) z) = (xp) z and since (xy)x = xy Wwe get xyz = xzyz =
= xzy which proves that (G, .) is a semigroup that is an n-groupoid. If (xy) x = xy
holds it remains to consider yet the case when x(xy) = yx. In this case we have
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x(02) = () (2) = () %) () 2) = () () ) = 2(xy) and hence xy =
= x(yy) = y(xy) = (yx) y = yx which proves that (G,.) is a semilattice. To
complete the proof of the lemma, assume that (xy) x = yx. In this case the proof
runs as above with the difference that we consider the operation (xy) y and start
from the identity (xy)z = (xz) (yz) = (x(y2)) (2(y2)) = (x(y2)) ((zy) z) = (x(v2))
. (zy). The proof is complete.

Proof of Theorem 2. Let (G,.) be an idempotent distributive groupoid with
®,(G, ) £ 2. Hence w,(A) (see [9]) is the number of all essentially n-ary algebraic
operations of an algebra Therefore in our case wz(G, .) < 2 means that xy = x
or xy = y or w, € {1, 2}. It is easy to see that the variety of all groupoids for which
xy = x (or dually xy = y) is a subvariety of the variety T (see 1.2). Assume now that
12w, (G, ) < 2. This means that the fundamental operation is essentially binary.
If the groupoid (G, .) is commutative, then the proof follows from Lemmas 2 and 3,
if it is noncommutative then it follows from Lemmas 4, 5, and 6. Thus the proof
of the theorem is complete.
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