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1. INTRODUCTION

In the paper [1] the Lyapunov stability and the stability at constantly acting
disturbances of solutions of the differential equation

(1.1) Lu(t) = u™(1) + a,(A) u"" V1) + ... + a,(4) u(t) =
= F(t, u(t), u'(1), ..., u~1(1))

under the assumption F € 6(2(u), 2(A''")) was investigated. (For simplicity we shall
write F(t, u(t)) instead of F(z, u(t), u'(¢), ..., u®~1(t)).)

The Lyapunov stability of solutions of the equation (1.1) under the assumption
F € €(2(u), H) was studied in [2]. The aim of this paper is to prove three theorems
about the stability at constantly acting disturbances of solutions of the equation (1.1)
in the case F € 4"(2(u), H). We shall use all notations and conventions introduced
in [1], [2]. The most important of them are: the operator 4 is selfadjoint, strictly
positive (i.e. inf {s|se o(4)} = & > 0) with 2(4) = H, H being the Hilbert space with
the norm |- |, the operator-functions a; satisfy the condition (1.1.1) from [1] (roug-
hly speaking |a(A4) A~""¢| < Cg|e|, for i = 1,...,n, ¢ € H).

Let ve 2(Z), R:%(R) - H. We shall write R e $"(2(u), B(v, r, H)) where
r>0,if 2(R) = {(t, u(t), u'(t), ..., u” V() ' ue (%), te 2(u) such that 2(u) =
< 9(v), |||[u(t) — v(t)|| < r} and if for all u € 2(&) such that 2(u) = 2(v) the func-
tions ||R(t, u(?))|, ||R'(, u(t))| are continuous functions of the variable ¢ for te
e {te 2(u)|||lu(t) — v(t)]|| £ r}. (Here R’ means the total derivative of the function R
with respect to the variable ¢ and R(t, u(t), u'(t), ..., u®~ (1)) is abbreviated to
R(t, u(1)).) .

Let v : 2(v) - H be a solution of the equation (1.1). We shall deal with the so
called disturbed equation

(12)  Lut) = F(t, u(t) + R(t, u(t)) where Fe€(2(ujgw) H)
R e ¢(2(u), B(v, r, H)) -
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Let us note that a solution of (1.2) must satisfy the relations 2(u) = 2(v),
llu(r) = o(t)|| < r for t & D(u) (see [1], Section 1.1).

Let us recall Definition 1.1.3 from [1].

Definition 1.1. Let v : 2(v) — H be a solution of the equation (1.1), r > 0. We say
that v is uniformly stable at constantly acting disturbances with respect to the
norms H . H , |+ |lp if for any n e (0, r] there exist positive numbers 7o, 7 such that
the implication

(1.3) {[flulto) = v(to)l]| £ no, |R(t u(®))]n
lu() = @)ll] < n} = {[[lu() - o)

holds for every #, € 2(v) and for all solutions u of the equation (1.2) for which 2(u) =
< [to, + ), to € Z(u).

IIA

np for such te 2(u) for which

lIA

n for all te 2(u)}

Remark 1.1. In this paper we shall use the norms
Hl"(t)iH = [’:;I)HA(n-n/n u(i)(t)”z]x/z ,
[R(e u(®)]o = max (R u(®)[, [R(E u@)]) -

Remark 1.2. We shall often use the notions the type of the operator %, the stable
operator &, the exponentially stable operator &£. They were defined in [1] (Defini-
tions 1.2.1 and 1.4.1). The constants C(£) and Cj, C¢, which we shall use, were
introduced in [1] (Definition 1.2.1) and in [2] (Lemma 2.4), respectively.

2. STABILITY AT CONSTANTLY ACTING DISTURBANCES IN THE CASE
OF THE EXPONENTIALLY STABLE OPERATOR

Theorem 2.1. Let v:2(v) > H be a maximal solution of the equation (1.1).
Let the operator & be of the type w <0, Fe%"(9(u;q,), H), Re€V(2(u),
B(v, r, H)) and let the conditions (2.1), (2.2) be fulfilled.

(2.1) There exists a constant K* such that |Ax| £ K*|a,(A4) x|| for all x € 2(4).

(2.2) There exists numbers K, K,, K3, R > 0such that if u is a solution of the equa-
tion £ u(t) = F(t, vo(t) + u(t)) — F(t, v(t)) + R(t, u(t)) and t € D(u) is such that
n—1

] £ R then G, o) + u(0) = Fle o)) < K, T 472 a00),
IF o) + () = F (o) 5 Ko + K3 [RG, a0

Finally, let o + CiK, + C(&) C¢Kin*?6"" < 0. Then the solution v is uni-
formly stable at constantly acting disturbances with respect to the norms |||, ||| -
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Proof. It is easy to see (compare [1] (Theorem 2.1.2)) that it suffices to prove the
uniform stability at constantly acting disturbances of the zero solution 0,4, of the
equation

(1) L u(t) = F(t,v(t) + u(t)) — F(t, o(1)) .
Let 5 € (0, r] be given. Without loss of generality we can suppose # < R. Let us take
a number & > 0 such that

(C; + C’;KlnI/Zé-l/n + CECEIK 251 e(w+C,'K2;C(y)cw(,lns/la-1/");. <1,
(the constant C3 was introduced in [1] (Lemma 1.3.3), C} = nC%) and choose num-
bers 70 € (0, /2], np > 0 fulfilling the inequalities
(2) [C}+ CIKyn'/257 2 4 CHCER n¥/25~ "]y +

+ [C} + (C(£) CiKn|o| ™" + CF + CiKslo|™ + CHo| ™ !) e ] np <
<2, “
(3) {[C3 + C5K n*/267 1" 4+ CSCEK n®267 "] o +
+ [CE + (C(£) CeKyn|o| ™! + C& + C3Ks|o| ™! +
+ C’§|w]“) e—wh] ’11)} @+ Cs*Ka+ C(L)Ca*K12n3/25 = 1/m)h <.

Let to€ 2(v), and let u: 2(u) > H, D(u) < [to, +®), to€ D(u) be a solution of
the equation
@) L u(t) = F(t, o(t) + u(t)) — F(t, o(t)) + R(, u(?)) .

Then by [2] (Lemma 2.4): .
(6) Ml = CSllutto)ll e~ + C5{[F(to, olto) + u(to)) — Flto, oto))]| +
+ [R(to, ult))[} 7 + CE{|[F(t, o(t) + u(®)) = F(t, o(D)] +

t

+ [R(e u(@)[} + C?f e {[F(z, o(r) + u(z)) - F(z ()] +

to
+ |R(z, u(z))|} dt for te D(u).
Now we shall prove the validity of the implication (1.3) (of course with v = 0,4(,))-
Let us suppose

(6) there exists a number i < h such that [t,, t, + h] = 9(u),
te[to, to + h), ||u(to + B)|| = 7.

Then using (5), (2.2) and the relation # < R we obtain
M) @)l £ Cinoe"e" +

lu(z)|| < n for

+ C:KlnilnA(n—i—l)/n u(i)(to)” em(t—to) + C’;nbew(r—to) +
i=o0
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n—1
+ CEK, Y || A0 yO(8)| + Conp +
i=o

+ C¥ j‘ U OLK|[u(@)]|| + K| R(x u(@)|p + no] dt,

to
for 1€[tg, to + K.
Similarly to [1] (Theorem 2.1.1), we have

A7 (1) ="§m,(z; to, A) A~ M1, +
+ j "t + 1o — < to, 4) AT F(z oft) + u(2) — (o o)) + R ()] 47

to
and so with help of Theorem 1.2.1 and Remark 1.3.1 from [1] we get according
to (2.2)

n—1
(g) “A(n~i-n/n u”)(t)“ < c z NA(n—j—n/..(Pj“ RECEORE
- j=0

t n—1
L a2)K, j (ot=0'S [ %I ()| de +
j=o

to
t
+ C(g) "Dj‘ =9 dr for te[to, to + fl]’ i=0,...,n— 1.
to
The relations (7), (8) together with the relation
1

o]

¢ 1 1
D G = — = (1 _ ew(t—fo)) < — =
w w

to

and with Lemma 2.5 from [2] give
u(d)l| < (C* + CEK n'/257 1 4 C*C*K1n3/25‘1/”) qoew('—m +
3 5 2%6

+ (C3K, + C(&) CeKin*?5711) j e OfJu(ll d= +

to
+ [Ct + (C(2) CtKyn|o| ™! + CE + CtKy|o| ! + ctlo| ™) e
qpe T for te[to, to + i
and so using [1] (Theorem 2.1.3) we can conclude
©) Jlu@)| < {[C + CK 02671 4 CHCEK n*?6™ "] Mo +
+ [CF + (C(2) CeKnlo| ™ + €5 + CiKjlo| ™! + C¥lo|™) e np} -
| O Cs K O R TN t0)  fo [zo, - E]
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The relations (2), (9) together with the inequality
o + CK, + C(£) CEKin*2571" < 0 imply [Ju(to + B)| S nf2 <,
which contradicts (6) So we have proved

(10) llu@)|| £ n for te[to, to + h] N D(u).
If 1o + he 2(u) then by (3), (9)
(1) lfuCto + B = 10 -

The validity of the implication (1.3) follows now from (10), (11). Let us find a natural
number k and a number se [0, h) such that t = t, + kh + s to every te D(u).
Then using k-times the relation (11) we see that [|u(z, + kh)|| = 7, and so by (10)
[lu@ll = |Ju(to + kh + s)|| < #. This proves the implication (1.3). The theorem is
proved.

Theorem 2.2. Let v: 2(v) > H be a maximal solution of the equation (1.1).
Let the operator & be of the type w <0, Fe ¢ (2(u;9¢,), H), Re € (D(u),
B(v, r, H)) and let the conditions (2.1), (2.3), (2.4) be fulfilled.

(2.3) F(1, o(r) + u(t)) = F(t, o(t)) + Fu(t, u(t)) + Fy(t, u(t)) for ueU such that
D(u) = 2(v) and te D(u), where Fr, Fye €(D(u,a(,). H)-

(2.4) There exist numbers C,, C5, C3, Cy, Cs, Cs, Ry >0, v{ >0, v, > 0 such
that if u is a solution of the equation & u(t) = F(t, v(t) + u(t)) — F(t, v(t)) +
+ R(t, u(t)) and t € D(u) is such that ||u(t)|| < R, then

o u@)] 5 €T Ja 100,

1P u)] £ Gl S JA ],
|Fileu()] = ] + €l RG]
IF0 )] = @l ™ + CulRE u()

Finally, letw + CECs + C(£) CECin267 1" < 0. Then the solution v is uniformly
stable at constantly acting disturbances with respect to the norms ||-|[, ||| »-

Proof. Let us choose a number R € (0, R, ] so small that
() @+ CHCs + CoR™) + C(2) CHC, + CaR™P n37 0 <0,

Then if u is a solution of the equation (1.2) and ¢ € 2(u) fulfils [|u(f)|| £ R we obtain
according to (2.3), (2.4)

@ IR o) + u0) = Fleo)] £ (€2 + R AT,
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(©)) |F (2, ot) + u(t)) = F/(t, ()] =
£ (Cs + CsR) [[u®)]]] + (Cs + Co) |R(t, u(®)]b -
The theorem now follows from (1), (2), (3) with help of Theorem 2.1.

3. STABILITY AT CONSTANTLY ACTING DISTURBANCES IN THE CASE
OF THE STABLE OPERATOR

Theorem 3.1. Let v : 2(v) > H be a maximal solution of the equation (1.1). Let
the operator & be of the type 0, F € €*)(2(v), H) and let the conditions (2.1), (2.3),
(3.1), (3-2) be fulfilled.

(3.1) There exist constants Ky, K,, K3, K4, K5, Kg, R >0, v; >0, v, > 0 such
that if uy solves the equation & u(t) = Fy(t, u(t)), up solves the equation
&L u(t) = F(t, u(r)) + Fy(t, u(t)) + R(t, u(r)), Re € (2(u), B(v, r, H)) and
if D(up) = Dur) < D(v) then

() [Fo(e up()] = Kiflup(@)l]  for teD(up) such that [lup(t)]| < R,
IF2(t, up()) = Fu(t, un(0)] < Kaflun(t) — w(0)]] + Ka|R( up(®))][p for
t € D(up) such that ||u(1)|| < R, |lup(t)]] < R,

(i) [Fn(t up@) = Kallup@lI" ", |Fx(t up(t)] < Ks[lus@)]]]'** +
+ Kg|R(t, up(t)|| p for t e D(up) such that llun(®)]| < R.

(3.2) There exists a number » > 0 such that if ¢;€ (A" ™), (i =0,....,n — 1),

n—1
[ [|4%9p,||*]"* < w-and toe Z(v) then there exists a maximal solution u
50
of the equation & u(t) = Fy(t, u(t)) which fulfils the initial conditions
utg) = @, (i=0,...,n —1).
Let Fi(t, 0,;) = 0, Fi(t, 0,;) = 0 for every I = 9D(v). Further, let the zero solution
0,9 of the equation
(3.3) &L u(t) = Fy(t, u(t))

be uniformly exponentially stable with respect to the norm ||-||. Then the solution v
is uniformly stable at constantly acting disturbances with respect to the norms

(1N P

Proof. Clearly (see [1] (Theorem 2.1.2)) it suffices to prove the uniform stability
at constantly acting disturbances of the zero solution '0,9(,,) of the equation

(1) L u(t) = Fy(t, u(t)) + Fa(t, u(t)).

Remember that the uniform exponential stability of the solution 0,4, of the equa-
tion (3.3) means
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(2) there exist positive numbers C, o, ¢ such that if u; is a solution of the equation

(33 then lu(o)] = ¢ = ual)l] < Ce~ (i) or t € 2(u) whenever
to = min te D(v). :
teP(ur)

Let 1 € (0, r] be given. Without loss of generality we may suppose 7 < min (R, , o).
Denote B = K* + C¥ (the constant C% was introduced in [2] (Lemma 3.2)). Let
h > 0 be such that Ce™™ < 1 and a number R, € (0, ] such that

Ce™®" + BK;sR}*h(C3 + BK,) PCRatksmal < 1

Finally, let us choose numbers 7, € (0, Ry/2], 7 > 0 such that Cn, < R and
(3) [(c% + BK, + BKuny') no + B(1 + h(K3 + Kg + 1)) np] eF275m9h < Ry,
(4) [Ce™™ + BK,nmy'e®™* + BKsR}*h(C3 + BK, + BK ') PRt Ksmdi] o 4

+ [B + B(K; + K¢ + 1) h + B2KsR?h(1 + h(K, + K¢ + 1)).

. BRI BRahy
Now let t, € 9(v) and let up, : D(up) - H be a solution of the equation
5 &L u(t) = F(t, u(t)) + Fu(t, u(t)) + R(t, u(?)),

such that 2(up) < [to, + ), to € D(up). To prove the theorem, we have to prove the
implication (1.3) (of course with v = 0,4,). Let us suppose

(6) there exists a number b < h such that [1o, 1, + h] = D(up), [|up(z)|| < Ry
for te [to, to + ];),
llun(to + B)| = R,

Then using [2] (Lemma 3.2) and (3.1) we get according to (6):
llus@lll = C3lllun(to)lll + B(|Fultor us(to))]| +
+ [[Fator un(to))]| + |R(to, un(to))]]) +
* Bj (e un)] + [Fa(e un)] + [R e, (@) de <

< Cino + B(Kyno + Kang ™' + np) +

+ Bf (Kaflus(@lll + Kanp + Ksllup(@)[|**** + Kenp + np) dz <

< (CY + BK, + BK ') no + B(1 + (K3 + Kg + 1)) np +

+ B(K, + Ksn?) Jt llup(@)ll de for te[to, to + h]

to
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and thus (see [1] (Theorem 2.1.3)) with help of & < h and (3) we obtain

(7) |Jus(®)]] = [(C5 + BKy + BKny) no + B(1 + h(Ks + K¢ + 1)) np] .
. ePKHKSOh R for te[to, to + K]

But this contradicts (6). So we have proved

() llup(@)|] £ Ry £ n for te[ty, to + h] n D(up).

By (3.2) there exists a maximal solution u, of the equation (3.3) fulfilling the same
initial conditions as the solution u,. With help of [2] (Lemma 3.2) we obtain

up(t) — ug(t) = M(t; to, A) [Fx(to, up(to)) + R(to, un(to))] +
+ f M(t + ty — 1; to, A) [Fi(r, up(t)) — Fi(r, uy(v)) +
+ Fy(v, up(t)) + R'(z, up(r))]dr for te D(up)

and thus using [2] (Lemma 3.2) again and (3.1), (7), (8) (we can use the relation (3.1)
in virtue of (8) and the inequalities

1= R, () £ Ceulio)]l < no < R),

lluslt) — )l = BUF(tor uslto)] + |R(tor unto)]) +

+B£NEﬁmAm—Fﬂnw@m+Hﬁﬁmimﬂ+
o IR, w1 de < B + 1) +

+ B ft (Kallun(z) = u@lll + Ksnp + Ks[un(2)[|" > +

we get

+ Kenp + np) dv < [BKanp' + BKsR?h(C3 + BK,; + BKanp') -
BT o 4 [B + B(Ks + Kg + 1) h +
+ B’KsRh(1 + h(K; + Kg + 1)) P& XM ) oy

+M4wmﬂmw

for t € [t, 1o + h] N D(up). This with help of Gronwall’s lemma (see [1] (Theorem
2.1.3)) and with help of (2) yields: if t, + h € 2(up) then
llunto + Ml = fluclto + W + [lusto + k) = ws(te + B)f| =
< [Ce " + BK,ny'e® " + BKsR*h(Cs + BK, + BK,np') .
L PR KONy 4 [B + B(Ks + Kg + 1) h +
+ B’KsR7h(1 + h(K; + K¢ + 1)) ePFatKsmor] gBKay
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and so by (4) we can conclude
(9) l”up(to + h)”] <o if 1o+ he@(u,,).

Now the relations (8), (9) prove the implication (1.3). (The proof is the same as in
the corresponding part of proof of Theorem 2.1.) The theorem is proved.

Remark 3.1. We can consider more general disturbances than in this paper
(see [3]). For example, theorems analogous to Theorems 2.1, 2.2, 3.1 in the case
R(t, u(t)) = Ry(t, u(t)) + Ry(t, u(t)), where R, € *Y(2(u), #(v, r1, H)), R, € 6(2(u),
%(v, ry, D(A'"))), are introduced in Part 4 — Examples of [3].
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