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0. Introduction. For an integral domain 4 with the quotient field K, the group of
divisibility G(A4) of A is a partially ordered factor group K*/U(A) of the multi-
plicative group K* of K with respect to the group of units of 4 with w,(x) =
=xU(4) £ yU(A) = wy(y) if and only if yx~'e A, where w, is the canonical
homomorphism of K* onto G(A). The study of divisibility of elements of A amounts
essentially to the study of G(A); it is well known that A is UFD if and only if G(A4)
is a cardinal sum of copies of Z, 4 is a GCD-domain if and only if G(4) is lattice
ordered etc.

Furthermore, several facts are known about relations between special subgroups
of a group G(A) and domains constructed by using A. In fact, there is a theorem that
yields a correspondence between prime ideals of a valuation domain A and convex
subgroups of G(4) ([3]); a more general theorem establishes a correspondence
between prime ideals of a Bezout domain A4 and prime l-ideals of G(4) ([20]). These
two theorems are generalized by the theorem of Mott [13], which yields a special
bijection between saturated multiplicative systems in 4 and convex directed sub-
groups (i.e. o-ideals) of G(A). Moreover, by means of this theorem it is possible to
construct the group of divisibility of a quotient domain of A from the group G(A).
On the other hand, only for several elementary domains B constructed by using
a domain A the construction of G(B) from G(4) is known. In Section 1 we show some
facts about the group of divisibility of an intersection (A, of localizations of 4 and
about the relation between o-ideals of G(4) and G(NAp), and we deal with the
so-called A4-prime o-ideal of G(A) that corresponds in Mott’s bijection to the com-
plement of a prime ideal in A.

Finally, in Section 2 we deal with topological groups of divisibility with topologies
naturally induced from the topologies on the quotient fields and, especially, we deal
with a “topological” version of Mott’s bijection.

In this paper, all groups are abelian and all rings are integral domains. Following
1. Kaplansky [6], we say that a ring 4 is a GCD-domain if each pair of nonzero
elements of 4 has a greatest common divisor in 4, i.e. G(A4) is a lattice ordered group
(I-group). For a partially ordered group G we denote by O(G) the set of o-ideals of G.
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Let A be a ring, we denote by G(A) the set of saturated multiplicative systems in 4
and by m, (or shortly m) the Mott’s bijection between &(A) and O(G(A)) defined
by my(S) = {wa(s) — wa(s') :s,5'€ S}, m;'(H) = w;'(H,), wherc H, = H* =
={aeH:0 20}, Se S(A4), HeO(G(A)). If G, G, are partially ordered groups,
a map o : G, — G, is called an o-homomorphism if it is a group homomorphism
and o(G{) = G3; it is called an o-epimorphism if it is a group epimorphism and
o(G}) = Gj, and it is called an o-isomorphism if it is an o-epimorphism and a group
isomorphism. The symbol G, = G, will denote the fact that there exists an o-iso-
morphism between G; and G,. If A4, B are rings with the same quotient field K,
A < B, then by the canonical map o : G(A) —» G(B) we mean an o-homomorphism
defined by a(w,(x)) = wp(x), x € K*. For any ring 4 and any J < A we denote by J*
the set J — {0}.

1. o-ideals of some ring constructions. In this part we show several relations between
ring constructions and their groups of divisibility. Some facts about these relations
are in fact known; for example, if S e S(A), then G(4s) = G(4)/m(A) ([13]); some
facts are known about the group of divisibility of a composition of domains over
a maximal ideal ([16], [14]). In this part we deal, particularly, with an intersection
of localizations of A and with some basic facts about the group of divisibility of this
intersection. It should be observed that in case 4 is a GCD-domain, this investigation
is very easy. In fact, the following proposition holds.

Proposition 1.1. Let A be a GCD-domain. Then the intersection of quotient rings
of A is a quotient ring.

Proof. Let B = NAp, (i € I), where P; are prime ideals of A. Let S = (4 — P;)
(ielI). Then Ag = B. Let z € B. Since G(A) is an I-group, we have w(z) = w(z)* —
— w(z)”, where w = wy, w(z)* =w(z) v 0, w(z)” = —(w(z) A 0) and w(z)* A
A w(z)” = 0. Then there exist a, b € A* such that z = ab™ ', w(z)* = w(a), w(z)~ =
= w(b). Let i €I, then for some x;€ 4, y;e A — P; we have w(a) < w(b) + w(x,),
w(b) £ w(a) + w(y;). Thus, w(a) < w(x;), w(b) < w(y;) and x; = axj, y; = by;
for some x;, y; € A. Hence, be A — P, for every i € I and we obtain z € A;. There-
fore, B = Ajs.

We note that, in general, Ag constructed above is only the largest quotient ring of 4
contained in B. The family of rings with this property contains rings that are not
intersections of localizations of A. In fact, for rings 4, B with the same quotient
field K we say that B is well centred on A, if A < B and B = A.U(B), i.e. the
canonical map G(A) - G(B) is an o-epimorphism. The following lemma holds.

Lemma 1.2. Let B be well centred on A. Then there exists the largest quotient
ring of A contained in B.

Proof. Let o : G(4) - G(B) be the canonical map. Since ¢ is an o-epimorphism,
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there exists a convex subgroup H of G(A) such that the factor ordered group G(4)/H
is o-isomorphic with G(B). Let H* be the core of H, i.e. H* = {& — f 1o, fe H }.
Then H* is an o-ideal of G(A4) and for S = m}'(H*) we have G(45) = G(A)[H*.
Thus, A5 < B. If Ag, = B for some S’ € €(4), we have the canonical map G(A4y.) =
=~ G(A)/m4(S’) - G(A)[H and it follows that m,(S’) = H. Since m,(S’) is directed,
we obtain m,(S’) = H* and Ag. < As.

Let S be a torsion-free cancellation additive semigroup. Then the semigroup ring
of S over a ring A is the set A[S] of formal polynomials a,X** + ... + a,X™,
a; €S, a; € A, with addition and multiplication naturally defined.

Proposition 1.3. Let A < B be rings with the quotient field K. Then the following
conditions are equivalent.

(1) B is well centred on A and w 4(U(B)) eO(G(A)).
(2) B is a quotient ring of A. ‘

(3) B[S] is well centred on A[S].

(4) B[X] is well centred on A[X].

Proof. (1) = (2). We set S’ = U(B) n A. Then A < B. Let x € B*. Then there
exist a € A, u € U(B) such that x = au. Since w ,((U(B)) is directed, there exists j € U(B)
such that w,(j) = wy(u™?), 0. Hence, jeS’, x = abj '€ 45, for some be A.
Therefore, B = Ag..

(2) = (3). Let B = Ay, where Ne&(4) and let b,X* + ... + b,X* € B[S],
b;e B, «;€ S. There exist a;, ..., a,€ A, se N, such that b; = a;s7'. By [4]; 4.2,
s~ 'X? e U(B[S]), where B has an additive inverse in S. Then b, X* + ... + b,X* =
sT'X¥a, X" + ... + a,X*7?) and B[S] is well centred on A[S].

(3) = (4). Trivial.

(4) = (1). Itis clear that Bis well centred on A. Let i € U(B), then iX + 1, € B[X].
Hence, there exist je U(B), ay, aq € 4, such that iX + 1, = ja,X + ja, and 0,
w4(i) = w4(j). Therefore, w,(U(B)) eD(G(A)).

J. Rachiinek [18] shows that the familyO(G) is a complete lattice with the ordering
by inclusion, where for any {H;:iel} =O(G), the infimum inf {H,:iel} is the
core of the convex subgroup NH; (i € I). The following proposition shows the relation
between infimum in O(G(4)) and a certain ring construction on 4.

Proposition 1.4. Let 0 & {H;:iel} =O(G(4)), H = inf{H,:iel}. Then
G(A)[H = G(A,s,), where S; = my;'(H,).

Proof. Let x e NS; (i € I). Then w4(x) € H; and we have w,(x) e H*. Conversely,
for wy(x)e H* we have x e S; for every iel. Hence, wy(NS;(iel)) = H* and
mA(nTi) = H, where (S, = saturation of )S,.
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Now, let for a ring A, B = 45, (i €I), where S;e &(4); H; = m,(S,), H =
= NH, (i €I). Then the following holds.

Theorem 1.5. The group of divisibility G(B) of B is o-isomorphic with the group
(G(4)/H, ), where < is an ordering on G(A)[H stronger than the factor one.
G(B) is o-isomorphic with G(A)/H with the factor ordering if and only if B is well
centred on A.

Proof. We set S =S;(iel) and let H = m,(S). (By Prop. 14. H =
= inf {H;:iel}.) Let ¢ : G(4y) = G(A)/H' — G(B) be the canonical map. Then the
canonical map t of G(B) into the product IIG(4)/H; (i € I) defined by t(ws(x)) =
= (w4(x) + H;); is an o-isomorphism into. There exists an o-homomorphism and
a bijection ¢ such that the following diagram commutes,

G(A)H %~ G(B) ——— {(wu(x) + H));: xe K*} < TIG(A)/H,
le
> G(4)|T S

where K is the quotient field of 4 and T/H' = ker (to). Then T = {w(x) : x € K*,
to(wa(x) + H') = T wy(x) = (wa(x) + H;); = (H;));} = NH; (iel) = H. On the
group G(A)/H we define an order relation X setting (G(4)/H), = ¢~ *(«(G(B).)).
Then (G(A)/H, X) is o-isomorphic with G(B) and X is stronger than the factor or-
dering. If B is well centred on A4, B is well centred on Ag and ¢ is an o-epimorphism.
Then the factor ordered group (G(A)/H')ker (1) = G(A)/H is o-isomorphic with
G(B). Conversely, if G(4)/H = G(B), the canonical map is an o-epimorphism.

It should be observed that there exists a domain B = (A, such that B is not
a quotient ring of A and it is well centred on A. We use the example 4.1 of [4a].
Let G be a countable weak direct sum of the additive group of integers, lexico-
graphically ordered. Let k be a field and let k, be a subfield over which k is algebraic.
We consider x, x5, ..., X,, . .. elements of an extension field of k which are algebraically
independent over k. Then for ax(' ...xJ"ek[xy,...]* we set w(ax]' ...x}r) =
=(ry, ..., 1 0, ...) € G; w(f(x)) = minimum value of the nonzero monomials oc-
curing in f(x), f(x) € k[x,, ...]*; and w(f[g) = w(f) — w(g) for flg € k(x4, ...) = K.
Then w is a valuation in K and in [4a] it is proved that R,, = k + M,, is an inter-
section of quotient rings of a domain D = ky, + M,,, where M,, is the maximal ideal
of R,,. Moreover, for § = (gy, gs, ...)€ G4, supp (g) = {iy, ..., i}, we have X =
= x%" ... xI"e D and w(X) = g. Thus, R,, is well centred on D and it is easy to see
that R,, is not a quotient ring of D.

The intersection of localizations is a special case of the so called generalized
quotient ring of A (g.q.r.) with respect to a generalized multiplicative system &
(g-m.s.) of A4 (see [17]). Recall that a g.m.s. of A is a family & of non-empty subsets
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of A such that {0} ¢ % and for any X, X,€¥, X,.X, ={) ab;:a,eX,,
i=1
b;eX, neZ,} e holds. A g.q.r. of A with respect to a gm.s. & in A4 is a ring
Ay = {xeK:3Je ¥ such that x.J* c A4},

where K is the quotient field of 4. If B = NAp, (i€l), we have B = A, for & =
={J:J<c A J+{0},J & P;forevery iel}.
We say that E A4 misses & (¥ a g.m.s. of A) if J* & E for every J € &.

Proposition 1.6. Let S € S(A) and let & be a g.m.s. of A that consists of ideals
of A. Then S misses & if and only if Sy = {xe K*:3J € & such that x.J* =
=S8} =0.

Proof. Let S miss &. We suppose that there exists x € S, 1 A. Then for some
Je & we have x . J* = S, hence for every a € J* we have a™! = x(xa)™' € 45 and
ae U(AS) NnA=S8,J¥ <8, a contradiction. Further, we suppose that there exists
x € S,. Then for some J € & we have x . J* = S. Let be J*, then xfe S, b . J* < J*
and (xb).J* = x.J* <= S and xbeSy, N A, a contradiction. Hence, S, = 0.
The converse is trivial.

Now, let & be a g.m.s. of 4 and let S = 4. We say that S is large with respect
to &, if for every Je &, J n' S % 0 holds.

Proposition 1.7. Let % be a g.m.s. of A. Then the maps S |> U((Ay)s) N Ay =
= sat, S, S | S N A, are mutually inverse bijections between the sets of saturated
multiplicative systems of A, Ay, respectively, that are large with respect to & .
Furthermore,

(Ay)s = Agna > As = (Asf)saa_(fs-

Proof. Let Se &(4) be large with respect to & and let x e saty S N A. Then
x"'e(Ay)s, x~' = as™! for some a € Ay, s e S. Then there exists J € & such that
a.J*c A Lets’eJ S, then x* = (as'). (ss') ' e As and xe U(4s) n 4 = S.
Hence, sat, SN A = S. Let xs™' € (4y)s, x€ Ay, se S. Then for some J e & we
have x . J* = A and again, for some s’ € J N S we obtain xs™* = (x5') . (ss') ! € A
and (Ag)ar,s = (Ag)s = 4As. Let S € (4,) be large with respect to &, S = § 0 A.
Since S S U(Agnq) N A = U(Agag) " Ay n A =S, we have Se &(4). Let y€S,
then there exists J &% such that y.J* = 4. Let se Jn S = J (SN A). Then
yseAnS and y ' =s(ys)"'eAs. Thus, S = U(4g). Further, Ay = As; and
(Ag)s € 4s. Hence, (Ag)s = As = (49)s = (Ay)a,s and we obtain § =
= saty (S N A).

By using this proposition it is possible to give a new proof of the following well
known proposition (see [3]): If {P; : i € I} is a family of prime ideals of 4 such that
there is no containment relation among distinct members of the set P; and each
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prime ideal of A contained in P, is contained in some P;, then NAp, (iel) =
= An-py In fact, let S=N(4 — P)(iel), ¥ = {J:J ideal of 4, J & P, for
every i e I}. Then NA4p, = Ay. Suppose that there exists J € & such that J n S = Q.
Then by Krull’s theorem there exists a prime ideal P of A suchthat J € P,Pn S =
= (. Hence, P < UP; and P < P, for some i el. Hence, J = P;, a contradiction.
Thus, S is large with respect to &. Since S = U(A4), we have saty, S = U(Ay) and

NAp, (iel) = Ay = (Ay)saty S = As = Ap_py -

Using Proposition 1.7 we can show a certain relation between special o-ideals
of G(A) and G(NA4p,). Let {P; : i € I} be a set of prime ideals of A, H; = m,(A — P,),
B = NAp,(i€l), o : G(4) > G(B) the canonical map and let

O, = {H:HeO(G(A4)), Jiel, H, = H},
O, = {H:HeO(G(B)), Jiel, o(H;) = H} .

Proposition 1.8. The map H |> o(H) is a bijection between O, and O, and for
He®,, G(4)[H = G(B)[o(H) holds.

Proof. For & = {J :J < A, J < P, forevery i eI} we have B = A,. We denote
O, = {S:SeS(A), S is large with respect to &}, 0, = {S:Se &S(B), S is large
with respect to &}. By Prop. 1.7 there is a bijection f :O; -9, such that Ag =
= (As)psy S€D,. We denote m, = m, if)l, m, = my ‘5‘52. Then m; is a bijection
between O; and O,. In fact, we suppose that for some S €O,, m,(S) ¢O, holds. Then
for every i € I we may find an element o; = wy(a;) e H — my(S), = H — w,(S).
Thus, J = {a;:iel}e ¥ and J n S = 0, a contradiction. Conversely, let m,(S) e
€D;. Then for some iel we have H; < m,(S) and it follows that 4 — P; = S.
Thus, SeO,. Analogously, for SeO, there exists iel such that A — P; = S.
Let oe H,, o= 0o — oy, for a;e Hf, o; = wy(a;). Since a;e 4 — P;, we have
o() = wy(ay) — wi(a,) € my(S) and m,(S) €D,. Conversely, for Se S(B), my(S)e
€9,, there exists i € I with o(H;) < m,(S). Then for ae A — P; we have w(a) € H,,
wy(a) = o wy(a)e o(H) = my(S), = wy(S)and 4 — P, = S, SeD,.

Thus, m,fm;" is a bijection between O; and O, and by Prop. 1.7, G(4)/H =
= G(Ap,-1(m) = G(Bpm,-10n)) = G(B)[myfmy '(H). Then H = w(U(Ap,-sam)) =
= Wy(U(Bypm, -1cy)) and we obtain o(H) = ow (U(Byp, -101))) = Wa(U(Bpm, -10a1))) =
= m,pm] ' (H).

Corollary 1.9. For S 651 we have
saty S = U(Bs) " B =
= {xeB:3yesaty S such that xy~" € U(4,,) for every iel}.
Proof. Let H = m,(S). Then saty S = wz'(6(H),) = {xeB:3yeU(4s) n B
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le

such that wy(xy~')e H; for every iel} = {xe B:3yesaty S such that xy~
€ U(Ap,) for every ieI}.

It should be observed that if &, &, are g.m.s. in 4 such that A, = A,,and S e
€ &(A) is large with respect to &4, it does not follow, in general, that S is large with
respect to & ,. In fact, let A be a discrete rank one valuation ring with the maximal
ideal M. Since M* =M, &, = {4, M}, &, = {{1}} are g.m. systems in A and
Ay = A= Ag, But, for S = A — M, S is large with respect to &, and it is not
large with respect to ;.

J. Rachiinek [19] shows that for any 2-isolated partially ordered group G (i.e.
g+9g=0, geG implies g = 0) and any subset H = G, there is the smallest
o-ideal C(H) in G containing H. The following lemma shows that the same is true
for groups of divisibility without the assumption mentioned above. For H < G,
we denote by [ H] the subsemigroup of G, generated by H.

Lemma 1.10. Let G = G(A) be a group of divisibility of A, 9 + H < G,. Then
there exists the smallest o-ideal C(H) in G containing H. Furthermore,

C(H); = {ae G, :3pe[H] with B = o} .

Proof. Let S' = w;'([H]). S = U(4s)) n A. Then S € S(A4) and we set C(H) =
= m(S). It is clear that H = C(H). For the o-ideal H' € O(G) such that H = H'
and for « = wy(x)e C(H), we have xe S and there are ae A, se S’ such that
xa = s. Then w(s) = wy(x) = 0 and « € H'. The rest is clear.

Proposition 1.11. Let § # {H;:iel} =O(G(4)), S; =mi'(H), S = {s;, ... ss, :
Sy igel, s;,€8; ), H={a; + ...+ 0, tiy,..,i,€l, a;, e H;}. Then there
exists the smallest o-ideal F of G(A) containing H and for this o-ideal, G(As) =
= G(A)[F holds.

Proof. It is clear that H is a directed subgroup of G(A). By Lemma 1.10 there
exists the smallest o-ideal F of G(4) containing H,, where F, = {a e G(A), :
:3B e H, suchthat B = a}. Let S’ = U(A4g) N A. Then for x € S’ there exist o;, € H;,
t=1,...,n, such that wy(x) < a; + ... + «; and it follows that w,(x)eF,.
Analogously, we obtain F, = w,(S’). Then F = m,(S’) and G(4s) = G(4s) =
= G(A)[F. 1t is clear that F is the smallest o-ideal in G(A) containing H.

J. L. Mott [13] introduced the notion of prime o-ideal in a partially ordered group
G in the following way: H € O(G) is prime if G[H is totally ordered. If G = G(A)
is a group of divisibility and H € O(G) is prime, a ring A,,-1, is a valuation ring,
since G(A,,-11y) = G[H is totally ordered. Hence, m™'(H) = A — P for a prime
ideal P of A. This property naturally leads to the following definition. An o-ideal H
of G(A) is A-prime, if there exists a prime ideal P of 4 such that m;'(H) = A — P.
Several properties of A-prime o-ideals are investigated in [10], where the main tool
in studying these properties is a special partially ordered group endowed with
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a multivalued addition, called a d-group (see [15]). The following multivalued
addition @, on G(A4) has received considerable attention: For o, B,y e G(A),
xef @,y if and only if there are a, b, ce K*, uy, u, e U(4) (K is the quotient
field of A) such that o = wy(a), B = wu(b), y = wu(c), a = buy + cu,. If A is
a GCD-domain, it is possible to define another multivalued addition @®,, in the fol-
lowing way: a«@®,f ={yeGA):a AB=aAny=pAy}. For any CGD-
domain A and for every «, f € G(A) wehavex @, B < o ®,, f and it should be obser-
ved that the converse inclusion does not hold in general (see [10]).

We note that since every prime /-ideal of a group of divisibility of a GCD-domain
A is a prime o-ideal it follows that every prime [-ideal of G(A) is A-prime. (Here
H eO(G) is a prime I-ideal of an I-group G if o, fe G,, « A fe H imply a € H or
peH.)

Lemma 1.12. Let A be a GCD-domain such that ® , = @,,. Then every A-prime
o-ideal in G(A) is a prime I-ideal and A is a Bezout domain. The converse implica-
tion is not valid in general.

Proof. Let ®, = ®,, and let H be an A-prime o-ideal in G(A). Then for a prime
ideal P of A, G(4p) = G(A)[H. By [10]; Prop. 7, H is a prime d-convex subgroup
of a d-group (G(A4), ®,) = (G(4), ®,,) (for definition, see [15]), i.e. the facts o, f e
€G(A),, (t®, ) H + 0, imply, xe H or fe H. Let o, fe G(4),, « A fe H.
Then o A fe(ax @, f) " H and H is a prime l-ideal in G(A). To prove that A is
a Bezout domain we need to show that A is a Priifer domain. Let P be a prime
ideal of A. Then H = m,(A — P) is A-prime and according to the proof presented
above, H is a prime [-ideal of G(4). Thus, G(4p) = G(A4)/H is totally ordered and A,
is a valuation ring.

To show that the fact that every A-prime o-ideal of G(A) is a prime [-ideal does not
imply ®, = @,,weset A = Z,,. Thensince0¢0®,0,0€0®,, 0, we have ®, +
+ @®,, and the set of A-prime o-ideals of G(4) = Z is {Z, {0}}, i.e. the set of prime
l-ideals of G(A).

We note that the notion of an A-prime o-ideal of G(4) is based essentially on A.
In fact, let 4 be a GCD-domain that is not a Bezout one. Then there exists a prime
ideal P of 4 such that 4 is not a valuation ring, i.e. H = m,(A — P) is an A-prime
o-ideal that is not a prime l-ideal of G = G(A). Let B be a Bezout domain constructed
in [16], such that G(B) = G. Then by [10]; Lemma 2, ®; = @, holds. Since H
is not a prime l-ideal in G, H is not B-prime by Lemma 1.12.

We note that via the notion of d-group the following problem can be solved:
Does there exist a group of divisibility G and a nondirected convex subgroup H of G
such that the factor group G/H is a group of divisibility? The answer is in affirmative
as the following example shows. ,

First, we note that if G = G(A) is a group of divisibility of a domain 4 and H
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is a convex subgroup of G such that H.G, ®, H .G, = H . G,, the factor group
G[H is a d-group with respect to the multivalued addition @' defined by

g:H @' g,H = (ng D4 ng)/H

and the canonical map ¢ : G — G/H satisfies the condition o(g; ®4 9,) < 0(9,) @’
@' o(g,). Now, w = ow, is a semi-valuation on the quotient field K of 4 with the
value group G/H.Infact, for a, b, c e K*, a + b e K*, such that w(c) < w(a), w(b),
and from the fact wy(a + b) e w4(a) @, w.(b) we obtain w(a + b) e w(a) @ w(b)
and hence w(a + b) = w(c) (see the properties of d-groups in [15]). Hence, by [16],
w is a semi-valuation on K and G/H is a group of divisibility. The following example
of a domain A such that there exists a non directed d-convex subgroup in (G(4), @ ,)
is taken from [15].

Let A = Z[X, Y], where Z is the ring of rational integers and let w be an (X, Y)-
adic valuation on the quotient field K of 4, G = G(A4). We set

S = {fe A* : for every irreducible polynomial p in A such that
wa(p) £ wa(f) we have w(p) = 1},
H={wyfg""):f,g€S, w(f) = wlg)} .

In [15] it is proved that H is a nondirected d-convex subgroup in (G, ®,) and it
follows that G/H is a group of divisibility.
In what follows we denote by PB(G(A)) the set of A-prime o-ideals of G(A).

Lemma 1.13. NH(H € P(G(A))) = {0}. {0} € B(G(A)) if and only if A is quasi-
local.

Proof. Since A = A, (P a prime ideal of A), it follows that the canonical map
o : G(4) > TIG(A)[H(H € B(G(A))) defined by o(w4(x)) = (Wa(x))u» x €K*, is an
injection, where wy : K — G(4p) = G(A)/H, H = m(A — P), is a semi-valuation
associated with 4p. Hence, NH = {0}. The rest is clear.

Proposition 1.14. Let {H, : i eI} = B(G(A)) be such that

1) there are no containment relations between distinct H,,
2) for every H e PB(G(A)) such that inf{H,:iel} = H there exists iel such
that H; < H.

Then inf {H;:iel} = NH;(iel) in O(G(A)).

Proof. Let P; = A — m;'(H;). Then by [3]; B = NA4p, = Ancs-p, Let H=
= inf H,. By Prop. 1.4, G(A)/H = G(A.-»,) and since B is well centred on 4,
Theorem 1.5 yields G(A)/H = G(A)/(NH;). Therefore, H = NH, (i €I).

Corollary 1.15. Let Hy, ..., H, € B(G(A)). Then N\ H; is an o-ideal in G(A).
i=1
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Proposition 1.16. Let 2y, ..., 0,€ G(A),. Then the smallest o-ideal in G(A),
containing oy, ..., o, is A-prime if and only if the smallest o-ideal in G(A) containing
oy + ... + o, is A-prime.

Proof. The smallest o-ideal C(H) in G(A4) containing H < G(4), is A-prime if
and only if the family {P : P € Spec A, P n w;'(H) = 0} admits the largest element.
The proposition then follows from the fact that for a,ewy'(x), i=1,...,n,
{PeSpecA:w;'({ag.....,}) " P =0} ={PeSpecA:a....a,¢P}=
={PeSpecA:wi'(oa; + ... + &) P =0}

In the theory of lattice ordered groups, a well known notion is that of a value of
an element g % 0 of an [-group G, i.e. the largest [-ideal H, in G not containing g.
It is well known that H, is a prime l-ideal. Analogously, in the theory of partially
ordered groups it is possible to define the value of an element, namely, the value
of an element g of a partially ordered group G is the largest o-ideal H, in G such that
g ¢ H,. It should be observed that not every value is a prime o-ideal. In fact, let
G =(Z, +, X), where a 2 b if and only if b — a is an even nonnegative number.
Then G is a directed partially ordered group and it is easy to see that H = {2k : ke G}
is the unique nonzero o-ideal in G. Then H is a value of 1 e G and since G/H is not
totally ordered, H is not prime.

If G is a group of divisibility, we may say something more about the value of an
element.

First, we say that a prime ideal P in a ring A4 is isolated, if JP’ (P’ is a prime ideal
of A,P' =« P) < P.

Proposition 1.17. An o-ideal H in G(A) is a value of an element of G(A), if and
only if H is A-prime and A — m3'(H) is an isolated prime ideal of A. Every
element of G(A) has a value.

Proof. Let H be a value of & = w4(a) € G(4),, S = my'(H). Let P be a maximal
ideal of A such that PN S =0, aeP, and let H = m, (A — P). Then a ¢ H’,
H < H' and hence H = H'. Thus, H is A-prime. We suppose that P = P’ (P’
a prime ideal of 4, P’ = P). Then for a € P there exists a prime ideal P’ = P with
aeP.For H = myA — P') we have a ¢ H’, H = H”, a contradiction. Therefore,
P is isolated. Conversely, let H be an A-prime o-ideal of G(A) such that P = 4 —
— mj'(H) is isolated. Let ae P — P’ (P a prime ideal of 4, P’ = P). Then o =
= wy(a) ¢ H. For H' €O(G(A)) such that H = H', S = m;'(H'), we have S =
= (A — P;), where P; = {P : P a prime ideal of 4, P n S = 0}. Since A — P
< A — P, for every i, we obtain a ¢ P; for every i and a€ S. Thus, xe H and H
is a value of «. The rest is clear.

2. Topological groups of divisibility. In [11] we introduced the notion of a topo-
logical group of divisibility in the following way. Let 4 be an integral domain with
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the quotient field K and let 7 be a topology on K such that (K, ) is a topological
field. Then the factor topological group K*/U(A) of a topological group (K*, 7~ ‘ K*)
is called a topological group of divisibility of A and in this case we write G(A4) =
= (K, 7, A). In this section we show a “topological” version of [13]; Theorem 2.1,
for topological groups of divisibility. We use the following notation. The symbol
Sy(4) (©,(A)) denotes the set of elements of S(A4) that are open (closed) in a topologi-
cal group (K*, 7 IK*) and the symbol O,(G(A4)) (D(G(4)))denotes the set of elements
of O(G(A)) that are open (closed) in G(A) = (K, 7, A).

The proof of the following lemma is due to B. Smarda.

Lemma 2.1. Let G be a topological partially ordered group and let H be a directed
subgroup of G such that H, is closed in G. Then H is closed in G.

Proof. Let H be a closure of H in G and let g € H. Then for any neighbourhood %
of zero in G there exists a neighbourhood ¥ of zero such that —¥" < %. Since
(g + "//) N H = 0, there exists ve ¥ such that g + v = h e H. Since H is directed,
we may find elements hy, h, € H, such that h = h; — h,. Thus, —h, + g + v =
=—h, and —v—g+h =hyeH,, —v+(—g+h)e@+(—g+h))n
N H,.Hence —g + hye H, = H,, where H, is the closure of H, in G. Therefore,
—geH, — h; € H and H is closed in G.

The proof of the following lemma is straightforward and will be omitted.

Lemma 2.2. Let A, B be rings with the same quotient field K and for a subgroup H
of G(A) let there exist a group isomorphism @ such that wg = ¢ . ¢ . w,, where ¢
is the canonical map of G(A) onto G(A)[H. Let G(4) = (K, 7, A), G(B) = (K, 7, B).
Then G(B) is homeomorphic with the factor topological group G(A)[H.

Proposition 2.3. Let G(A) = (K, 7, A) and let S € &(A). Then G(4s) = (K, 7, As)
is homeomorphic with the factor topological group G(A)[m(S).
The proof follows directly by Lemma 2.2.

In the next theorem we set my = m, | So(A), m, = m, | ©.(4).

Theorem 2.4. Let G(4) = (K, 7, A). Then my(m,) is a bijection between Sy(A)
(S(4)) and O,(G(A))(DG(A))) if and only if A* is open (closed) in K*. If A* is
open in K*, then ©,(4) = &(A),D,(G(A4)) = D(G(4)).

Proof. Let A* be open in K*. Then U(A) = A* n (A*)"! (where (4*)™! =
= {x7!:xe A*})isopenin K*and G(4) = (K, 7, A)is a discrete space.D,(G(4)) =
=9O(G(A)). Let S e &(A), then since m4(S) is open in G(4) and w, is continuous,
we obtain that S = wj '(m,(S)) N A* is open in A*; hence S € S,(4). Thus, S,(4) =
= €(4) and m, = m,. Conversely, let m, be a bijection, then m,(A*) = G(4)e
€D,(G(A4)) and it follows that A* is open in K*.
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Let A* be closed in K*, S € ©(A4), H = m,(S), and let « = w(x) € H, (the closure
of H, in G(A)). Let % be a neighbourhood of x in K*, then there exists z € K* such
that w,(z) e w,(%) n H, and for some se S, ae %, i, j € U(A) we have z = sj = ai.
Since S is a saturated multiplicative system, we obtain zi"'e % n S and x €35,
the closure of S in K*. Since S is closed, we have a € H,. and H, is closed in G(A).
By Lemma 2.1, H €D,(G(4)). Further, let H €D (G(4)), S = m}'(H). Since w, | A :
: A* > G(A), is continuous, S = wy'(H,) is closed in A* and S is closed in K*.
Therefore, m, is the required bijection. Conversely, if m, is a bijection, then the fact
that m,(A*) = G(A4) €O(G(A4)) implies that 4* is closed in K*.

Corollary 2.5. For S e ©(A), U(As) is closed in K*. If A* and U(As) are closed
in K*, then S e €(A) and S,(A) = S(A).

Proof. Let Se ©/(4). From the proof of 2.4 it follows that m,(S)eD(G(A)).
By Prop. 2.3, G(A)/m,(S) is homeomorphic with K*/U(As). Since G(A)/m,(S)
is a T,-space, K*|U(As) is a T,-space and U(4g) is closed in K*. The rest is clear.

It is well known that every valuation w on the field K with a value group G,
defines a field topology 7, on K with the sets %,,, = {x e K* : w(x) > o} v {0},
a e G}, as a base of the neighbourhoods of zero in K. On the other hand, Matlis [7]
introduced the notion of an A-topology 7 , in a quotient field K of A4, where the set
of ideals a . A, a € A*, is a base for the open neighbourhoods of zero in K. Then
(K, 7 4) is a topological ring. It is easy to see that the topology J , may be defined
by using semi-valuations. In fact, for « € G(4), we set #,, , = {x e K* : w(x) > a} U
v {0}, #,,, = {xeK*:w(x) = a} U {0}, w=w,. If 4+ K, for every ae G(A),
there exists fe G(4), p>«, and %, , < %, < U, ,. For every a, feG(A),
there exists y > a, f and %,, , = %,,, " U, gand a. A = U, ., for every a e A*.
Hence, the topology 7, with the base {%,, , : @ € G(4).} equals the topology with
the base {#,, , : a € G(4).} as well as the A-topology on K.

The idea of the following proposition is the same as that of [1]; Ch. 6, § 5, Prop. 1.

Proposition 2.6. Let A be a quasi-local domain. Then (K, T ,) is a topological
field and G(A) = (K, T 4, A) is a discrete space.

Proof. Let x, yeK* o€ G(A),, be such that w(x — y) > a + 2w(y), w(y),
where w = w,. Then w(x~' — y~!) > a. In fact, since w(x — y) > w(y) and 4 is
quasi-local, it follows by [16] that w(y) = w(x). Sincex™" — y™! = x7!(y — x)} y 71,
we obtain w(x~' — y7) = w(x — y) — w(x) — w(y) = w(x — y) = 2w(y) > o
Let xo € K*, B> a + 2 w(x,), w(xo), 0, and let ye(xo + U, 5)~". Then for some
X€Xg+ Uy y=x"1 holds and w(x — xo) > f > a + 2w(x,), w(x,) and
w(x™' — x5') > a. Thus, (xo + %) < x5 ' + %,,, and (K, 7 ,) is a topologi-
cal field. Since w™'({0}) 2 1 + %,, o, G(A) is a discrete space.

It should be observed that, in general, (K, 7 4) is not a topological field. In fact, for
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Z, K = Q, the fact that there exists no y € A such that (23 + y.A4)"' =
/2 + 2. A, implies that (K, 7 ,) is not a topological field.

n =~

Proposition 2.7. Let {w;:i€l} be the family of valuations on the field K with
value groups G, that are nonnegative on A and let A = (\R,(iel), where R; =
wi'(G)u {0}, 7 =sup{7,, :iel}. Let G(4) = (K, T, A). Then O(G(4)) =
=90,G(4)).

Proof. Let H eO(G(A4)), S = w;'(H,). Then S = (4 — P) (P a prime ideal
in A, Pn S = 0). For every such P we may find wpe {w; : i eI} such that P =
= {x€ A :wp(x) > 0} (see [3]; Theorem 16.5). Since A* N (x + %,,, o) S P for
every x € P, it follows that P is open in A* and S is closed in 4*. Since 4* = (R}
is closed in (K*, 7 ] K*), we obtain S e &,(A4) and by Theorem 2.4, H is closed in
G(A).

Let A4 be a ring, {R; : i eI} a set of quasi-local rings in the quotient field K of 4
such that 4 = NR;. Let w; = wg, and let ¢ : G(4) - IIG(R,) (i € I) be the canonical
map.

Proposition 2.8. G(4) = (K, sup {7, : iel}, A) is homeomorphic with o(G(A)),
where o(G(A)) inherits its topology from the product of discrete topologies on TIG(R;)
if and only if for every open neighbourhood % of 1 in K* there exist iy, ..., i,€l
such that U(R;) ... U(R,) € % . U(A).

The proof directly follows from the fact that for every open neighbourhood %
of 1 in K*, % . U(A) is an open neighbourhood of 1 in K* and w; '(w(% . U(4)) =
= . U(A).
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