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NON-COMMUTATIVE INTERPOLATION OF SOBOLEV-BESOV
AND LEBESGUE SPACES WITH WEIGHTS

JUTTA SCHMEISSER, Jena
(Received October 4, 1976)

The paper contains results about interpolation of weighted Sobolev-Besov and
Lebesgue spaces in domains. Further, we give examples and counter-example of
non-commutative interpolation. These results arise from the problem of finding
conditions ensuring

(*) F({Ao, 4; 0 42}) = F({4o, 41}) 0 F({4o, 42}),

where Ay, A; and A, are Banach spaces contained in a linear Hausdorff space and F
is an interpolation functor. Results of the type (*) are well-known if the so-called
commutative interpolation is considered. The first result may be found in Lions [8].
Later, Peetre [12] showed that (x) is true using the theory of quasilinearisable inter-
polation couples; he supposed that the operators involved commute with each other.
The interpolation of domains of infinitesimal generators of commuting semi-groups
of bounded operators or the interpolation of domains of positive operators with
commuting resolvents are special cases of this result. All these assertions are based
on hypotheses of commutativity and were mainly obtained by the authors mentioned
above and by T. Muramatu [9], H. Komatsu [7] and by P. Grisvard [3]. These
statements are contrasted not only by counter-examples (see H. Triebel [15]), but
also by results of the type (*) which were obtained independently of the assertions
mentioned above; in particular, the commutativity assumptions are not fulfilled.
For details we refer to H. Triebel [13, 14, 15, 16]. So it is interesting to extend (*)
to the non-commutative case. J. Peetre [10] and P. Grisvard [4] obtained general
results for the real interpolation functor.

In our work we will only make use of the very applicable result by P. Grisvard.
() is proved by him in the case that 4, contains A, and 4, is the domain of a positive
operator A acting in A,, with a positive restriction on 4, (see Section 1). On the one
hand, our paper applies the theory of non-commutative interpolation to function
spaces of Sobolev-Besov or Lebesgue types, respectively, with and without weights;
on the other hand, we want to give an idea of how far these methods can be used.
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In our considerations, the Banach spaces 4, and A4, will be weighted or unweighted
Sobolev-Besov or Lebesgue spaces, for instance: A, = L,(Q), A, = B;,(Q) (the well-
known Besov space; if s = integer then the Slobodeckij spaces arise). The positive
operator A, acting in A, is the multiplication operator: (Au) (x) = ¢(x) u(x)
where ¢(x) is a measurable positive function. Thus, the domain D(A), of definition
of A is a weighted Sobolev-Besov space and for several classes of functions (p(x)
(described by certain growth conditions) we get results of the type

(LP(Q)’ LP(Q’ (P) N B;p(g))ﬂ,q =
= (LP(Q)’ Lp(Q’ q0))0,41 n (LP(Q)’ B;p(g))ﬂ,q :

With the aid of non-commutative interpolation we get, for a class of weight-functions
@o(x) and ¢,(x),

(W3(2, 90), W(2, 01) 0 W;(Q ?0))o.p =
= (W;;”(Q9 (Po), W;"(Q’ (P1))9,p N (W:(Q> (Po), Wpl(Qa (p()))ﬂ,p .

Simultaneously we extend earlier results by A. Favini [1] about the interpolation
(W5(2, 9o)s W3(2, 01))o-
Finally, we present a series of examples and counter-examples to ().

1. MULTIPLICATION OPERATOR IN UNWEIGHTED SOBOLEV SPACES

First we describe the result by P. Grisvard [4]. We use the following statement
which is important for the whole work:

Proposition. Let A, and A, be Banach spaces, A, = A,. Let A be a closed un-
bounded operator acting in A, with D(A) = A, (note that Ay is a Banach space
equipped with the norm |u4, = |ull4, + |Au > u € D(A)). We assume that the
operator A satisfies the following conditions:

1. For 0 < t < o the operator tA + E is invertible in A, and
(1) [(t4 + E) |y < cfjusy, wedos

2. for 0 <t < oo the operator tA + E is invertible in A, and

2 [(t4 + E) " ulla, < c5fu),, ued,

with constants ¢, and c, independent of t.

I take the opportunity to thank H. Triebel for pushing me on.
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Then for 0 <0 < 1,1 < q < o0,

(3) (Ao A1 0 Az)p g = (Ao, Ar)o,g 0 (Ao, A2)sg
is valid.

Here (¢, +)y,, denotes the real interpolation functor (for instance the K-functor
in the sense of J. Peetre [11]). We denote the conditions (1) and (2) in the proposition
by “A,-condition” and ‘“A4,-condition”, respectively, and state:

If, for the closed operator tA + E; 0 < t < oo, there exists a suitable operator
I,: Ay - Ay; 0 < t < oo, such that

(4) for 0 < t < o0, tA + E is an operator from D(A) onto A;
(5) the operator t4 + E; 0 < t < oo, is a bounded operator from 4, into Ao;
(6) in A, I(tA + E) = E holds,

then the operators {4 + E; 0 <t < oo, are invertible in Ay: (tA + E)™! =1,.
If, additionally, (1) is valid, then the A,-condition is fulfilled. The same can be said
about the A,-condition. Replacing the operators I, by I, and the space A, by 4, in
(4), (5) and (6) we get the properties (4'), (5') and (6"), respectively. '

Basic notations. Let Q be an arbitrary domain in R, with a boundary dQ and a clo-
sure Q:0Q = @ — Q. L°(Q) denotes the set of all functions, Lebesgue-measurable
in Q with bounded essential suprema. By W,',"(Q); m=12...; 1 <p< o0, we
denote the usual Sobolev spaces equipped with the norms

(7) ”“HWP"'(Q) = (wém |D%u Il’i,,m))”” . ue Wy(Q).

Let C3°(.Q) be the set of all infinitely differentiable finite functions; we denote the
closure of this set in the Banach space W"(Q2) by W(Q). Denote by L,(2, ¢(x)) the
usual weighted space with a non-negative measurable function ¢(x). The norm
is given by

®) [4le0co, pcon = f o) e dx'r, e L@, 00).

The spaces arising by the real interpolation of Sobolev spaces W}/(%) are the Besov
spaces B} (Q); by the complex interpolation we have the Lebesgue (Liouville or
Bessel-potential) spaces Hj(Q). We introduce a smoothness-property for bounded
domains in R,:

Definition. A bounded domain Q belongs to a class C™; m = 1,2, ... or m = o0,
if the following conditions are satisfied:
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(9) There exist balls K;; j = 1, ..., N, with

N
U K; 2092 and KindQ=+9.

Jj=1

(10) There exist vector-functions fY(x) = (f{)(x), ..., f)(x)) defined on K; and
satisfying the following conditions:

(i) The functions f)(x) are continuously differentiable up to the m-th order.

(ii) y = fY(x) is a one-to-one map from K onto a bounded domain in R} . f’
maps 0Q N K; onto a part of the domain in R, {y: yeR,; y, = 0} and
Q N K; onto a simple-connected domain in the half-space R; .
a(f({i), ...,f(j))
7 T

F denotes the transformation inverse to fY.

(iii)

+0 for xeK;;

Remark. If Q is a domain belonging to C™, then there exists a compact domain ,
@ < Q, with
N
(11) QcUKjvo.
j=1

i=

Domains 2 belonging to a class C™ are called domains with a C™-boundary.

1.1. THE CLASSES K{"') OF WEIGHT-FUNCTIONS

A weight-function is a function ¢(x) : @ — R, which is measurable, positive and
infinitely differentiable.

Definition. A weight-function ¢(x) belongs to a class K{™; me {1, 2, ...}, if:

1 ©
(1) o) e L*(Q),
(2 MEL‘”(Q), 0<|a‘ <m.

(x)
The classes K{™ are closed with respect to addition, multiplication and involution.
Now we specify the Banach spaces 4y, 4; and A, is Grisvard’s proposition:

We assume that Q is an arbitrary domain in R,, m is an integer and ¢(x) is a weight-
function. We set:

©) 4o = L(@), 4, =W;(Q)
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and
@) Ao = L(Q), A, =W}(Q),
respectively. In both cases we put:
(Au) (x) = o(x) u(x), D(A) = {u:ueLy(Q), pue L(Q)},
“Jlal = Ly, o(x)) -
Theorem. Let Q be an arbitrary domain in R,. Let the Banach spaces Ay, A,
and A, be given by (3).

For weight-functions ¢(x) belonging to K™ the conditions of Grivard’s proposition
are satisfied and for 0 < 0 < 1, 1 < p < o0 we have

©) (Lo(2), W;(Q) 0 L(R2, 9(x))e., = W5(2) 0 Ly(Q, o(x)) -

Proof. We prove the 4,-condition. First we show 1. (1), (4), (5), (6). For0 <t < oo
we put

A4, = [D(A)7

1
(Tu) (x) = o) + 1 u(x), D(I,) = Ly(Q).

1. (1), (4), (5), (6) are obvious, since

o

p

dx < cv[ |u|" dx, cindependent of ¢,
Q

tp + 1
and
) j ( 0 )”|u|» dx < <) j Juf? dx
o \tp + 1 o
are valid.

Thus, the A,-condition is satisfied with (1A + E)™' =1I,.
Secondly we prove the A4,-condition. We show 1. (2), (4'), (5), (6'). For 0 <t < o0
we put

® (1) () = oy o) DE) = W3(0).

Using the formula

© o (t<p1+ 1) -

_ Z tK;+...+K,. aal(P Ky _0""_({) Kn
Kia1+... ¥Knan=a| (t(P + 1)K1+...+K,.+1 ax:, e axz"
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(K4, ..., K,; ay, ..., a, non-negative integers) we get

w > ()

_c,:f fu[”dx-i— y y fD”’(——l )Dﬂzu
o o<lalsm pi+hr=a ) g to + 1

forue W'”(Q), where ¢ is a positive constant independent of ¢. Similarly,

(11) L iy D* (t(p u(x))

follows. Thus, the A,-condition is satisfied with (14 + E)™! = I,. Using

dx =

p
dx + Z

0<|a|sm J o

tp + 1

,,de < c|ullf,ma

dx < oft) ulli,

dx+ Z

O<[a|sm J o

(12) (L(2): L(2, ¢(x)))o., = L(2, o(x))
and
(13) (L(Q), W3 (@), = W;"(Q)

(cf. H. Triebel [16] Ch. 1 and Ch. 4, resp.) we get (5). If  is an integer, 1 < | < m,
then under the same conditions as in the Theorem, the identity

. (L,(Q), W3{(2) 0 L2, 9(x)s,, = W;(R) 0 L(@, ¢°)

Remark 1. An analogous theorem holds, if the Banach spaces 4,, 4; and 4,
are specified in the sense of (4). For the spaces (L,(RQ), Wh(2))s,» 1€{L1,2, ..., m},
we refer to P. Grisvard [5] or to Section 4.

Remark 2. For @ = R,, the functions ¢(x) = (1 + |x|?)"; # > 0, are examples
of weight-functions belonging to all classes K{™; m = 1,2,3,....

1.2. THE CLASSES K;"’) OF WEIGHT-FUNCTIONS

Let Q be an arbitrary domain in R,.

Definition. A weight-function ¢(x) belongs to a class K™, me {1, 2, ...}, if:

@ (p( 9 (Q),

2 for all 0 < [a| < m we have D¢ € L, with p, = n/|«|.

The classes K{™ are closed with respect to addition, multiplication and involution.

Theorem. Let Q be an arbitrary domain in R,. The Banach spaces Ay, A; and A,

346



are specified in the sense of 1.1 (3). The weight-functions ¢(x) belonging to K§™

satisfy the conditions of Grisvard’s proposition and for 0 < 6 <1, 1 < p < 0,
1.1 (5) holds.

The proof is obtained by Holder’s inequality and by the fact that for suitable
real numbers p, [, q, k the spaces W,(Q) are embedded in the spaces W5(Q). More

exactly, let Q be an arbitrary domain in R,. Thenfor0 <t < s < oand o0 > g =
2p>1,

() wi@) s wi@), s-"zi-",
p q
is valid.
Remark 1. Using the statement
(4). Mﬁ<q<w,M®C%M®+P@)M®,
o

we put Theorems 1.1 and 1.2 together as follows:

Corollary. Let Q be an arbitrary domain in R,. The spaces Ay, Ay and A, are
given by 1.1(3). Let ¢(x) be a weight-function satisfying

%) — e ”(Q),
<P(x)
(6) for every a, 1 < |cx| < m, there exists a number q,,
"
|od

Then Grisvard’s-conditions are fulfilled and 1.1 (5) is valid.

< g, S ©,

Remark 2. Remark 1.1.1 again applies.

Remark 3. We give an example of a weight-function ¢(x) belonging to all classes
KM m=12,....

We set Q= {(x,y):1<x<; 0<y<e™ and ¢(x) = . The function
¢(x) is a weight-function. For multi-indices o = (o, @) with o, % 0 we have

D?p(x) = e P, (x) with P\, a polynomial in x of degree || .
Thus, for 1 < g < oo,
—_D%

[ grrefe= ] trathara = [t e ax <o

)
is valid, so that ¢(x) belongs to all classes K3, m = 1,2,.... It is clear that ¢(x)
does not belong to any class K{”, me{1,2,...}.
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1.3. THE CLASSES K{™ OF WEIGHT-FUNCTIONS

Throughout this section Q is a bounded domain in R, with a C*-boundary. The
properties of such domains gave rise to classes K§”; me {1,2,...}.

Definition. Let Q be a bounded domain in R, with a C*-boundary; d(x) denotes
the distance from the point x € Q to the boundary dQ. The class K{”, me {1, 2, ...},
consists of all weight-functions ¢(x) satisfying

0 e 17(@),

o(x)
() forall 1< o <m, De d(x)'* e L°(Q) holds .
@

The classes K{™ are closed with respect to addition, multiplication and involution.
Next we give a statement without proof which we use throughout this section.

Lemma (Hardy’s inequality applied to domains). Let Q be a bounded domain in
R, with a C*-boundary. We assume that a natural number m and real numbers «
and p, 1 < p < o, satisfy « — mp + kp+ —1, k=0,..., m — 1. Then there
exists a positive constant ¢ and a domain w, ® < Q, such that

@) Ld(x)u—mv ()7 dx < J iy 3 D] ax s e L|u|v dx

holds for all functions u(x)e C*(RQ), for which the left integral in (3) converges.
(C=(Q) is defined as usual.)

Remark 1. We state a special case of this lemma:

Functions u(x) € W,',"(Q) satisfy the estimate

< clullw,me) -
Lp(2)

) |

d(x)"

Theorem. Let Q be a bounded domain in R, with a C*-boundary. The Banach
spaces Ao, A; and A, are specified by 1.1 (4). For weight-functions ¢(x) belonging
to K™ the conditions of Grisvard’s proposition are satisfied and

() (Ly(Q), W3(@) 0 L(2, )., = (L), W} (@))o,, 0 L(@, ¢°)
holdsfor 0 <0 <1, 1 < p < .

Proof. The proof of the Ay-condition is similar to that in Section 1.1. To prove
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the A,-condition we use Remark 1 and formula 1.1 (9), thus obtaining the following
estimate, for functions u(x) e W™(Q):

(®) .,ZJ o (wi 1)

écq [updx + ¥ Y j D"’( ! >D”’u
o O<l|a|sm B1+B2=a ) o tp + 1

where ¢’ is a positive constant independent of ¢.

p
dx £

P
dx) < lullw,me -

Analogously we estimate for the same u:

) D* (u,,(: lu) !

Lp(2)

< 1) ully,ma) < @,

la| Sm

where the constant ¢ depends on the parameter ¢.

Thus, the functions u(x)/(t ¢(x)+1) and (¢(x)/(t ¢(x) +1)) u(x) belong to W(Q)
so that Grisvard’s-conditions are satisfied. By means of 1.1 (12) we get (7). To de-
termine the spaces (L,(€2), W(®)),., We refer to P. Grisvard [5] or to Section 4 of
our paper. There we state Grisvard’s result.

Remark 2 (Examples of weight-functions belonging to K{™). Let Q be a bounded
domain in R, with a C®-boundary.

1. The functions ¢(x) = d(x)*, « real, « < 0, belong to all classes K{, m =
= 1, 2, ...; they belong neither to any class K™, m = 1,2, ..., nor to any class K{™,
m=12....

We assume that sup d(x) < 1. Then the functions ¢@(x) = In (d(x)), « < 0,

xef2
belong to all classes K¢ but not to any class K{™ or K{", m = 1,2, ....

Remark 3. The space W;"(Q) can be represented by the following intersection:
(10)  WmQ) = W(Q) n L(R,d(x)™™), m=1,2.., 1<p<ow.

Setting Ay = L,(Q), A, = Wj(Q)and (4u) (x) = d(x)"™ u(x), D(A) = L,(Q, d(x)™"),
the Ay-condition is proved immediately. The weight-function d(x)™™ belongs to the
class K§™, so that we would conjecture

(11) (Lo(Q) W3 (@)o., = W;*(@) 0 L(@, d(x)™") = W;°(2).

However, this is not true. The next section contains statements about the spaces
(L), W7(2))s,p; it turns out that the interpolation satisfies (11) for certain values
of 8, but not for all.
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1.4. SOME GENERALISATIONS

In this section we want to suggest in which way the above results can be generalized.

Remark 1. Theorems 1.1, 1.2, 1.3 are also true if the functor (-, *),,, is replaced
by a functor (*, *), 1 < g < 0. The spaces (L,(Q), L,(2, ¢))y, are the so-called
Beurling spaces (see J. E. Gilbert [2]). The spaces (L,(R), Wy/(2))s,, are the usual
Besov spaces (see H. Triebel [16] Sect. 4.3.1.).

This remark can be applied to all the following results. Pay attention to the question
whether the spaces on the right hand side in () are known.

Remark 2. Let Q be an arbitrary domain in R,. We put in 1.1 and in 1.2:
M) Ao =L@),
A, =W)Q), 1<q, p<ow; 05i1<ow; t—nfg= —nfp.
Let Q be a bounded domain in R, with a C®-boundary. We put in 1.1, 1.2, 1.3:
(i) Ao = L),
A2=I/I°/;(Q), 1<q, p<w; 0<t<ow; t—nlg=—n/q.
In (i) and in (ii) the operator A is the same as in Sections 1.1, 1.2.

In these cases Theorems analogous to Theorems 1.1, 1.2 and 1.3, respectively,
are true; the proof is based on the embedding assertions

Wi(Q) = L(Q), Wi(@) = L(Q),

which hold due to the assumptions on the domain Q and the parameters p, g and ¢
mentioned above.

For the real K-functor (-, *),, with

the spaces on the right hand side of the equation mentioned in Remark 1 are known.
We refer to Remark 1 and to H. Triebel [16], Section 4.3.

Remark 3. We obtain an essential generalisation of the above results to other
spaces by using the well-known interpolation property (see H. Triebel [16] Ch. 1).
The proofs of Theorems 1.1, 1.2 and 1.3 show that the operators (14 + E)~%,
0 <t < oo, acting in A, belong to L({4o, 4.}, {A4o, A,}). (This set consists of all
linear maps from A, + A, into A, + A,, whose restrictions to 4, and 4, are con-
tinuous maps in A4, and A,, respectively.) For operators belonging to this set the
interpolation property implies that their restrictions to F({Ao, 4,}) are bounded

350



operators. Thus provided the A,- and A,-conditions are satisfied, we obtain an
F({Ao, A,})-condition and

(Ao, F({Ao, A2}) 0 A2 = (Ao, F({40s 42)))o.g 0 (Aos A2)og
holds.

We give some examples: Let Q be a bounded domain in R, with a C*-boundary
or @ = R,. We denote by H;(Q), 1<p<oo, 0=s < oo, the usual Lebesgue
(Bessel potential or Liouville) spaces and by B; () the usual Besov spaces. We refer
to H. Triebel [ 16] for the definition, the basic properties and the following assertions:

1) l<p<oo; s=0,1,2,...; H}Q)=WyQ);
1-20 0

0<fO<1, £= 4+ —,
p Po Py

l<p<oo,

@)  [Hx(Q) Hy(@)] = Hy(Q)

0 <sp,5y <00, s=(1—0)so+ 0sy;

(3) (H(Q), H(2))e, =B, ,(2) 0<0<1, 1<p<o;
=(1—=10)s, + 0s,;
0<6<1,

s s s 059, s < ©, SogF5,
(4) (WPO(Q)’ W, (Q))H,q = Bp,q(Q) 1 < po’ q ; o, ? !

s=(1—=0)sy + Osy .

In (2) [.,.]o denotes the complex interpolation functor with parameter 0. If,
in addition, the parameters so, s; and s, fulfil s, — (1/p) = integer, s, — (1/p) *
=+ integer, s — (1/p) =+ integer, then, replacing H3(Q) by ﬁ;(!)), W3(Q) by I'IO/;(Q)
and B; ,(Q) by é;,q(g), similar formulas are true. Thus, we obtain analogous results
as in the sections above. We only have to replace W}/(Q) by H3(Q) = [L,(Q),
W)'(Q)]ym and by B} (2) = (L,(Q), W5(2))s/m.q respectively. Under the mentioned
conditions on the parameters the same holds for 4, = ﬁ;(!)) or A, = é;q(Q)

2. MULTIPLICATION OPERATORS IN WEIGHTED SPACES

In this section we get results of the type (x) in the case that the Banach spaces 4,
and A4, as well as the space A, are weighted Sobolev spaces. We consider two types
of weighted spaces; the spaces W,'(%, o) (the ewight-function is the same for all the
orders of differentiation) and the spaces W,"(Q; ¢*; ¢*) (the weight-function depends

on the order of diﬂ'erentiation). In both cases we get results of the type (*) for some
classes of weight-functions (described by growth-conditions as in Sections 1.1, 1.2
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and 1.3). We state the theorems without proofs, because these can be obtained by
obvious modifications of the proofs of Theorems 1.1, 1.2 and 1.3. Nevertheless, we
give the necessary definitions.

2.1. MULTIPLICATION OPERATORS IN THE SPACES W(,0)

Let Q be a domainin R,. Let 1 < p < oo and let m be an integer, m = 0. Then we
denote by W}'(2, o) the space consisting of all measurable complexvalued functions
u(x), which have measurable derivatives up to the m-th order belonging to L,(2, o).
The norm is given by

(1) lullw,ma,0 = (0<%<m”D“”"fp<n.a))”p;
VI(},',"(Q, o) denotes the closure of C3'(Q) in W2, o).
(2) We will consider only such spaces W;'(@, o) and VIO/I',"(Q, 0),

for which the interpolations (L@, 6), W,(2,0),, and (L2, o), I'IO/;‘(Q, ))o.q>
respectively, are well-known. This is true, for instance, for the weighted spaces con-
sidered by H. Triebel in [16], Ch. 3. In what follows we assume that the domains
considered satisfy the same conditions as those introduced in the reference just men-
tioned. Now we specify the spaces Ay, A; and A, of Grisvard’s proposition. Let
1 < p < o and let m be an integer, m = 0. Let ¢(x) be a weight-function.

(3) 4o =L, (R, 0), A, =W (Q0),
(Au) (x) = o(x) u(x), D(A) = {u:ueL(RQ,0), pue L(2,0)},
Ay = [D(4), |- = Ly, 09).
(3) 4o = L(2,0), A,= W;,"(Q, 0); the operator A is the same as in (3).
Theorem 1. Let Q be a domain described above. The Banach spaces Ay, A and A,

are given by (3) or (3'); we assume (2). For weight-functions ¢(x) belonging to the
class K§™ (cf. Sect. 1.1) Grisvard’s conditions are fulfilled. Thus,

“ (L2, 0), L,(2, 0¢) 0 W;X(R, 0))o,, =
= (LP(Q’ g. (po) n (LP(Q’ 0'), W' (Q’ 0))9,0

or
(5) (LP(Q’ a’), Lp(g’ a(p) N W: (Q’ G))B.p =

= Lp(g’ g. (/’0) N (LD(Q’ a), Vf/:' (Q’ a))ﬂ.p >
respectively.
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We assume that B (Q, o) = (L(2, 6), W;(2, 6))sm.,
that the spaces B; (2, o) satisfy the embedding assertion

with s = (1 — 6) m and

6) for 0<t<s and ww>qg2p>1, B;,(Q0)c B,(20);

v

t._

oS BN
LS

Examples of such weighted spaces are given in the next section. (6) is true, for in-
stance, if o(x) belongs to the class K{, s < m.

Theorem 2. Let Q be a domain in R, described above. The Banach spaces Ay, A,
and A, are given by (3); we assume (2) and (6). For weight-functions ¢(x) belonging
10 K™ (cf. Sect. 1.2), (4) holds.

2.2. MULTIPLICATION OPERATORS IN THE SPACES W7(<; 2% 0"

Let Q be a domain in R,. If 1 < p < oo, then by L{"(Q) we mean the spaces,
consisting of all complex-valued locally p-integrable functions u(x). Outside Q these
functions are continued by zero. C*(Q) denotes the set of all complex-valued in-
finitely defferentiable functions in Q. By ¢(x) we denote a weight-function mapping Q
into R,, which satisfies

) [Ve(x) < ¢ ()
and

(2) for each positive number K there exist numbers ¢x > 0 and rg > 0 such that
o(x) > K provided d(x) < g or |x| = rg, xe Q.

We introduce the space W,(; ¢*; ¢*) and refer to H. Triebel [16], Ch. 3 for details.
Definition. Let Q be an arbitrary domain in R, and g(x) a weight-function in the

sense of (1) and (2). Let p, s, u and v be real numbers with 1 < p < o0, s = 0 and
v = p + s. Then we put

(3) W(2; 0" @") = {u :ue Ly(Q);

u an‘(!l;e“;e") =

=[[(Z el + e oy ax] < o)

0 lej=m

fors=0,1,2,...; for s = 0 let u = v; WYQ; ¢*; 0") = L,(2, ¢*)
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and

4 Wi(Q; ¢*; 0") = {u ue Lpi(Q); |

u ” Wps(Ri04350%) ~

= [.[ axe |a|z=:[s]!9u(x) DaTixl;lf:((sy}z Du(y)” 4 4 v+ j QQW(X){“(X)I" dx]1/p< OO}

for 0 < s % integer, s = [s] + {s}, [s] integer, 0 < {s} < 1.
We introduce an equivalent norm in W;(.Q; 0" Q”): Let the assumptions of Defini-

C ]

tion 1 be fulfilled. Let further 0 £ t £ s and

s —t

t s —1
to=podve— = pk (=)
N N

Then

(5) (“uu;p‘(ﬂ:e“;g"))p = (“u“Wp’(Q:e“;eV))p +| IZ[ IJ Qx“""(x) D"‘u(x)]p dx
a| =[s 0
defines an equivalent norm in W(Q; ¢*; ¢").
Definition 2. Let Q be a bounded domain in R,. Let ¢(x) be a weight-function

in the sense of (1) and (2) for which, in addition, the identity ¢~ '(x) = d(x) holds
near to 0Q. Then wesetfor1 < p< c0,s 2 0andv < pu + s:

© w30 50) = fuwe L) by =

[z

if 5 is an integer. For s = 0 we put p = v : #'5(Q; ¢*; ¢*) = L(2; ¢*)

DU + () [u(x)”) dx]”"< o}

while
(7) W;(Q; Q"; Qv) = {u ue L;’OC (Q)’ "u“Wps(ﬂ;e“;e") =
0*(x) D*u(x) — o*(y) D*u(y)|"|/»
[y 12D = IO ), e < o0
axqlel=1s] |x = y"*

for s = [s] + {s}, where [s] is an integer and 0 < {s} < 1.

W5(Q; ¢*; ¢”; denotes the closure of C*(Q) in #75(Q; ¢*; ¢”) and by W;(Q; 0", 0")
we mean the closure of C§(Q) in #'3(Q; ¢*; @)

We note that (5) holds as well. Now we state embedding assertions analogous to
the statements 1.2 (3) and 2.1 (6).
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Proposition. (i) Let Q be an arbitrary domain and o(x) a weight-function in the
sense of (1) and (2). Let t, g, p, s, p and v be real numbers with

v

s2t20, co>qgzp>1, s—

, v>pu+s.
Then

(8) Wi(@;0"0") € WA 0% 0% with x=p and ©=p (S - t) + vt
s
(ii) Let Q be a bounded domain in R, with a C*-boundary and let ¢(x) be a weight-
function in the sense of (1) and (2) for which, in addition ¢~ *(x) = d(x) holds
near to 0Q. Let t, q, p, s, i and v be real number with

s=z2t=20, ow>q=p>1, s—-'—1>t—y.
p q
Then
) W;(Q;Q“;Q”)EW;(Q;QX;Q') with y=p and ©<y+t.

(iii) Let the assumptions of (i) be satisfied. Further, let

{S}:t:l, u+s:§:1+k with k=0,17-"’[s]—1’
4 p

{t}#l, x+t=l=l+l with 1=0,1,....[f] —1.
P 14

Then (9) holds for

%
|

LSTRIS
QS

After these preliminaries we formulate

Theorem. (a) Let Q be an arbitrary domain in R, and o(x) a weight-function in

the sense of (1) and (2). If 1 <p <0, © >s2pu, v>p+s and if ¢(x)
is a weight-function, we put:

Ao =L(20), A =Wi(@2e4e), (4u)(x) = o(x)u(x),

D(A) ={u:ueL(Q,¢); oueL(Q0¢"),

Ay = [D(A4), [-]a] = L2 ¢%9).-

For functions ¢(x) belonging to a class K{" with m 2 s, Grisvard’s conditions

are satisfied and
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(10) (L(Q, @), L(R, ") 0 Wy(2; 0" 0"))s, =
= L(Q, 0"9°) 0 W¥(Q; 0% 0")
holds with © = 0(u — v) + v.

(b) Let @ = R, be an arbitrary domain and let o(x) be a weight-function in the
sense of (1) and (2). Let the Banach spaces Ay, A; and A, be the same as in (a).
For weight-functions ¢(x) belonging to a class K§™ which m 2 s, (10) holds.

(c) Let Q be a bounded domain in R, with a C*-boundary. Let o(x) be the same
weight-function as in Definition 2 and let ¢(x) be a weight-function. If p, s,
i and v are real numbers with 1 < p < 00,0 =<5 < oo, v < pu + s, {s} * 1/p,
p+s*(1/p)+ kfork=01,...[s] — 1, we put:

Ao = L(Q,0"), Ay =WQie%e), (Au)(x) = o(x)u(x),
A = L,,(Q, Q“(p) . ‘

For weight-functions ¢(x) belonging to a class K§” with m 2 s Grisvard’s
conditions are satisfied and

(11) (L2, @), L,(Q. ¢"0) N W(Q: 0" "))y =
= L(Q, ¢"0") 0 W,(Q; ¢*; ")

Remark I. In the case that the conditions of (c) are satisfied we can replace in
(a) and (b) the spaces W3(Q; o*; 0*) by W3(Q; 0"; ¢*), so that an analogous formula
to formula (10) holds.

Remark 2. Using the same argument as in Section 1.1 we put the statements
(a) and (b) together obtaining the following

Corollary. Let Q be an arbitrary domain in R, and o(x) a weightfunction in the
sense of (1) and (2) Let Ay, A, and A, be the same Banach spaces as in Theorem
(a). Let ¢(x) be a weight-function satisfying

(1) — e L*(Q),
¢(X)
(2) forall1 £ Ia! < m there exist numbers q,, n/[oz| < g, £ o, such that

D(’DeL Q).

Then (10) holds.
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3. THE INTERPOLATION (W (L2, ap), W(2,01) N W;(Q, Go)g,py r = m

In this section we describe the spaces
(1) (W(Q, 00), WH(Q, 0,) 0 W)(Q,060))s,, r m integers,
rzmz=0,

for certain classes of pairs (ao(x), o(x)) of weight-functions. First we present some
preliminaries.

3.1. THE SPACES (W3(R, 0g), W5 (2,061)),,

Let Q be an arbitrary domain in R, and let o(x) and o(x) be weight-functions.
For m =0,1,2,... and 1 < p < o the spaces W,"(2, o) are defined as in Section
2.1. Favini showed in [1] that the spaces (W,(2, o,), W, (2, 0,)),, satisfy the
embedding assertion
(1) (W2, 00), W(2,01))p, S W(R,05), 0<0<1,

l<p<o, gy=05%".

We will show that under certain growth conditions on the pair (o(x), o4(x)) of
weight-functions the inverted embedding holds as well. To this aim we need a pro-
position from the interpolation theory of positive operators; for the proposition we
reter to H. Triebel [16], Ch. 1.

Definition. Let A be a closed operator acting in A with a dense domain of definition
D(A). The operator A is said to be positive, if (— o0, 0] is contained in the resolvent
set of A and if there exists a number ¢, ¢ = 0, such that

2) u(A—tEr‘uéﬁM; te(—o,0].

(An equivalent inequality to (2) is [[(14 + E)™*| < ¢/(1 + 1), 1€ [0, o).

Proposition. Let A be a positive operator acting in A. Let m be a natural number,
0<6<1,andlet1 < p < . Then

(3) (4 DAy, = {a:aeAla]* = [[AA + tE)']" a0 < o}

is valid, when putting

@ 1O = ([ 101 )

with the usual modifications for p = 0.
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After this preliminaries we present

Theorem 1. Let Q be an arbitrary domain in R, and let m be a natural number.
We assume that 1 < p < oo and that a(x) o,(x) are weight-functions satisfying

) D“(ﬂ>§cﬁ, 0<|d <m,
oo oo
and
(6) e 12(Q).
[

Then the operator (Au)(x) = (o4(x)/oo(x)) u(x), D(A) = {u:ue W) (2, 0,),
(01/00) u € W'(Q, 6,)}, is a positive operator acting in W;'(Q, o). Further, D(A) =
= W;"(Q, 1) up to equivalent norms and for 0 < 0 < 1,1 < p < o, the following
identity holds:

() (W@, 7). W@, 01)), = W(Q, 0), where 6, = 0b~% .
Proof. First step: We show that D(A) = W,"(@, o). The inclusion D(A) =
S W(Q, oy):Let u(x)e D(A) = {u :ue W) (Q, a,), (01]00)ue W, (Q, o)}, which

is equipped with the norm
o Jl P 1/p
e I (N
%0/ llLy(2.00)
01

@®) D <ﬁ u> =D Dyt Y (D <—> D" u
o Oo 71z 1 Ty

is valid. Consequently,

0<|al<m

Then

”“”wp"-(n,a,) = ) “Da“”fpm,m) =
O=|a|sm

o p

= ¥ DUl 0., + Y |- Du =
0<jal<m A laj=m || Lo(2,00)
o V4
= Y |pulf e, t e X Da<—1“ +

O0=<|a|=m—1 S la|=m (o) Ly(2,90)

p
=

LP(Q,UD)

+c Y D’(ﬁ)D“_’u
I71z1 )

p
Da(ﬁu) e Y [Dullem -
Op Lp(2,00) O0=|a|sm—1

<)

lal=m

1A

By iteration we get [|ul|y,mo.0,) < ¢|tt]nca), Where c is a positive constant.
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The inclusion W;'(2, o,) € D(A):
We have to show

p
D* glu
Oo

Lp(R,00)

14
D* —qiu
0o

Lp(2,00)
’ < 1)
() D* 'y 04

) l

< e uX)h o0y, OS o Sm, ueWHQ 0,).

Using (8) we have

(10) }

< | Du[f 2.0, +

p

|

+e ) Sc ), ||Dy““L,,<Q,ax) = c““”Wp'“'m,mr
Izt |

5 0sysla
|
%o {lLp(2.00)

% ‘T"j
Second step: We recall Theorem 1.1. The properties (5) and (6) of a,(x)/o¢(x)
correspond to the properties 1.1 (1) and 1.1 (2) of a weight-function ¢(x) belonging
to a class K{™. Thus, the proof of the positivity of the operator A is obtained by
obvious modifications of the proof of Theorem 1.1.
Third step: To show

(W7(@ 00), (2, 01, = W(2,057%)

The inclusion (W' (2, 0,), W (2, 61))s,, S W,'(Q, 65 °0}) was proved by A. Favini
[1]. We show the converse inclusion. Using the above Proposition we have to show

that any function u(x) e W;(Q, o5~ %") satisfies

(11) ue Wn(Q, o),
* - dt ,

(12) J‘ Pl AA + tE) ulf .00 " < cl|ullf mo,01-0010) -
0

For an arbitrary function u(x) e W(Q, 65~ 6}) we have

(13) LIao D*u

0p
Pdx = j la})_ea‘i D“ui” <?> dx = c“D“u”{p(Q,,Ol_aﬂs)
o 1

so that u(x) belongs to W, (2, o,).
To show (12) we write the integral on the left hand side as

oy P
0
Jv ey p7| 2o u g
0=|als o t
o Oslalzm L+t
| \oo |Lo(2,00)
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We consider only two summands. First summand: o = (0, ..., 0) = a,;

B
o0 |
f or ||_%0 u‘ dr _
1
o t
0 j_l + t 4‘
i;”o [1Lp(2,00)
| 1 1l I
o [
1 1‘ (*oo |
o f dt Il o | dt
=J t””! 0 u + | L— <
o [ [
° 4+ | Tt
("0 'Lo(2,00) %0 |Lp(2,00)
| o, p
1 o
dt o dt
0 0 0
< j Olulyonm S + [ e Ys
0

AN1-0+¢
1 1 0—¢c
I<——> t
I\%o Lp(2,00)
£ 14
g, -
—2) 627 %%u
0y

Lp(R)

dt
— = Cz““”ipm,ao'-“aﬁ’) )

0
éwmww+jwp
1

where ¢ is a suitable real number,
0<e<@.

Second summand: a = (0, ..., 0, 1) = oy;

o\ (xa (1) ’
(14) fwz”v S ; dr o f | |29/, +
o |%alon | Eodo 19y
%o Lp(2,0) Il 90 Lp(2,00)
[ i(ﬁ) I i" o I
Jezmle) e o a
K (ﬂ+t)2 Ty P !
%o o200 llo0 Lp(2,00)

With the aid of the above decomposition of [0, o) and using the properties (5)
and (6) of 6,(x)/oq(x), we further estimate (14) and get the desired result. In the same
way the summands

|
| o\

1 | |
o dt
f 197 | D> [ ul bt
o t

0 <+t

To ||Lp(2,00)

with o % «,, &, can be estimated, so that the theorem is proved.
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Remark 1. From the second step in the proof we deduce an embedding assertion
for weight Sobolev spaces:

Corollary. Let Q be an arbitrary domain in R,. Let m be an integer and a(x)
a weight-function with

P—aqel_.‘”(Q) for 0<|ocl§m.
o

Then
Wi, o) = Wi(Q. )
holds provided o >qzZp>1,0=1<s=<m< o and

n

q

(1%
|

s —

ST

Proof. Let us assume that s is an integer. Then u € W3(®, ¢) implies that ou €
€ W;(Q). The embedding assertion 1.2 (3) for unweighted Sobolev spaces implies
that ou e Wi(Q), so that u e W,;(Q. ¢). By means of interpolation we extend the
result to real values s, s ¥ integer.

Remark 2 (Examples). All weight-functions ¢o(x) and o,(x) (in the sense of
Section 1.1) whose quotient ¢,(x)/oo(x) belongs to a class K{™ are examples of
pairs (oo(x), o4(x)) of weight-functions in the sense of Theorem 1. So we refer to
Remark 1.1.2.

After these preliminaries we formulate
Theorem 2. Let Q be an arbitrary domain in R, and let 6(x) and o,(x) be weight-

functions satisfying (5) and (6). For 1 < p < oo, natural numbers m and r, r > m,
we put Ay = W(Q, 0,), A, = W,y(Q, 0y),

(Au) (x) = :;—8 u(x), D(A) = {u e W@, 00), L ue W, o).

Then

(15) Ay = [D(4), [-]] = W;(@, 01),
Grisvard’s conditions are satisfied and

(16) (W@, o), Wy (2, 1) 0 W(Q, 00))s,, =

= W(Q, 65 %0%) 0 (WJ(Q, o), Wi(2, 00))e,p -

Proof, (15) follows immediately from Theorem 1. The A,-condition and the A,-
condition can be proved in the same way as the positivity of the operator A4 in Theo-
rem 1. Hence
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(17) (W@, a0), Wp(Q, 01) 0 W(Q, 00))s,, =
= (W;(2, a0), Wp(R, 61))o., 0 (W;(Q, 70), Wy(R, 00))s -

The first space on the right hand side of (17) is described in Theorem 1, for the other
we refer to H. Triebel [16], Sec. 3.3.

4. EXAMPLES AND COUNTER-EXAMPLES OF THE NON-COMMUTATIVE
INTERPOLATION

H. Triebel in [15] gave examples and counter-examples to (x), obtained indepen-
dently of all the general results mentioned. We extend this result to the spaces intro-
duced by P. Grisvard in [5] and [6], but we use the version of H. Triebel [16],
Ch. 4. The spaces under consideration are spaces between W,"(Q) and ﬁ’","(Q) and are
determined by differential operators. They are of interest in the theory of differential
operators.

Next we give without proof some statements we use throughout this section. We
refer to P. Grisvard [5, 6] and to H. Triebel [16], for details and for proofs.

Let Q be a bounded domain in R, with a C*-boundary. Let d(x) be the distance
from x € Q to the boundary 9Q. Then we denote by L, ,(2) = L, , the space

1/p
1) £f®) = (0l = ([ a7 o ax) < o
2]
We define spaces W;((Q), characterized by boundary conditions.

Definition. Let Q be a bounded domain in R, with a C*-boundary. Further, let
1<p< o, 0<6 <1;let mbe an integer and [ =0,1,2,....

(a) Let us assume that mf — (1/p) + j for each number j; j = 0, 1, ..., I. Then

) (L(Q), W (Q))s,, = W,D(Q) .
(b) If there is k € {0, ..., I}, such that k = m6 — (1/p), then
@ (L(Q), W, (@), =

= {u ‘ue W;"“”(Q)j d(x)~ |Du(x)Pdx < o0 Ve, | = k} :
Q .
Remark 1. We give another formulation of the statements (a) and (b):

(@ () for1=0,1,2,... and fe (0, i) we have
pm

() (L), W (@), = W;(2) 5
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(ii) for I<m —1 and 06(1+rp,1+(r+1)p>,r=0,...,l—l,

mp mp
or
96(1 + rp, 1), r =1, we have
mp
© (L W@, = {u:ue WD), Du(x)eo = 0, |4 S 7
(iii) if 12 m —1 and 0e<1+rp,,mn<hliiiiiﬂv>,
mp mp
r=0,...,m — 1; then (6) again holds;
(b) for 6 = l—k—rp’ r=0,...,min (I, m — 1), we have
mp
(7) (Lp(‘Q)’ me“)(g))e,p = {u ‘ue W:O(Q)’ D“u(x)lm =0,

lo| <7, Du(x)eL, ) |of =1} .
Further, we need two well-known assertions:
(8) For 1 < p < o0, 0 <6 <1, v real, the identity (L,(R), L, ,)s,, = L, 4, holds.
(O) For1<p<o,0<0<1, m=0,1,..., (L(Q), WJ(2), = Wo(Q) holds.

We also need the following

Lemma. Let Q = R, be a bounded domain with a C*-boundary.

(a) Let 1 < p < o0, let m be a natural number and | an integer, 0 < 1 < m — 1.
Then WyP(Q) = W(Q) n L, , holds provided v satisfies —m < v, —(I + 1) —
—1/p<vs —1-1/p

(b) For 1/p <s <1 and —s £v £ —1/p we have
W (@) = Wy(Q) = Wi(@) 0 L.,
for 0 < s < 1/p we have
WiQ) = Wi = Wi = W L,, with —s<v.
Remark 2. Combining the statements (a) and (b) of Lemma we conclude: Let
1 <p<oo, let s be a positive number, s = [s] + {s}, [s] = integer and 0 <

< {s} <1, then for I =0, ..., [s] — 1 the identity W;(Q) = W3(@) n L, holds
provided v satisfies
—(l+1)—-£<v§ —-l—l, —s<v.
p p
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If s=[s] + {s} with {s} > 1/p, then W;TD(Q) = w3(Q)n L,, for v satisfying

—S§V§n[s]—1.

Remark 3. The interpolation couples (4,. 4,) and (Ao, A,) always satisfy
(Ao, A3 N Az)s,, S (Ao, A1) 0 (Ao, Az)s, because max (K(t, a; Ao, A4y),
K(t, a; Ao, 43)) < cK(t, a; Ay, Ay 0 A3), ae Ay + (4; N A,), where K(t, a; Ay, A)
is the K-functional of the real K-method:

K(t, a; 4o, A1) = inf (Jaollag + tar]ls), aedo+ 4,
a=ap+a;

ageAg,a1€4

Remark 4. For 0 < s < 1 and max (—s, —1/p) we have
Wi(Q) = Lx;,v .
After these preliminaries we can formulate

Theorem. Let Q be a bounded domain in R, with a C®-boundary, d(x) denotes
the distance from x € Q to 0Q. Let 1 < p < oo and let m be a natural number.

(a) Let v be a real number satisfying either v < —m or v > —1/p. Then

(10) (Lp(Q)’ W:‘(Q) N Lp,v)ﬂ,p = (LP(Q)’ W;"(Q))O.p n (Lp(‘Q)’ LP,V)"JJ
provided 0 < 0 < 1.

(b) Let max (—(I + 1) — (1/p), —m) <v < =1 —(1/p), 1€ {0,....,m — 1}.
(i) In addition, let there exist numbers k, ke {0, ..., 1 — 1}, with

<—(1+kp)mp‘
1+ (k+1)p’

let ko denote the maximum of these numbers. Then (10) holds for

0e 0,—1—>u[—~i, 1+p)u[—1—-p’ Lﬂ)u
mp pv mp pv mp

e N e

pv mp pv

(ii) If there do not exist numbers k described in (i), then (10) holds for

ee[o,i>u[1ﬂ’, 1):12.
mp D
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(c) Under the same conditions on v as in (b) (i) or in (b) (ii), (10) does not hold for
0e(0,1)NJ; or 0e(0,1)\J,, respectively ;

(a) and (b) give examples of non-commutative interpolation while (c) gives a counter-
example of non-commutative interpolation.

Proof. First step: for v < m we refer to H. Triebel [7], Sect. 3.4.2. In virtue
of (8), (9) and Remarks 3 and 4, formula (10) is immediately clear for v > —1/p >
> —1.

Second step: We prove (b): Let
max(—(l+ 1)—1,—m)<v§ —l—1 , 1e{0,...om— 1} .
p p

Using (5), (8) and (9) and Remarks 3 and 4, we find that formula (10) holds for
0 < 6 < 1/mp not only for (b) (i) but for (b) (ii) as well. If (=1 — Ip)/yp < 0 < 1,
we obtain on the left hand side in (10)

(L(Q), W(Q) A Ly o, = Wy(Q) 0 {u : D?usq = 0; o] < 1}

There we used the facts that W;'(Q) n L,, = W;?(Q) and (-1 — Ip)/vp >
> (1 + Ip)[mp and therefore Proposition (a) and Remark 1 (ii), (iii) are applicable.
Further, v < —(1/p) — 1. Thus, using (8), (9) and Remark 2, we conclude that the
right hand side of (10) equals the left hand side. This proves (10) not only for (b) (i)
but for (b) (ii) as well. Now, let the assumptions of (b) (i) be satisfied and let

ikl PRl G )
vp mp
For the left hand side of (10) we obtain because of Lemma (a) and (b):
(L5(Q), W;(Q) 0 L, )., = (Ly(Q), Wy (Q))s, =

= W(Q) A {u: Du

=0,..,1—-1.

L-Q=0Voc,0§|oc‘§r}.
For v we have

—(1 + kp)m <_(1+(k-1)p)m< . m
(1 + (k+1)p) 1+ kp B T

and so

—1——rp<1+(r+1)p
vp m ’

=0,... k.

The relations m@ > r + (1/p) and Ov < —(1/p) —r, r =0,..., ko, are always
satisfied. Thus, using (8), (9) and Remarks 2 and 3, we conclude that the left hand
side of (10) equals the right hand side.
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Third step: We prove (c): Let
_1+rp
mp

in the case (b) (i) and = 0 in the case (b) (ii). Using the statement (a) of Lemma
and (7), we obtain for the left hand side in (10):

(LP(Q)’ me(g) N Lp,v)(?,p = (Lp(Q)’ W;(l)(g))ﬂ.p =

0 with r=0,...,k

= Wr(Q) n {u:Dulg=0; |o| <r; DueL, _,,; |of =1}.

With the aid of (8) and (9) we obtain on the right hand side of (10) the space W,"(Q) n
A L, g,, Where v > —(1/p) — r; thus, this space is different from (L,(R), W;"(Q)), -

Now, let

1+ o —l=rp P =0,k
mp vp

in the case (b) (i).

On the left hand side in (10) we obtain as above

(L), W7'(Q))5.,, = W(Q) 0 {u :D"ulaQ =0; |oc| <r}.

Because of Ov > —(1/p) — r and m0 > r + (1/p) this space differs from the space
on the right hand side.

Now, let
1+(k0+1)p<0<—1—lp
mp mp
in the case (b) (i), and
_i_ < 0 < _1‘—2
mp mp

in the case (b) (ii).
Then v > —((1/p) + (ko + 1)) in the case (b)(i) and 6v > —1/p in the case
(b) (ii). The space arising on the left hand side of (10) in the case (b) (i) is a subspace of

W(Q) o {u: Dulsq = 0; |of < ko + 1}
while in the case (b) (ii) it is a subspace of
WQ) o {u s uoq = 0}

The spaces arising on the right hand side of (10) are not subspaces of this space,
which proves (c).
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