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Czechoslovak Mathematical Journal, 31 (106) 1981, Praha 

ON VALUE SELECTORS AND TORSION CLASSES OF LATTICE 
ORDERED GROUPS 

JÄN JAKUBIK, Kosice 

(Received November 7, 1979) 

In this note we will investigate a problem proposed by J. Martinez [7] on the 
relation between value selectors and torsion classes of lattice ordered groups. 

1. PRELIMINARIES 

We shall use the standard notation for lattice ordered groups (cf. Conrad [1] and 
Fuchs [2]). The group operation will be written additively. 

The system of all convex /-subgroups of a lattice ordered group G will be denoted 
by c{G); this system is partially ordered by inclusion. Then c(G) is a complete lattice; 
the lattice operations in c{G) are denoted by л , v . 

In what follows we shall consider objects belonging to some type of the follo­
wing hierarchy: 

1) lattice ordered groups and their elements; 
2) classes of lattice ordered groups; 
3) classes of classes of lattice ordered groups. 

Let ^ be the class of all lattice ordered groups. Let Л be a nonempty subclass 
of ^ . Consider the following conditions for Ä: 

(a) If G e ^ and if [Hj^^j ^ An c{G), then V^/ H^ e A, 
(b) If GeA and He c{Gl then H e A. 
(c) A is closed with respect to homomorphisms. 

The class A is said to be a torsion class, if it satisfies (a), (b) and (c) (cf. Martinez 
И ' M ' W ' ^ different terminology (using the term 'hereditary torsion class') has 
been applied in [4], [8]). Each variety of lattice ordered groups is a torsion class 
(Holland [3]). 

Let Г be the class of all torsion classes; T is partially ordered by inclusion. Then T 
is a complete lattice [5]. Several properties of the lattice Twere established in [5], [9]. 
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2. VALUE SELECTORS 

The notion of a values selector was introduced in [7]. Let us recall some definitions 
and results concerning this notion. 

Let G E^, X G G. A convex /-subgroup of G maximal with respect to the property 
of noncontaining x is called a value of x. A convex /-subgroup of G is said to be 
a value if it is a value of an element of G. Let MQ(G) be the set of all values of G. 

A value selector is a function M assigning to each lattice ordered group G a subset 
M(G) of MO(G) such that the following conditions are fulfilled: 

(1) If Я G c{G), then M{H) = {C n H : С e M{G) and С ф Я}. 
(2) If X is an /-ideal of G, then M{GlK) ^ {CJK : С G M{G) and С ^ K}. 

(Of course, we also assume that the mapping M is defined intrinsically, i.e., if (p is 
an isomorphism of a lattice ordered group G^ onto a lattice ordered group G2, then 
M{G2) = {(p{C):CeM{G,)}.) 

Let Ml and M2 be value selectors. We put M^ ^ M2 if Mi(G) ^ M2(G) for each 
lattice ordered group G. Let [Mj,gj be a family of value selectors; we define M^^G) = 
= Пш Mi{G) and M2(G) = U/e/ ^ti^) for each G e ^ . Then M^ and M2 are value 
selectors, and Mj = Aie/ ^ n ^ 2 = Wtei ^i- . 

Let M be a value selector. We denote by T{M) the class of all latice ordered 
groups G such that M{(J) = MQ(G). For each torsion class A and each G e^ WQ put 

^^(G) = {Я 6 Mo(G) : v4(G) ф Я} , 

where ^(G) is the join of all convex /-subgroups of G belonging to A. 

Then we have (cf. [7]; Lemmas 1.1 —L3): 

2.1. Lemma. For each value selector M, Т(М) is a torsion class. 

2.2. Lemma. For each torsion class A, A^ is a value selector; moreover, for 
G E"^ we have G E A if and only // v4^(G) = Mo(G). 

2.3. Lemma. If A is a torsion class and M is a value selector, then T(M)^ g M 
and Т(Л^) = A. 

The following problem has been proposed in [7] : 

'The function M -> Т(М) preserves arbitrary intersections. But it is unknown 
whether it also preserves joins. It would be of interest to know it, for it would shed 
light on the following question: If Л is a torsion class, is there a largest value selec­
tor M such that Т(М) = Al There is always a smallest, namely A^. In view of the 
inequality in 1.3, the author doubts that it preserve joins.' 
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3. THE MAPPINGS 5i AND ^2 

Let Ge^ and X ^ G. We denote X^ = {geG :\g\ л |x| = 0 for each x e X]. 
If we consider several lattice ordered groups then we sometimes write X^^^"* rather 
than X^. It is well-known that X^ is a convex /-subgroup of G. 

The following lemma is easy to verify. 

3.1. Lemma. Let 0 < x e G and suppose that the interval [0, x] is a chain. Then 
{x\^^ is a linearly ordered group. 

3.2. Lemma. Let 0 < x e G and suppose that the interval [0, x] /5 a chain. Then x 
possesses a unique value В + {хУ, where В is the value of x in {x}^^. 

Proof. Put {x} '̂̂  = A and let {v4j,gj be the set of all convex /-subgroups of A 
such that хфА1. Denote В = Vieler The fact that the system of all convex /-
subgroups of a linearly ordered group is linearly ordered and 3.1 imply that В is 
the unique value of x in A. 

We set {x}*̂  = C, В + С = D. Clearly С = A^. Hence we obtain by a routine 
calculation that D is a convex /-subgroup of G. Moreover, D is a direct sum of its 
/-subgroups В and C, and Б v С = D is valid in the lattice c(G). We also have 
хф D. 

Let D^ be a convex /-subgroup of G with x ф D^. Let () ^ d^e D^. Then x -^ d^. 
Denote x A di^ = y, —y-\-d^—-z, — j + x = y^. We have z ^ 0, 0 < j^i ^ x 
and Vi л z = 0. This and the fact that A is linearly ordered yields a л z ~ 0 for 
each 0 ^ 0 e Л. Thus z e A^ and hence d^e D. Therefore Di ^ D, which completes 
the proof. 

If / is a linearly ordered set and if Gj is a linearly ordered group for each i el, 
then Tjgj Gi denotes the lexicographic product of the system {Gj ( i e / ) (cf., e.g., 
Fuchs [2]). 

Let N be the set of all positive integers and let P = {p^} {n e N) be the set of all 
primes. Further, let RQ be the set of all rational numbers (with the natural linear 
order). 

Let / be a one-to-one mapping of the set RQ onto N and let R^, R2 be infinite 
subsets of RQ such that (i) JR^ n R2 = Ф, Ri и R2 = Ro^ ^^^ (ii) both R^ and R2 
are dense subsets of RQ. For each x e RQ let K^ be the set of all rational numbers of 
the form lp~^, where n = f(x), m EN and / is any integer. We consider K^ as an 
additive group with the natural linear order. If x, y e RQ are distinct, then the linearly 
ordered groups K^ and Ky fail to be isomorphic. We denote by HQ the class of all 
lattice ordered groups H that can be expressed as 

(3) Я = Г , , , Я , , 

where 
(i) / is a convex subset of RQ; 

(ii) for each / G / , Hi is isomorphic with К^. 
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From the definition of HQ it follows that if X is a homomorphic image of a lattice 
ordered group H belonging to HQ then either К belongs to HQ or К = (0}. The 
same is valid for each convex /-subgroup of H. 

Let Я G HQ be as in (3) and let 0 < ^̂  G Я. Let us denote by /^ the least / G / with 
6f(f) Ф 0. If IQ E Ri (/ G {1, 2}), then the element g will be said to be of type R^. 
Let Ri{H) be the set of all elements of H which are of type Ri (/ = 1, 2). We have 
Ri[H) n R2{H) = 0. If Ф is an isomorphism of Я onto a linearly ordered group 
H' G HQ, then (p{Ri{H)) = Ri{H') {i = 1, 2). 

An isomorphism (p of a lattice ordered group G^ into a lattice ordered group G2 
is said to be convex if (p{Gi) is a convex /-subgroup of G2. Let G be a lattice ordered 
group and 0 < X G G. The element x will be called of type R^ if there exist H G HQ 
and a convex isomorphism cp of H into G such that x e cp{H) and ф"^(х) G RI{H). 
Let ^i(G) be the set of all elements of G which are of type i^^. The set i^2(G) is defined 
analogously. Then Ri{G) n R2{G) = 0 is vaHd. Moreover, 3.2 implies that each 
element x G RI{G) U R2{G) possesses a unique value VQ{X) in G. We put 

s,{G) = {t;^(x) : x e R,{G)} , 52(G) = {i;,,(x) : x G i?2(C )̂} • 

3.3. Lemma. The mappings s^ and S2 fulfil the condition (1). 

Proof. Let G be a lattice ordered group and let Ĝ  be a convex /-subgroup of G. 
We have to verify that s^{Gi) = {C nG^ :Ce Si(G) and С ф G j . 

Let Cj G 5i(Gi). There is x G ^i(Gi) such that C^ = %^(x). Let В be the convex 
/-subgroup of ^xY^^^^^^^^^ that is maximal with respect to the property of non-
containing x; i.e., В is the value of x in {x}^^^^^^^^*\ Then Б is also the value of x 
{x}^^. From 3.2 it follows that 

C, = VGX^) = В + [xY^^'^ . 
Further, we have x G Ri{G). Thus x has a unique value in G; let us denote this value 
by С = VQ[X). Then С e Si(G), С ф Gi and by using 3.2 again we obtain 

С = В + {xY. 

Since {x}^^^^^ = {x}^ n Gj, we get C^ = С n G .̂ Thus s^{Gi) Я: [C n G^ : С e 
G5i(G)and С Ф Gj}. 

Now let С G Si(G) such that С ^ G^. There is x G ^ I ( G ) with С = %(x). Let В 
be the value of x in {х}̂ *̂ ; then С = В + {x}^ We shall show that xeG^. 

By way of contradiction, assume that x does not belong to G^. From С ф G^ it 
follows that there exists 0 < ^^ G Ĝ  such that дхФ С И g^ ^ x, then x eG^, which 
is a contradiction. If 0 < z e G and z ^ x, then the structure of lattice ordered groups 
belonging to HQ yields that either z G JB or the value of z in (x}^'' coincides with B. 
И gi < X, then д^ф В (because д^ф С) and thus the value of ^j in {x}̂ *̂  coincides 
with ß; but in this case there is a positive integer n with ng^ > x, implying x e G^, 
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Hence we can suppose that g^ is incomparable with x. Put y = xAgi, z=—y-{-
+ gi. Then y e В and z e {x}^, hence g^ e C, which is a contradiction. Therefore 
X G Gl and so J5 ^ Gj. 

The relation x G RI{G) n Gj imphes x G i?i(Gi). Thus 

С n Gl = (J3 + {x}^) nOi = {B V {xY) A Gl = 

=:{B A Gl) V ({x}^ л Gl) = Б V ({x}^ л Gl) = 

= В V {хГ<^̂ > = Б + { x f ^̂ > = . J x ) G 5i(G). 

We have proved that 5i fulfils (1). The same proof can be applied to 53. 

3.4. Lemma. The mappings Sj and $2 fulfil the condition (2). 

Proof. Let К be an /-ideal of a lattice ordered group G and let С e ^^(G), С ^ K. 
We have to verify that CJK belongs to SI(G/JK:). 

According to the assumption there exists xGi^i(G) such that С = %(х). As 
above, put A = {ху\ В = v^ix). For each у e G, 7 ^ G put у = j ; + iC, F = 
= { j + K}y^Y- The structure of Л yields that the lattice ordered group Ä belongs 
to HQ (the case Ä = [0} is impossible because x e Ä and x Ф K); moreover x G Ri{Ä) 
and В = Vj{x). Thus x G G). 

Put D = {ху. From 3.2 it follows that С = В + D. Hence in order to prove 
that С = VQ{X) it suffices to verify that 

D = {g e G : \g\ A X = Щ , 

the symbol Ö denoting the zero element in G. 
If g E D, then there is g^ eg n D, hence |^| л x = | ^ i | л x = \g^\ л x = Ö. 

Conversely, suppose that g EG and that |^[ л x = Ö is valid. There exists 0 g 
й 92^ \д\ = \9\' We have g2 A x = Ö, hence 0 ^ Z = Ö ^ 2 ' ^ - ^ ^ ^ - ^^^ ^3 = — ^ + 
+ 0̂25 ^1 = — 2 + X. Clearly хфК, thus 0 < x^ ^ x. Moreover, we have ^3 л x^ = 
= 0. This and the fact that [0, x] is a chain imply ^3 л x = 0. Hence g^E D and 
therefore |^j = g^E D. Thus g E D, which completes the proof for s^. The proof 
for $2 is analogous. 

From 3.3 and 3.4 we obtain: 

3.5. Lemma. Sj and S2 are value selectors. 

4. THE MAPPINGS s[ AND s'2 

In this paragraph we shall use the same notation as in § 3. Let RQ^ be the class of 
all lattice ordered groups H such that H is isomorphic to some K^, t e R^. The 
class jRo2 is defined analogously. We put RQ = JRQI U RQ2. 
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Let G e ^ , О < л: e G. If there exists a convex /-subgroup Я of G with x e H 
such that H belongs to RQ^, then the element x is said to be of type RQ^. The elements 
of type jRo2 or RQ, respectively, are defined analogously. Let Roi{G) be the set of all 
elements of G which are of type RQ^. Similarly we define the sets Ro2{G) and i^o(^)-
According to 3.2, each element x e Ro{G) = Koi(G) u JRoiC^) possesses a unique 
value VQ{X) in G. Put 

Soi{G) = Ых) : X e RQ,{G)} (/ = 1,2), 5o(G) = {%(x) : x G RO{G)} . 

4.1. Lemma. SQI, SQI «^^ So ar^ i;a/w^ selectors. 

The proof is analogous to that used in § 3 for 5̂  and S2, and therefore will 
be omitted. 

Put s'i = Si V So for / = 1, 2 (i.e., s'i{G) = 5,(G) u So(G) for each G e ^ ) . From 
3.5 and 4.1 we obtain 

4.2. Lemma, ŝ  and 2̂ are value selectors. 

Let us denote by AQ the class of all lattice ordered groups G such that either G = 
= {0} or G is a direct sum ( = discrete direct product) of lattice ordered groups be­
longing to RQ. Similarly we define the classes A^ and A2. It is easy to verify that all 
these classes are torsion classes (this follows also immediately from [9], Thm. 2.6). 

Put Б1 = T(s\). For each K^GRQ we have So(X,) = {{0}} = MQ{K,), whence 
K^e T{SQ) ^ T{s\). Because each lattice ordered group G e AQ is a join of lattice 
ordered groups belonging to R'Q and since T{s'i) is a torsion class (cf. 2.1) we infer 
that 

(4) AQ Я T{S[) 
is vahd. 

For each G e ^ we denote by ^o(^) the join of all convex /-subgroups of G which 
belong to AQ. Then AQ{G) belongs to AQ as well. 

4.3. Lemma. s^iG) n S2{G) = 0. 

Proof. By way of contradiction, assume that С e 5i(G) n 52(G). According to 3.2 
there exists 0 < xe i^i(G), 0 < >' e ^2(^) . ^1 ^ c{G), B2 e c{G) such that 

С = ßi + {xY, c = B2 + {УУ , 
where B^ is the value of x in {xY^ and B2 is the value of у in {>'}^ .̂ Since Ri{G) n 
n R2{G) = 0 we have x ф у. If x < y, then x e B2 ^ C, which is impossible; 
similarly, 3; <!: x. Hence x is incomparable with y; because [0, x] and [0, >'] are chains, 
it follows that x A у = 0, and thus у e {xY £ C, which is a contradiction. 

4.4. Lemma. Let у e R2{G), у ф Roii^). Then Voiy) Ф SQ{G). 
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Proof. Clearly SQI S ^i, hence 4.3 imphes .Soi(G) n ^2(0) = 0. Because of %(>') e 
e ^2(0) we have to verify that %(>') Ф ^oii^)-

By way of contradiction, assume that %(з^) e 502(G). Hence there exists z e i^02(^) 
such that %(>') = %(z). From the structure of lattice ordered groups belonging to HQ 
we infer that we have neither z = у nor z > y. The cases (i) >̂  > 2 and (ii) у is in­
comparable with z lead to a contradiction in a similar way as in the proof of 4.3. 

4.5. Lemma. Let GeB^, С e Mo(C). Then there is x e RQ{G) such that С = 
= %(x). 

Proof. By way of contradiction, assume that С ф VQ(X) for each x e JRo(G). Then 
there is x e Ri[G)\ RQI{G) such that С = %(x). Now the definition of HQ implies 
that there is у e R2(G) \ Roiid) with у < x (we use the density of JR2 in RQ). From 
4.3 and 4.4 we obtain Voiy) Ф s[{G) implying G ф Б^, which is a contradiction. 

4.6. Lemma. Let G belong to B^. Then G = ^o(^)-

Proof. Suppose that G ^ AQ{G). Then there is y e G\AQ(G). There exists 
a value С of у in G such that AQ{G) £ С In view of 4.5, there is x e RQ{G) with 
С = VQ{X). The convex /-subgroup C^ of G generated by x belongs to AQ, hence 
X e Cj Ç ^o(G) ^ C, which is a contradiction. 

From (4) and 4.6 we conclude 

4.7. Lemma. T(si) — AQ. 

Analogously we obtain 

4.8. Lemma. T[s'2) = AQ. 

4.9. Lemma. Let H be as in (3) with I = î o- Then H e T(s[ v S2) апб/ Я ^ ^ Q . 

Proof. If С is a value in Я, then there is 0 < x G Я such that С is a value of x. 
Since X belongs either to Ri{H) or to R2{H), С belongs to {s[ v S2) (Я). Hence 
Я 6 T(s[ V S2). Moreover, Я is linearly ordered and thus Я is directly indecom­
posable. Hence from H ф RQ it follows that Я does not belong to AQ. 

4.10. Corollary. There does not exist any largest value selector M with Т[М) = 

Hence the above questions quoted from [7] are answered by the following 

Proposition. The function M -> Т{М) does not, in general, preserve joins. If A 
is a torsion class, then there need not exist a largest value selector M with T{M) = 
= A; moreover, the class of all value selectors M^ with T{Mi) = A need not be 
directed. 
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