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I. INTRODUCTION

This paper concerns ordered pairs (f, g) of real valued functions on the interval
[0, 1] satisfying the weak Cauchy condition: if ¢ > O then there exists a positive
number & such that for each subdivision D of the interval [0, 1] with norm less than 5,
each two Riemann approximating sums in terms of D, f, g differ by less than e:

[1] Y{W/[p. a]l9(a) — 9(p)| : [p. ] e D} <&

where Wf[p, q] denotes the oscillation of f on [p, 4];
Wflp, q] = Lub. {f(x) — f(»): xe[p, 4], ye[p, 4]} -

It is apparent that the existence of the Riemann-Stieltjes integral j; f dg implies
the weak-Cauchy condition for real valued functions (f, g) on [0, 1]. This paper
presents an example to show that the converse is false, even with f and g continuous.

The following notation is used.

If each of f and ¢ is a real valued function from some subset of the reals and D is
a collection of intervals each in the domain of f and of g then

o[D, f, 9] = Y{Wf[p. ] |a(q) — 9(p)| : [P, ¢] in D}.

The number O[D, f, g] is called the oscillation of Riemann sums on D in terms
of (f, 9).

If D is a collection of sets and H is a number set, then D . H denotes the set
{CnH:CeD}.

If f is a function on the interval [a, b], then | f| denotes max |f(x)|, x in [a, b].

If g is a step function on the interval [a, b] then E(g) denotes the subdivision of
[a, b] each interval of which is a maximal interval having g constant on its interior.

The subdivision E(g) is called the defining subdivision of g.

The following theorems are proved.
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Theorem 1. If each of [a, b] and [u, v] is an interval and & > O, then there exists
an ordered pair (f, g) of real valued functions on the interval [a, b] such that

(1) f(x) is in [u, v] and g(x) is in [u, v] for each x in [a, b],

(2) fifdg > 1,

(3) if D is a nonoverlapping collection of intervals filling up [a, b] then
O[D,f,g] <e,

(4) each of f and g is continuous on [a, b].

Theorem 2. There exists an ordered pair (F, G) of continuous real valued functions
on the interval [0, 1] such that [} F dG does not exist, but such that the weak-
Cauchy condition is satisfied by F and G on [0, 1].

Throughout this paper, functions are real valued.

In discussions which follow subdivisions are nondegenerate and of the interval
[a, b] and integrals are Riemann-Stieltjes refinement integrals (defined in section 1V)
on the interval [a, b] unless otherwise stated. An end of the subdivision D means an
end of some interval of D.

In this paper it is not necessary to refer to the figures to understand the proofs
presented. The figures, however, may be helpful in understanding why such proofs
are presented. The discussion on context and related mathematics, in the conclusion,
Section 1V, is designed to be read before the following proofs as well as at the end of
this paper.

It may be of interest that the parts of the proof of Theorem 1 not preceded by an
asterisk are sufficient to prove the theorem which results if Property (4) is omitted
from the conclusion of Theorem 1.

II. PROOF OF THEOREM 1

The following definitions are used. Figures 1.1, 1.2, and 1.3 furnish a picture of
the ideas involved and suggest the construction.

Definition 1. The step function g has alternating jumps on the subdivision E(g) =
=[piq].i=12,...,n means n > 2 and

1. for each i, there exists a number g(p;, q;) such that g(x) = g(p;, ¢;) for each x
in (p;, ;). (i-e., g is constant on (p;, 4;)).

2. the numbers [g(p;+1> i+1) — 9(Pi- 4:)], i = 1,2,..., n — 1, alternate in sign;
the jumps’ values alternate in sign.

Definition 2. The ordered step function pair (f, g) is with coordinated alternatmg
jumps on the subdivision E(g) means
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1. each of f and g has alternating jumps on E(g),
2. g is continuous to the left,
3. fis continuous to the right,

4. if [p, q] is in E(g) then (9(q) — g(p)) (f(q) — f(p)) < O.

Definition 3. The step function M is said to have jumps of constant distance K(V)
on the number set ¥ means there is a number K(V) such that !M(x +) — M(x ——)|
is either K(V) or 0 for each number x in V.

Definition 4. The statement that the step function S is a smoothing function
for the step function g means

1. S is continuous to the left,
2. if [p, q] is an interval of E(g) and x is in [p, q] then
(a) S(x) is between (g(p) — g(g)) and 0 or S(x) = 0,
(b) S is nondecreasing on (p, q] if (9(¢) — g(p)) > 0 and is nonincreasing on
(p> a]if (9(2) — 9(p)) <O, |
(c) S(p +) * S(p) = S(q9) = 0 and
(d) g + S has jumps of constant distance on [p, g), and

3. E(g + S).[p, q] has at least three intervals for each interval [p, q] of E(g).
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Definition 5. Suppose g is a step function and S is a smoothing function for g.
The statement that the step function P is a perturbation function for the step function
(9 + S) means

1. {x:xis an end of E(g + S) but not of E(g)} = {x:x is an end of E(P)},
2. P has jumps of constant distance on each interval of E(g),
3. (g9 + S + P) has alternating jumps on E(g + S + P),
4. P is continuous to the left and P(a) = 0,
5a. if [p, q] and [q, r] are adjacent intervals of E(g + S) such that [(g + S)(p) —
~ 0+ @] +5)(@) — (¢ + $)()] > 0 then Pp +) = 0, Plg) 0
and (g + S + P)(x) is either between (g + S)(p) and (g + S)(q) or is
(9 + S)(q) for each x in (p, q],
5b. If [p, q] and [g, r] are adjacent intervals of E(g + S)such that [(g + S)(p) —
—(g+5)(@)] [(9 +5)(a) = (9 + ) ()] <0 orif [p,q] is in E(g +5)
and g = b then P(p +) = P(q) = 0, P(x) + 0 for some x in [p, q] and
(9 + S + P)(x) is either between (¢ + S) (p)and (¢ + S) (g)oris(g + S )(q)
for each x in (p, g]. Note that 5b discusses exactly the ends of E(g) by Defini-
tion 4.

Definition 6. If P is a step function, then Py denotes the step function such that
Py(x) = P(x +) in [a, b) and Pg(b) = 0.

Definition 7. Suppose (f, g) is an ordered pair of step functions with coordinated
alternating jumps and S is a smoothing function for g and ¢ > 0. The perturbation
function P for g + S has perturbations evenly distributed within ¢ means if [r,s]
is an interval of E(g) and [c,, d, ] and [c,, d,] each is a subinterval of [r, s] and each
in E(g + S), then

|O[E(P) . [cy, d], Pr, P] — O[E(P) . [c3, d;], P, P]| < &.
Note. Such a perturbation function is called evenly distributed within e.

In Figure 2, if ¢ > 0 the part of g + S + P on [p, d] could be considered to have
enough jumps to make P not evenly distributed within &.

The following construction furnishes an ordered function pair (f, g) to prove
Theorem 1. It is based on Lemmas 1, 2, and 3, and its plan is to furnish a sequence
of step function pairs (f;, g;) such that

1. foreach i, i =1,2,...,N, [f;dg;, = [fi-1dg;={ + €[8,
2. foreach i, i = 1,2,..., N and each subdivision D of [a, b], O[D, f;, g;] < e.

In the following, for each n, let E(g,) be denoted by [p,;, ¢,:], i = 1, ..., 1, with the
usual ordering. And let E, denote the set of intervals of E(g,) which have an end in
common with E(g,_, + S,-{), n = 2.
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Suppose [u, v] is an interval and ¢ > 0. Note that discussions are on the interval
[a, b] unless otherwise stated.

A. Let (f, g,) denote an ordered pair of step functions on the interval [a, b]
with coordinated alternating jumps such that

I.u < fy(x) <vand u <g,x) <v for each x in [a, b],
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2. O[E(gl)7 S5 91] = Je,

3. f1 and g, have jumps of the same constant distance on [a, b],
4. O[D, f1, g,] < 3¢ for each subdivision D, and

5. [fidg, > 0.

Note that Al through A5 hold if the f; and g, of A each has range the two numbers
(u + v)/2 and (u + v)[2 + (¢/2n)"/? with n large enough to assure Al and with
E(g,) a set of n intervals filling up [a, b]. ~

B. Let N denote a positive integer greater than 2 such that (N — 1) & > 8.
C. Construct (f,+1> gn+1) from (£,, g,) as follows:

1. let ¢, denote the number of intervals in E(g,),
2. let S, denote a smoothing function for g, such that if [s, 7] is in E(g,) then

Whls dlout) = a.s)| _ e
k 8Nt,

with k the number of intervals of E(g, + S,)in [s, ¢], and

3. let w, denote the maximum such k, i.e. the maximum number of intervals of
E(g, + S,) in an interval of E(g,).

Lemmas 1 and 2 are used to guarantee that the following parts of the construction
are possible. Parts C.4, C.5, C.6 and D follow the lemmas.

Lemma 1. Suppose (f, g) is an ordered step function pair with coordinated
alternating jumps on the interval [a, b] and S is a smoothing function for g. Then
if € is a positive number, there exists a positive number 6 such that if P is a perturba-
tion function for g + S with |P|| < & and [r,s] is an interval of E[g + S + P]
then W(f + Pg)[r, 5] |(g +S+P)(s)—(s+ S+ P) (r)l <& .

Proof of Lemma 1. Suppose the hypothesis, with f(x) and g(x) in an interval
[u, v] for each x in [a, b].

Let P denote a perturbation function for g + S. Note that if [r, s] is in E(g+S+
+ P)then either W(f + Pp)[r.s] < |[P|or|[(g + S+ P)(s) — (9 + S+ P)(r) =
< | P|| since g is continuous to the left and f is continuous to the right and both
are constant in the interior of each interval of E(g). Thus W(f + Pg)[r,s]|(g +
+ S+ P)(s)— (9 + S+ P)(r) is the product of two numbers, one not greater
than ||P| and the other not greater than (v — u) + | P|| and the product is therefore
not greater than |P| [(v — u) + |[P|].

Thus if ¢ > 0, then there is a positive number ¢ such that if P is a perturbation
function for g + S with |[P| <& then W(f + Pp)[r,s]|(g + S+ P) (s) -

— (9 + S + P)(r)| < ¢ for each interval [r, s] of E(g + S + P).
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Lemma 2. Suppose each of 6 and ¢ is a positive number. Suppose (f, g) is an
ordered step function pair with coordinated alternating jumps on the interval
[a, b], and S is a smoothing function for g. Suppose [p, q] is an interval of E(g).
Then if M is a positive integer, there exists an even integer n > M and a perturba-
tion function P for g + S with perturbations evenly distributed within ¢, with n
jumps in [p, q] and with O[E(P).[p, q], Pr, P] = Wf[p, q] |g(q) - g(p)’. And
there exists a positive integer M large enough so that if n is such a positive integer,
and P is such a perturbation function then !P(x)l <& for each x in [p,q] and
|O[E(P) . [p, 4] Pr, P] — 2 [4 PrdP| < .

Lemma 2 states for the step functions f and g + S and the interval [p, g] of E(g),
that one can choose a perturbation function P for g + S with the number of jumps
in [ p, q] large enough so that the distance of these jumps which guarantees O[ E(P) .
-[p. 4], Pr. P] = Wf[p, q]|9(q) — g(p)| is small enough to make this oscillation
differ from 2 [ P dP by less than e. In fact there is such a P which is evenly dis-
tributed within ¢, and with |P| < é.

Proof of Lemma 2. If n is an even positive integer and P is a perturbation
function for g + S with n jumps of constant distance z in the interval [p, q] of E(g),
then

[2.1] O[E(P).[p,q], Px. P] = (n — 1) 2*.
Thus, since there is a positive number z such that (n — 1)z*> = Wf[p, q] .

-|9(9) — g(p)|, then there is a perturbation function P for g + S with n jumps

in [p, q] such that O[E(P).[p, q], Pz, P] = Wf[p, q] Ig(q) - g(p)]. And z -0
as n — oo. To insure that P is evenly distributed within ¢ it is sufficient to choose n
large enough so that z is small enough to guarantee that z2 < 1¢ and to distribute

o -

9+s

—

p Beioeel) O O Qeee® O Qe Oo—e
e O—e O—e O—6 O—=o O—es O—e Iz
e S NN A TN T T O T T
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Fig. 3.
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the jumps as evenly as possible between intervals of E(g + S), i.e. so that no such
interval has more than two more jumps than another. Now suppose H is a refinement
of E(P) . [p, q] such that each interval of E(P) contains an end of H in its interior.
Let V denote the collection of intervals of H such that an interval [r, s] of H is in V
if and only if (P(s) — P(r)) = z and let v denote the number of intervals in V. Note
that v = $n. Let W denote the collection of intervals of H such that an interval [r, s]
of H is in Wif and only if P(s) — P(r) = —z and let w denote the number of intervals
of W. Note that w = n. Also note that there exists a number h such that if x is an
interval of W, then Pg(x) = h and if x is in an interval of V, then Pg(x) = h + z.
The number h is either 0 or —z. The function P is constant over each interval of H
which is neither in ¥ nor in W. See Figure 3. Thus

[22] J "prdP = T{Pa(r) (P(s) = P(r)): [, s] in H} =

q

n n n_,
=—2-(z)(h+z)+5(—z)h=£z .

Thus by [2.1] and [2.2] 2 {? Pg dP — O[E(P). [p, q], Pg, P] as z > 0 and n — o0
and since z — 0 as n — o0, Lemma 2 is true.

Parts C.4 and C.5 of the construction depend on Lemmas 1 and 2 and are now
presented.

By Lemma |, there exists a positive number ¢ such that if P, is a perturbation
function for g, + S, with |P,| < & and [s, {] is in E(g, + S, + P,) then

8 S
16w,t,N

W(f, + Pur) [5, 1] (g0 + S+ P) (8) — (90 + Su + Po) (s) | <

N

. Note Lemma 2 and let P, denote a perturbation function for g, + S, such that

. | P, is less than such a number 6 and 3| P,| < |(g, + S.) (x +) — (9. + S.) (x)|
for each discontinuity x of g, + S,.

b. O[E(P,,) . [Pnia ‘]m’], Pz, Pn] = an[l’m', qni]

. P, is evenly distributed within &/(8w,z,N),

. |OLE(P,) . [Puis 4ni)> Purs Pu] — 2 [ii Pog dP,| < g[16t, for each i, i = 1,2, ...

Pni
-

o

gn(qni) - gn(pni) s i = 19 2, tn’

[~ o]

5. Note that if (f, g) is an ordered pair of step functions with coordinated alter-
nating jumps, S is a smoothing function for g, and P is a perturbation function for
g + S, then

a. (f + Pg, 9 + S + P) is a pair of step functions with coordinated alternating
jumps,

b. E(g + S + P) is a refinement of E(g),

c. If p is an end of E(g) then (g9 + S + P)(p) = g(p) and (f + Px) (p) = f(p).
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The number P(p) is O since each end p of E(g) is either the number a with
P(p) = 0 by 4 of Definition 5 or is an end with the properties of the end g
mentioned in 5.b of Definition 5, by the note at the end of Definition 5.

6. Let In+1 = YGn + Sn + Pn andfn+l Efn + PnR'

*D. Let (f, g) denote the ordered function pair such that for each interval [p, q]
of E(gy) the ordinate f(x) = fy(x)if x isin [p, }(p + g)] and f(x) = fx(q) 2((q — ) :
:(q — p)) (fs(p) — fx(a)) if x is in [4(p + q), q] and such that for each interval
[r.q] of E(gy) the ordinate g(x) = gy(p) + 2((x — p)/(q — P)) (9n5(a) — 9n(p))
if x isin [p, #(p + q)] and g(x) = gn(x) if x is in [3(p + q), 4]

This ends the construction. Lemmas 3, 4, 5, and 6 show that the ordered function
pair (f, g) satisfies the conclusion of Theorem 1. In the proofs that follow recall that
part C.5.c of the construction implies that g,(p) = gn(p) and f,(p) = fv(p) for each n,
n=1,2,...,N, for each end p of E(g,). Lemma 3 is used to show that [fy dgy > 1.
This in turn is used to show that [fdg > 1.

Lemma 3. Suppose (f, g) is an ordered pair of step functions with coordinated
alternating jumps, S is a smoothing function for g and P is a perturbation function
for g+ S. Then [fdg = [fd(g +S) and [(f + Pg)d(g + S + P) = [fdg +
+ [Pg dP, with [a, b] the range of integration.

Proof of Lemma 3. The following are used:

[3.1] -[fd(g + S+ P) =ffdg
] [rads 45+ 5) = [puar.

To show that [fdg = [fd(g + S) = [fd(g + S + P), let E denote a refinement
of E(g + S + P) such that no interval of E is in E(g + S + P) and note that each
of the three integral expressions denotes the number Y {f(p) (9(2) — 9(p)) : [p. q] €
€ E, panend of E(g + S + P)} since for each interval [r, 5] in E(g) the function f
is constant on [r, s) and

G+S+P)()=(+5()=490)
and (g + S+ P)(s—)=(g+S)(s =) =4g(s —).
To similarly prove [3.2] note where Pg(x) = 0.

Then let E denote a refinement of E(g + S + P) such that no interval of E is in
E(g + S + P) and note that each of the two integral expressions denotes the number
Y{Pr(p)(P(q) — P(p)): [P, q] in E, p an end of E(g + S + P)} since for each
interval [r, 5] of E either Py is the constant 0 on [r, s]or [P(s) — P(r)] = [(9 + S +
+ P)(s) = (g + S + P)(r)]. This statement holds since P(r) is 0 at each of the
numbers over which g + S is discontinuous, by Definition 5, part 5.a and 5.b and
Definition 6.
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The following shows that {fy dgy > 1. Foreach n <N
In
O[E(gn+ 1)’ fn+13 In+ 1] —g ';1 O[E(Pn) * [pni’ qni]s PnR’ Pn]
since by Definition 5 if [r, s] is in E(9n+1) then it is in E(P,) . [Pni» i) for some i,
and
gn+1(5) - gn+1(")| = - P"(r)l .
Th+1

Wfns1[r,s] = WP,g[r,s] and
Thu% lf Z O[E(P) [P,,,, qm] PnR’ P] > 8/ then 2 Wﬁx+l[pn+1an+1r] .

. gn+1(qn+1|) gn+1(pn+ll| > 82 Slnce thlS sum Is O[E(gn+1) f"+1 g"+1] bV
definition, and therefore by C.4. b

th+1

Z O[E(Pn+1)' [pn+1ia qn+1i]’ P,iirs Pn+1] > 5/2-
i=1

th
Thus since A.2 holds, then, for each n, > O[E(P,).[Pui dnils Purs Pu] > €2
by induction. i=1 .
Therefore, by C.4.d of the construction

b
ZanR dpP, > ¢[2 — ¢/16.

And since by Lemma 3
b N-1
JdegN:jfldgl + Z Py dP;
“ i=1

then [fydgy > [f;dg, + (N — 1)¢/8 > 1 by A5 and B of the construction. The
integral {fdg > 1 then follows from [fdg = [fy dgy which occurs since if D is
a subdivision with each end of E(gy) an end of D and with the midpoints of intervals
of E(gy) being ends of D then e

SU) (06) — o) < [r, s € b, xe[r.s]) = ff ag =
= SUME) (056) — 9x() : [ 5] € D, xe [ ]} = ij day -

To show that (f, g) is sufficient to prove Theorem 1 it is necessary to show that
if A is a subdivision, then O[ 4, f, g] < &. To show this, the inequality, O[ 4, fy, gx] <
< ¢ for each subdivision A4, is used. The following is a proof of this inequality, using
Lemmas 4 and 5.

Suppose 4 is a subdivision.

Definition. Let H denote the subdivision such that x is an end of H if and only if
one of the following is true. ’
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1. Forsome n, n = 1,2,...,N — 1, there exists an interval [p, q] of E(S,) such
that (p, ¢) contains an end of 4 which is not an end of E(g,) and x is an end of

E(gn+l) in ([7, Q]-
2. x is an end of E(g).

Definition. Let d denote a positive number which is less than half the shortest
length of an interval in E(gN) and less than half the shortest positive distance from
an end of A to an end of H.

Definiticn. Let G denote the subdivision such that  is an end of G if and only if
one of the following is true.
1. tis an end of H which is also an end of 4 in which case let ¢’ denote ¢.

2. There is an interval [r, s] of 4 such that ¢ is an end of H in (r, s) and [r, 5] has
as a subset some interval [y, 6] of H such that

WfN[V, 0] 19,\1(5) - gN()’)! 2 szv[r, 5] lg‘v(") - gN(S)l .
In this case let ¢ denote t.

3. There is an interval [r, s] of A which contains no such interval [y, §] of H as
a subset and 1 + d is an end x of H in (r, 5) and not an end of A. In this case
let x" denote x — d = t.

Note that if j denotes an end of H then j’ denotes an end of G.

Lemma 4. O[G, fy, gx] = O[A, fx, 9]

To prove Lemma 4, it is sufficient to show that if [r, s] is an interval of 4 then one
of the following three statements is true:

(1) there exists an interval [y, ] of G not in A such that y is in [r, s) and
WfN[?, 5] IgN(é) - gN(V)l = qu[", S] lgN(S) - gN(")l

or

(2) [r.s]isin G or

(3) Winlr, s] |gN(s) —_ gN(r)| =0.

Suppose [r, 5] is an interval of A. Let E(S,) denote the degenerate set {[a, b]},
E(P,) = E(g,) and n denote the largest non-negative integer o such that [r,s] is a
subset of some interval of E(S,). Let [w, x| denote the interval of E(S,) having
[, s] as a subset.

It is shown that one of the three statements is true, first in case [r, s] is not a sub-
interval of an interval of E(g,. ;) and then in the contrary case.

Suppose [r, s] is not a subinterval of an interval of E(g,+1)- Let [i, j] denote the
interval of E(g, ) such that [i, j) contains . Then s > j, since [r, s] is not a sub-
interval of [i, j] by supposition.
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Let [j, k] denote the interval of E(g,.) with left end j. Since each interval of
E(g,.,) is a subset of some interval of E(S,) and since [r, s] is a subset of [w, x]
and s > j, then [, k] is a subset of [w, x]. Note that j is an end of H by the definition
of H and that gy(j') = gx(j) since either j' = j or j' = j — d by the definition of G.
Also g, 1(j) = gn(j) by C.5.c of the construction.

Now suppose

[4.1] gn(i) < aa(i) -

Note that g,+1(j) = gn(j) and g,.,(i) = gn(i) by C.5.c of the construction. If a
is in [i, j), then gy(j) £ gn(2) < gn(i) by definition 5.2 and 5.b, definition 4, and
C.6 of the construction. Thus since r is in [i, j) then

[4.2] gn(j) < gu(r) -

This supposition is used throughout the proof. It is noted that if gy(j) > gx(i) then
a similar proof suffices. Figure 4.1 or Figure 4.2 furnishes a drawing. The part of
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Figure 4.1 which relates to the rest of the proof and the part of Figure 4.2 which relates
to the rest of the proof are the same. Thus, it doesn’t matter which figure is in mind.
In fact, if r = i = w, then a third picture would be more appropriate.

Suppose gn(r) # gn(s)- The proof that either statement 1 or statement 2 is ture is
divided into the following three.
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Case 1. gy(s) > gn(r) and s is in [, k].

Case 2. gy(s) > gx(r) and k < s.

Case 3. gy(s) < gn(r).

Suppose Case 1. Figure 4.3 is presented to help in the understanding of the proof
in Case 1. On the interval [i, j] the function g, is pictured. On [j, v, ] the function
Gn+1 + Susq is pictured. On [uvy, v,] the function g,4, + S,+, is pictured. On
[v,, v3] the function g, .3 and on [vg, vs] the function g, ,.

Suppose there is no interval [y, §] of G with the properties to assure statement 1.

The proof that this supposition is false depends on the fact that if [, /] denotes
the interval of H with left end j then gn(l) = gx(s) which is least apparent in case the
following supposition holds. In each other case it is readily apparent as will be shown.

Suppose for some interval [, y, z,4] of E(S,.) the number s is in the leftmost
number set of E(g,+2) - (Vu+1> Za+1] and let ¢ denote the largest integer /i such that
for some interval [y, z,] of E(S,) the number s is in the leftmost number set of
E(gys1) - (v 24]- For each h, h = n + 1...., 1, the collection E(gy+,) - (¥ 24] has
leftmost member (p, ¢] the common part of (y,, z,] and the first (leftmost) interval
of E(g,,) which intersects (y;, z,]. All the rest of the number sets of E(g;44) -
. (¥ z,] are intervals of E(g,,,) and are thus closed on each end. Included here is
the assumption that an S, ;; and a g, , exist.

Let [y, z,] denote the interval of E(S,) such that s is in (y,, z,] for each h, h =
=n,...,1+ 1, h < N.Let[}, k,] denote the leftmost interval of E(g,+1) in [ s, 2],
h=n+1,..,14+1, h<N. Let [j k] =[j,k,]. Either t=N —1 or for
some interval [V,r1, z,+1] of E(S;+;), the number s is in a number set of
E(g,+2) - (3i+15 Ze+1] other than the leftmost number set of E(g,12) . (Vex1s Zes1]-

Suppose the latter. With the following two statements, mathematical induction
yields that g, ,(k,+1) = g,42(u) for each u in (y 41, 2,44 ]-

First, since g,+1(j) < gu+,(i) by (4.1), then g,.,(k,) > g,+1(j,) and thus
Gu+1(Kks) = g 1(u) for each u in (y,, z,] = (w, x] because on (w, x] the step func-
tion g, ; has alternating jumps of constant distance by C.5.a of the construction and
the fact that P, has jumps of constant distance on [w, x] by part 2 of Definition 5.

Second, if for some h, h = n,...t, g,s (k) = gy+,(u) for each u in (y,, z,]
then gh+2(kh+1) = gh+2(”) for each u in (yy4,, Zhi1)-

To show that this second statement holds, suppose h is a positive integer h =
=n,...,t such that g,.+(k;) = g,+,(u) for each u in (y,, z,]. Thus g,.,(k,) =
= g,+1(jy) since g, has alternating jumps on E(g,,, 1) by C.5.a of the construction
and since g, ; is not constant on (y,, z,] by Definition 5.

Therefore S, ; is nondecreasing on (j,, k,] by part 2.b of Definition 4. Let (6,):_,
denote the ends of E(S+,) in [ k,] and let [6,, 0,] denote the interval of E(S, ,)
with right end 6, = j,. Such a [0, 0,] exists because 0, + a since a < r < j < 0,.
Since g, has alternating jumps on the subdivision E(g,+;), then by Definition 4,

(gh+1 + Syt 1)(00) > (gh+1 + Sh+1) (01) .
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Thus by Definition 5 part 5.b, P, ,(0,) = 0 since [0, 0,], [01, 0] satisfy the con-
ditions of 5.b.

Now note that [ j,+ 1, Ky+1] is the leftmost interval of E(gy+2) - [0;, 0;+ ] for some
iyi=1,...,v — 1 with j,, = 0,. Suppose this i = 1 and j,+, = 0,. The interval
pair [0, 0,] [0,, 0,] satisfies the conditions of 5.b of Definition 5. So P,.(0,) = 0
and g+ (0;) = gn+1(jss1) = gus2(jns1), by the definition of g,,,. Also since
[0,,0,] [0,, 65] satisfies the conditions of 5.a of Definition 5, then gj+2(kj+1) >
> Guialine1) = (g1 + Sus1) (0,), since kyy, is in [0,,0,] and since S, is
nondecreasing on [j k] With (g4 1 + Sp+1) (01) < (gus1 + Shrq) (02)-

Now suppose this i = 1 and j,.( # 0;. Then ¢,.5(0,) = gus2(ns+1) <
< (Gns1 + She1) (0:) since [0,_,, 0,_,] [0;-, 0;] satisfies either part 5.a or part 5.b
of Definition 5. Also (gy41 + Sys1) (0:) < gasa(kns1) since [0;-q, 0] [05, 0i44]
satisfies either part 5.a or 5.b of Definition 5. Thus gy.s(knsy) — gus2(jne1) > 0
and g4 2(ky+1) = gu+2(u) for each u in (y,44, z,. (] because the step function gy,
has alternating jumps by C.5.a of the construction and since P,,; has jumps of
constant distance on [y,+1, 24+ 1] by part 2 of Definition 5. Thus

[4.3] gr+2(kt+l) = gr+2(5)‘

Recall that r and s are consecutive ends of 4. Thus by the definition of H, a number
x in (J, k) is in H if and only if for some positive integer 1, n + 1 <7 <t + 1, x is
an end of E(g.+,) in (y,, z.]. But for each 7, the number s is in the leftmost interval
[jo k] of E(9.+1) in [y, z.] and thus no end x of E(g.4,) in (v, z.] preceeds k..
Thus since ky+1 > k,4p > ... > k,, 4, then either k,  is the right end of the interval
of H whose left end is j or s = k, = z,,; in which case s is the leftmost end of
E(g,+,) in (ys» 2z,] and thus s is the right end of the interval of H whose left end is j,
by the definition of H.

This is true since either z,,, = s = k, or s is not an end of E(g,+,) since s is in the
leftmost interval [j, k,] of E(g,+,) in [y: z,] and s # y, by the definition of ¢.
Since r is in [/, j) and s > j, then either [/, k;, ,] or [j*, s] is a member of G not in 4
with j" in [r, s).

If 1 = N — 1, then by a similar argument ky_, or s is the right end of the interval
of H whose left end is j and gy(ky—) = gn(s) which is equation [4.3] witht = N — 2.
And neither [j’, ky_,] nor [, s] is in 4 since [i, j) contains r. Also j is in [r, s).

Similarly, if for some interval [y, 1, z,+1] of E(S,+,), the number s is in an interval
of E(gy+,) in [Yas1 Zus+1] other than the first interval [j, 4y, Koi1] of E(g,42) in
[Vus 1> Zns1], then [, k,4 ] is in H with

[4.4] . gn+2(k11+l) = gn+2(s)

or [j, s]is in H (if s = k and thus is an end of E(g,,)). So either [j’, k,,,] is in G,
not in A with g,+2(Kk,+1) = gu+2(s) or [j/, s] is in G not in A.
Finally, if n + 1 = N, and there is no S, , then [j, k] isin H and [j', k'] is in G.
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Thus in Case 1, let [ j, l] denote the interval of H with left end j and note that

[4.5] gx(l') = an(l) Z gn(s)

by [4.3] and [4.4] since by C.5.c of the construction g,(I) = gn(I) = gy(I'), gu(s) =
= g,(s) for each h, h = 1,2, ..., N. Also [j’, I'] is not in 4. Now

Wil s1 = |1w0) = fn0)| = WAL, 1]
by Definitions 5 and 6 and by A.3 and C.5.c of the construction. Also gy(j') < gn(r)
by [4.2] and gy(I') = ga(s) by [4.5].

Thus |gu(I') — ga(i)| 2 |9n(s) — gn(r)] and  WALH, 1T |an(l') — an(i)| 2
2 Wfy[r,s] |gx(s) — gn(r)|- And [j, '] is in G not in 4 with j" in [r,s). Thus
[J', I'] is an interval [y, 6] with the necessary properties to insure statement 1.

So statement 1 holds for Case 1.

Suppose Case 2. The following shows that r % w. Suppose r = w. Either g, (W) <
< gu+1(x) or g,41(W) > gu+1(x) by Definition 4. By Definition 5 parts 5.a and 5.b
if g,+1(W) < gus1(x) then g,,,(W) < g,+() for each number p in (w, x]. Since
r=w =i, then g,,(i) < g,+,(j) which contradicts [4.1]. Also by Definition 5
parts 5.a and 5.b if g,4+1(W) > g+ 1(x) then g,.:(w) > g, (1) for each number u
in (w, x]. Since r = w, then g, (r) > g,4(s) which implies Case 2 does not hold.
So r + w.

Suppose statement 2 is not true. If s + x, then Wfy[j, k] = Wfy[r, s] by Defini-
tions 5 and 6 and thus Wfy[J, k] IgN(k) - gN(j)I > Wfylr, s] ]gN(s) - gN(r)[
since |gy(k) — gn(j)| = |gn(s) — gn(r)| by Definition 5.

So [j, k] is an interval [y, 8] with the necessary properties to insure statement 1
is true for Case 2.

If s = x then since r % w, the rightmost interval of E(g, . ,) in [w, x] is an interval
[y &] of H with the necessary properties to insure statement 1, by Definitions 5 and 6.

Thus either statement 1 or statement 2 is true for case 2.

Suppose Case 3. Suppose s is an end of E(g,). Let [1, x] denote the righmost in-
terval of E(g,+,) in [w, x]. Since gy(s) < gx(r), then by Definitions 4 and 5, gy(x) =
= min {gy(s) : p € (w, x]}. Thus S,,, is nonincreasing on [¢, x]. If r is in [¢, x]
then let I denote the right end of the interval of E(S, . ;) which contains r. Note that
[1, x] is an interval [y, 6] with the necessary properties to insure that statement 1
holds since gy(I) Z ga(r) by Definition 5 with S, ; nonincreasing on [, x].

If ris in (w, t] then [, x] = [¢, s] is an interval [y, 5] with the necessary properties
to insure that statement 1 is true since gy(r) = max {gy(u) : p € (w, x]} by Definitions
4 and 5.

If r = w then [w, x] = [r, s] is in G and statement 2 is true.

Now suppose s is not an end of E(g,). Let [I, ] denote the interval of E(S,+1)
which contains r. If [I, k] is the rightmost interval of E(S,.;) in E(S,.,) . [i,Jj]
then [j, k] is in H since gy(s) < gx(r) which implies k < s. Thus [j, k] = [j/, k']
is an interval [y, 8] with the necessary properties to insure statement 1.
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Suppose [/, h] is not the rightmost interval of E(S,+,) in E(S,.y) . [i,j]. Then
[h, j] is an interval [y, 8] with the necessary properties to insure statement 1.

Thus in Case 3 either statement 1 or statement 2 is true.

So if [, s] is not a subinterval of an interval of E(g,+;), then one of the three
statements is true, assuming gy(j) < ga(i). A similar proof suffices if gn(/) > gn(i).

Now suppose [r, 5] is a subinterval of the interval [i, j] of E(g,+,) and

[4.1] an(i) < gu(i) -

Either [r, 5] is not a subinterval of an interval of E(S,.;) or n + 1 = N by the
definition of n. Suppose [r, s] is not a subinterval of an interval of E(S, . ). Then
gn(s) < gn(r) by [4.1] and Definitions 4 and 5. Let [P, Q] denote the first (leftmost)
interval of E(S,,,) containing r. The word “first” (or leftmost) is used in case r is
an end of an interval of E(S, ).

The following is similar to the proof in case [r, s] is not a subinterval of an interval
of E(g,+,) and Case 1 is assumed.

Suppose there is no interval [y, 6] of H with the necessary properties to assure
statement 1. Suppose for some interval [y,,y, z,41] of E(S,+,) the number s is in
the leftmost number set of E(g,+2) - (Va+1> Zu+1] and let ¢ denote the largest integer
such that for some interval [y,, z,] of E(S,) the number s is in the leftmost number
set of E(g,4+1) . (¥ 2,)-

Let [y, z,] denote the interval of E(S,) such that s is in (ys, z,] for each h, h =
=n,...,t+ 1,h < N. Let [iy, j,] denote the leftmost interval of E(g,) in [ys z,],
h=n+1,..,t+1, h <N. Let [i,j] = [i,, j,]- Either t = N — 1 or for some
interval [y,41, Z,+1] of E(S;+1), the number s is in a number set of E(g,.,).
-(Vi415 Z141] other than the leftmost number set of E(¢,+2) - (Vi+ 15 Ze+1]-

Suppose the latter.

With the following two statements mathematical induction yields that g,+5(j;+1) <
= g:+z(ﬂ) for each p in (V4 1, Zes1]-

First, note that by 4.1 g,11(j) < gu+ (i), and thus g,+1(j) < g,+1(n) for each p
in (¥, z,] = (W, x] because on (w, x] the step function g, has alternating jumps
of constant distance by C.5.a of the construction and the fact that P, has jumps of
constant distance on [w, x] by part 2 of Definition 5.

Second, if for some h, h = n, ..., t, g4 1(js) < gn+1(n) for each p in (¥i> z4] then
Ins2(ns1) S gh+2(l~‘) for each p in (yy4 4, Zyi1)-

To show that this second statement holds suppose h is a positive integer h =
=n,...,t such that g,y (js) < gn+:(1) for each p in (y z,]. Thus gn+1(in) =
< gn+ (i) since g, , has alternating jumps on E(gy+ ;) by C.5.a of the construction
and since g, is not constant on (y,, z,] by Definition 5.

Therefore S, is nonincreasing on (j, k,] by part 2.b of Definition 4. Let (0:)i=4
denote the ends of E(Sh+1) in [jh, kh] and let [90, 91] denote the interval of E(S,.+ 1)
with right end 0, = j,. Since g, has alternating jumps on the subdivision E(gn+ 1)
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then by Definition 4, (¢,+1 + Si+1) (00) < (9441 + Sh+1) (61)- Thus by Definition 5
part 5.b, P, ,(0,) = 0 since [0, 0,], [0,, 0,] satisfies the conditions of 5.b.

Now note that [y 1, j,+1] is the leftmost interval of E(g,+») - [0;, 0;+] for some i,
i=1,2,...,v — 1 with i,,; = 0;. Suppose this i = 1 and i4; = 0,. The interval
pair [0, 0,] [0,, 0,] satisfies the conditions of 5.b of Definition 5. So P, 4(0;) = 0,
and '

gh+1(91) = gh+1(ih+1) = gh+2(ih+1) >

by the definition of g, ,. Also since [0, 0,], [0,, 0] satisfies the conditions of S.a
of Definition 5, then

e 2(iner) < ne2(iner) = @Gnes + Swar) (01)
since jy+ 4 is in [0, 0,] and since S+ is nonincreasing on [in i) with
(@ns1 + Sae) (01) > (Gusr + Suas) (0) -
Now suppose this i & 1 and i+ * 0;. Then

gn+2(0;) = Gnr2(ine1) Z (Gne1 + Suaer) (0)

since [0;-5, 0, 1] [0:-y, 0,] satisfies either part 5.a or part 5.b of Definition 5.
Also (gps1 + Spi1) (0) > gyi2(jar1) since [0;_, 0] [0;, 0,4 ] satisfies either part
5.a or 5.b of Definition 5. Thus gys2(jn+1) — Gnra2(ines) <0 and gyio(ipey) <
< gu+2(u) for each pin (y, ., z,+1] because the step function g, , has alternating
jumps by C.5.a of the construction and since P,; has jumps of constant distance
on [y,+1, Zs+1] by part 2 of Definition 5. Thus,

gt+2(jx+1) = min {gt+2(ﬂ) tpoin (yl+ls Zt+1]}
by Definition 5. Thus

[4.6] gz+2(jt+1) = g,+2(s).

And either j, . or s is the right end of the interval of H whose left end is Q by the
definition of H. The interval [Q, s] is in H if [y,,4, z,4,] is the rihgtmost interval
of E(S,4,) - [ij.] and s = j,. Also Q isin [r, s).

If t = N — 1, then by a similar argument jy_, or s is the right end of the interval
of H whose left end is Q and gy(jy-1) < gn(s) which is equation [4.6] with ¢ =
= N — 2. Also Qisin [r, s) since ris in [P, Q].

Similarly, if for some interval [y, 1 1, Z,+1 ] of E(Sy.+), the number s is in an interval
of E(g,.,) in [y,41, Zy+] other than the first interval [iyyy,jue1] of E(g,y,) in
[yn+1’ Zn+1]’ then [Q9jn+l] is in H with

[4.7] Gn+2(in+1) Z Gn+a(s)

or [Q,s]is in H if [+ 1o Zy+1] is the rightmost interval of E(S,. ). [i, j] and s=j.
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Thus if [r, s] is a subinterval of the interval [i, j] of E(g,4,) and [r, s] is not
a subinterval of an interval of E(S,+;) let [Q, I] denote the interval of H with left
end Q and note that

[4.8] gn(l) = ga(s)

by (4.6) and [4.7] since by C.5.c of the construction g,(I) = gx(1) for each h, h =
=1,2,..,N.

Also gy(Q) = gu(r). (If r = w, then Q = r.) Thus either [Q, I] = [r, s] which
implies statement 2 or [Q, ] is an interval [y, 8] with the necessary properties to
insure statement 1.

Finally, if gy(j) > gx(i) a similar proof suffices.

If n + 1 = N, then since [r, s] is a subinterval of [i, j], either [r, s] is a proper
subset of [i,j] or [r,s] = [i,j]. If [r,s] is a proper subset of [i, ] then either
Wix[r,s] = 0 or gu(s) — gx(r) = 0 by Definitions 4 and 5 and the construction
of (fy» gv). If [, s] = [i, /] then [r, s] is in H by the definition of [r, s] and of G.
So if n + 1 = N then ecither statement 2 or statement 3 follows.

Thus if [r, s] is an interval of 4 and [4.1] holds, then one of statements 1, 2 and 3
holds.

Finally if gy(j) > gx(i) a similar proof suffices.

Definition. Let H, denote the subdivision such that x is an end of H, if and only
if x is an end of E(g,) which is an end of H, n = 1,2, ..., N. Recall that E(g,) is
a refinement of E(g,) if i < n.

Definition. Recall that d denotes a positive number which is less than half the
shortest length of an interval in E(gy).

Definition. For each positive integer n, n = 1,2, ..., N, let H, denote the collection
of subdivisions of [a, b] such that a subdivision D is in H, if and only if

1. each end of D is either an end x of H, or is x — d with x and end of H, and

2. the set of ends of D contains one and only one term from each number pair in
the set {(x, x — d) : x an end of H,}.

Note that G is in Hy.

Lemma 5. Suppose n is a positive integer, n = 1,2,...,N — 1, and D is a member
of H, .. Then there is a member D, of H, such that [D,, fx, gx] > O[D, fx, gv] —
— ¢[2N.

Proof of Lemma 5. Suppose D is in Hj, ;. Let [p, ¢] denote an interval of H,.
Let p, denote the end of D closest to p. Thus p, is either p or p — d. Let ¢, denote
the end of D closest to g. Thus ¢q, is either g or ¢ — d. Now let p, denote p, if p is
an end of E(g,-,) and let p, denote p otherwise. And similarly, let g, denote g,
if ¢ is an end of E(g, ) and let g, denote g otherwise.
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Let w denote the first end of D in (p, q].
The following is proved and then used to prove 5.5, which is then used to prove
Lemma 5.
3e

[51]  WAp a] lan(a) — gn(w)| = O[D . [w, 4,1, fv, 9x] — v

In the following proof of this inequality 5.1 refer to Figure 5.

If there is only one interval in D . [py, g, ], then 5.1 is true since in this case, w = ¢,
and thus

WfN[Pz, ‘1] IgN(Q) - gN(W)‘ =0 and O[D . [W, ‘11],f.lv, gN] =0.

Suppose there is more than one member in D .[py, q,]. Let [w, x] denote the

interval of D . [p,, q,] with left end w. And let [y, q,] denote the interval of D .
. [P1, g1] with right end q,.

Let k denote the number of intervals in E(S, ) [p, q] and let {G}i-, = {a, b}}_,
denote the set of intervals of E(S,) . [p, 4]- Let j; denote the positive 1nteger such that
G; contains w. Let j, denote the positive integer such that G;, contains y. (Usual
ordering is assumed.)

Now note that

O[E(P,) . [P. 4], Purs P.] = Wfx[p, ] [gn(a) — gn(p)|

by C.4.b of the construction of fy, gy. Also if h is a positive integer, h < k, then

< W1[p, all9.a) — 9.(p)| 6
[52]  O[E(P.). Gy Pu P,] < " * o

by C.4.c of the construction and Definition 7. Also O[E(g, + S, + P,). Gy, fx, 9n] =
< O[E(P,). Gy, P,x, P,] + ¢[8w,Nt, since if [s, ] is in E(g,+,) = E(g, + S, + P,)
then W/foii[s, 1]|9n+1(t) = 9ns1(s)| < &/16w,Nt, by C.da and the difference
between O[E(g, + S, + P,). Gy, fy, gy] and O[E(P,).G,, Pz, P,] depends only
on the intervals of E(g, + S, + P,) at each end of G,. So if his a posmve integer,
h £ k, then

an[p’ q] Ign(q) - gn(p)‘ + i

5.3] O|E(g,+ S, + P,)- Gy, fn, < .
[ ] [(g ) w SN gN] k 4w N1,

Let z denote the absolute value of the jumps of S, in [p, g]. See Figure 5. Note
that W/y[p2, 4] Z W/y[p, a]. Thus

W fx[p2s a1 |98(9) — gn(w)| =2 Wiilp, ] (k — j1) z =
= WfN[P, Q] (k - jz) z + WfN[P.- ‘I] (jz - jl) z.
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Fig. 5.
Also
[5:4] O[D . [w, q1]. f: gn] <

J2
< 2 {O[E(P,) - G, fy: a1} + WhN[p. q] (k — ju) 2
=1
since O[D . [w, y], fw, 9] = O[E(P,,) -[a;1: b,), > gx), and O[D . [y, 411, fxs gn] £
< Whp 4] |an(a1) — gn(¥)|s with D . [y, 4] containing only the interval [y, a:]
by the definitions of H, H,,, and D. Thus

O[D . [w, q1] fx, gy] <

< [Wf&[p, a1 lon(a) — an(p)]

&
A o |0+ 5= 30 + WAL ) (o)

by [5.3] and [5.4]. And since |gx(q) — gn(p)|/k = z by Definition 4 and

Wfulp. 4] lan(a) — 9n(p)| _
k

W ) &
| (Wiylp. q]) z < SNL
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by C.2 of the construction, then

O[D . [W, ql]afN’ gN] é (WfN{p’ q]) (k - fl) z +
e (4=t oy k—j)z+ 28
Tene T awNn, Sulp a (k= 70) 8N,
since 1 + j, —j; S w,.
This ends the proof of 5.1 since Wfy[p2, g] = W/fylp, ] and thus Wislp2 q] -
ax(@) — av(w)| = Wik[p, a] (k = Jj) =
Since 5.1 is true and O[D.[py, 41) fw» 9] = WIx[Ps, ] lgn(w) = gn(ps)| +
+ O[D - [w. :]. fx. gx] and W[ pa a] |ox(a) — gn(p2)] = WSilp2.al lan(w) -
— gu(p2)] + Wi[pa 4] |an(a) — gn(w)] and since W1y[ps w] |gn(w) — 9n(po)| <
é WfN[pZa q] lgN(w) - gN(pz)I then by 51,
3e

[55]  Wix[pa a]|lan(@) — gn(ps)| = O[D . [ps> a1]: fvs 9v] = Ng

Note that {[p,, ¢,] : [p, ¢] in H,} = D, is a subdivision of [a, b] and that
[p2: a] = [p2» 42] unless q is an end of E(g, ) and thus

3
[56]  Whlpz a1 |ox(a:) = an(p2)] 2 OLD - [p1: 411 S 6] = o

by [5.5] for each interval [p, q] of H, with g not an end of E(g,-1)-
Finally note that if ¢ is an end of E(g,-,) then [p,, 4] = [p, q] and thus
3e

[5.7] Winlp, a1l9x(a) = gx(p)| 2 OLD - [p1. a1]- Sy 0n] = o

for each interval [p, q] of H,, by [5.5].
Now let

W = Y{Wfy[p2 q2] ]gN(qz) — gN(pz)\ :[p, q] in H, with g not an end of E(g,_,)},

X = Z{W.fN[Pz’ Q2] gN(‘]z) - gN(Pz)I : [Pa ‘1] in H, with ¢ an end of E(gn-—l)})

U = O[E, f,, 9.] = XAW/x[p. 4] |9x(q) — 9x(p)| : [P, ¢] in H, with g an end of
E(gn—l)}’

Y =Y{0[D.[ps, q1) fx- 9x] : [P, ¢] in H, with g not an end of E(g,—,)}, and

Z =Y{0[D.[py, 41]) fx» 9v] : [P, ¢] in H, with g an end of E(g,-4)}.

Note that O[D,, f,, g,] = W+ X and O[ D, fy, gy] = Y+ Z. Now W= Y —(3¢/8Nt,)
with j the number gf intervals [p, ¢] in H, with g not an end of E(g,- ), by 5.6.

And U = Z —%E/SNt,,) i with i the number of intervals [p, | of H, with g an
end of E(g,_,), by 5.7.

W+ Uz Y+ Z-—[(3/8Nt,)(j + i)] and since (j + i) < t,, by C.1 of the con-
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struction, then

wey+z-|{2) + Ul
8N1,

W> Y+ Z— (38N + ¢/8N) = Y+ Z — ¢[2N, since U < ¢/8N by C.1 and C.4.a
of the construction and the definition of U.
Thus Lemma 5 holds, since X is positive:

W+ X>Y+2Z—-—".
2N

To show that O[A,fN, gN] < ¢, assume Lemma 4 and Lemma 5.
Lemma 5 implies the existence of a sequence of subdivisions Dy, D, D3, ..., Dy_;
such that D, is in H, foreachn,n = 1,2, ..., N — 1 and

) F;
O[G,fn, gN] < O[DN—an, gN] + ﬁ

€ €
< O|Dy_5, fns + — + —
[NZngN] N N
(N — 1 times)
e

& & &
< O[Dy S G + — + — e+
(D1 s 9] DN 2N 2N 2N

< O[Dlst) gN] + %6'

Since D, is in HY, then O[Dy, fy, gv] = O[ Dy, f1, 91] < %e. Thus O[G, fy, gy] < ¢
and thus O[ 4, fy, gN] < ¢ by Lemma 4. Note that, if s is a positive integer less than N,
then the previous proof uses

O[DN—s’fN’ gN] = O[DN—s’fN—S’ gN~s]

by C.5.c of the construction and Definitions 4 and 5.
The following Lemma 6 implies that if 4 is a subdivision, then there is a sub-
division B such that O[4, f, g] < O[B, fy, gy] and thus O[4, f, g] < .

*Lemma 6. Suppose (F, G) is an ordered step function pair with coordinated
alternating jumps on the subdivision E(G) of the interval [a, b].

Let f, g denote the ordered function pair such that for each interval [p, q]
of E(G) the ordinate f(x) = F(x) if x is in [p, ¥(p + q)] and f(x) = F(q) +
+ 2((q — x)/(qa — p)) (F(p) — F(q)) if x is in [3(p + q), q] and such that for each
[p, 4] in E(G) the ordinate g(x) = G(p) + 2((x — p)/(¢ — p)) (G(q) — G(p)) if x
is in [p,3(p + q)] and g(x) = G(x) if x is in [3(p + q), q].

Suppose A is subdivision of [a, b]. Then there exists a subdivision B of [a, b]
such that O[A, f, g] < O[B, F, G].
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*Proof of Lemma 6. Assume the hypothesis and notation of the lemma.
In order to prove Lemma 6 it is shown that there exists a subdivision B of [a, b]
such that

1. if [p, q] is in E(G), then there is no end of B in the number set (p, }(p + gq)) +
+ (4(p + 9), q) and
2' O[Aafs g] é O[Baf: g]'

To prove there is such a B, it is shown that if D is a subdivision of [a, b] and [p, q]
is an interval of E(G) then there is a subdivision D’ of [a, b] such that

1. there is no end of D' in (p, 4(p + q)) + (3(p + 9), q) and
2. 0[D,f,g] < O[D,f, g].

Suppose D is a subdivision of [a, b] and [p, q] is an interval of E(G) such that

[6.1] 9(a) > 9(p) -

(A similar argument holds if g(q) < 9(p).)

Suppose some end of D is in the segment (p, 4(p + g)). Let [r, s] denote the first
interval of D which has a point in [p, 3(p + q)] and let [#,u] denote the last interval
of D which has a point in [p, 3(p + 4)]-

The following is a proof that if [p, ¢] is an interval of E(g) then there is a sub-
division D’ of [a, b] such that no end of D’ is in (p, (p + ¢)) and O[D’, f, 9] 2
> O[D, f, g]. To facilitate this proof a subdivision of the interval [r, u] is defined
and a function V¥ from ordered real number pairs into the reals is defined.

Fig. 6.
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Let D, denote D . [r, u]. It is apparent that

O[D — D, + {[r,s), [s, t], [, u]}. f/» 9] = O[D, f, 9]
since f is constant and g is nondecreasing on the interval [s, t] by hypothesis. See
Figure 6. (If s = ¢, then [s, t] is deleted and D — Dy + {[r, s], [t,u]} = D.)

Let V denote the continuous function such that

[62] V(x,y) = O[D = Dy + {[r, x], [x, y]. [, u]}. f 4]

with closed domain all ordered real number pairs (x, y) such that x € [p, 3(p + q)],
ye[p.3(p + q)] and x <y. (In the expression O[D — D, + {[r, x], [x, y],
[y, ul}, £, g] if x = y then [x, y] is deleted, if r = x = a then [r, x] is deleted.)
The following is a proof that the inverse image I of max V(x, y) contains one of
the following three points: (p, p), (p, 4(p + 4)), (3(p + 9), Hp + 9)).
In this proof, for each of the inequalities concerning values of V the following
two steps result in a proof of the inequality.

Step 1. Note that the inequality could be written in the form
; Wflpi a:] |9(a;) — a(pi)| < ;1 w1lpi ai] |9(a;) — a(pi)| -

Step 2. For each positive integer i such that [p;, ¢;] # [p}, q;] compare the two
numbers

Wflpn ai |9(a;) — g9(pi)| and Wf[pi, qi] |9(ai) — 9(pi)

)

noting that

1. g is nondecreasing on [p, q] by [6.1] and the definition of g
2. f is constant on [p, 3(p + g)] by definition.

Suppose (x, y) is a point in I, with x = y and with x in the segment (open interval)
(p, 3(p + q)). Either Wf[r, x] = Wf[x, u] or Wf[r, x] < Wf[x, u].

If Wf[r, x] = Wf[x, u] then if g(r) > g(x), the point (p, p) is in I since V(p, p) =
= V(x, x) and if g(r) £ g(x), the point (3(p + q), ¥(p + ¢)) is in I since V(3(p + q),
Hp + q)) = V(x, x).

Similarly if Wf[r, x] < Wf[x, u] then if g(u) > g(x), the point (p, p) is in I
since V(p. p) = V(x, x) and if g(u) < g(x), the point (3(p + q), 3(p + q)) is in I
since V(3(p + q), 3(p + q)) = V(x, x).

Thus if there is a number x in the segment (p, 4(p + g)) such that (x, x) is in I,
then either the point (p, p) is in I or the point (3(p + q), ¥(p + g))isinI.

Now suppose (x, y) is a point in I with x < y. Either g(u) < g(y), or g(u) = g(y).

If g(u) Z g(y), then V(x, x) = V(x, y) and (x, x) is in I and thus either the point
(p, p) is in I or the point (4(p + q), 3(p + q)) isin I.
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Suppose g(u) < g(y). Then V(x,3(p + q)) = V(x, y) and (x, ¥(p + q)) is in I.
Either g(r) < g(x) or g(r) > g(x).

If g(r) < g(x), then V(3(p + q). 3p + q)) =Z V(x,3(p + q)) and (3(p + 9),
p + q))isin I. If g(r) > g(x) then ¥(p, 4(p + q)) = V(x, 4(p + q)) and the point
(. 3(p + q)) isin L.

Thus I contains one of the following points: (p, p), (p, 3(p + q)) and (3(p + 4),
3(p + q)) and since O[D — D, + {[r,s], [s, t], [t, u]}, /. g] = O[D. /. g] then one
of the following is true:

O[D,f,g] = O[D — D, + {[r, p]. [P, u]}. /. 9],
O[D,f,g] = O[D — D, + {[r, p]. [P, 3(p + @)], [3(p + 9), u]}. £, 9],

0[D,f,¢] < O[D = Dy + {[r. 3(p + a)}, [3(p + 4). u]}. /. 4]

So there exists a subdivision D’ of [a, b] such that no end of D’ is in the segment
(p. 3(p + q)) and O[D",f, g] = O[D. . g].

Now suppose D is a subdivision of [a, b] and [p, ¢] is an interval of E(G) such that
some end of D is in the segment (4(p + g), ). Let [r, s] denote the first interval
of D which has a point in [3(p + q), g] and let [, u] denote the last interval of D
which has a point in [4(p + q), q]-

The following is a proof that there is a subdivision D’ of [a, b] such that no end
of D' is in [¥(p + q), q] and O[D',f, g] = O[D, f, g].

Let D, denote D . [r, u]. It is apparent that

O[D — D, + {[r,s], [s. t], [t u]}, f, g] = O[D, f, 4] .

(If s = ¢ then [s, t] is deleted.)

Let V denote the continuous function such that V(x,y) = O[D — D, +
+ {[r, x], [x, »], [y, ul},f, g] with closed domain all (x,y) such that xe
e[4(p + 9). 4], ye[4(p + 9). q] and x < y. (If x = y then [x, y] is deleted and
if y = u = b then [y, u] is deleted.)

The following is a proof that the inverse image P of max V(x, y) contains one of
the following two points: (3(p + g), 3(p + ¢)) and (g, 9).

In this proof, which is similar to the preceeding, each time an inequality concerning
two points of V arises note the following:

and

1. g is constant on [4(p + g), q] by definition

2. f is non-increasing on [ p, ¢] by definition and [6.1].

Suppose (x, y) is a point in P, with x = y and with x in the segment ((p + q), q).
Either Ig(x) - g(r)| > Ig(u) - g(x)l or ’g(x) - g(r)l < |g(u) - g(x)l.

If |g(x) - g(r)| > lg(u) - g(x)| then if Wf[r,4(p + q)] < W/[r, x] the point
(9, g) is in P since V(q, q) = V(x, x) and if Wf[r, 4(p + q)] = Wf[r, x] the point
((p + ), #(p + q)) is in P since V(i(p + q), 3(p + q)) = V(x, x).
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Similarly if |g(x) — g(r)| < |g(u) — g(x)| then if Wf[x, u] > Wf[q, u] the point
G + a), ¥(p + q))isin Psince V(3(p + q), (p + q)) = V(x, x)and if Wf[x, u] =
= Wf[q, u], the point (g, q) is in P since V(g, q) = V(x, x).

Thus if there is a number x in the segment (3(p + q), g) such that (x, x) is in P,
then either (3(p + q), 3(p + ¢)) is in P or (g, ¢) is in P.

Suppose (x, y) is a point in P with x < y. Then V(x, x) = V(x, y) and thus (x, x)
is in P. Therefore either ((p + q), 4(p + q)) or (g, g) is in P. This ends the proof
that there exists a subdivision D’ such that no end of D' is in the segment (3(p + q), q)
and O[D',f,g] = O[D, f, g].

Therefore if D is a subdivision of [a, b] and [p, q] is in E(G), there exists a sub-
division D" of [a, b] such that D’ has no ends in the segment (p, 3(p + g)) nor the
segment (3(p + ¢), g) and O[D', f, g] = O[D, f, g].

It follows from this that if 4 is a subdivision of [a, b] then there exists a sub-
division B of [a, b] such that if [p, q] is in E(G) then no end of B is in the segment
(p,4(p + q)) nor in the segment (3(p + q),q) and O(4,f,g) < O[B,f, g] =
= O[B, F, G].

IITI. PROOF OF THEOREM 2

The following construction is a proof that Theorem 2 follows from Theorem 1.
See Figure 7.

For each positive integer n, let (F,,, G,,) denote an ordered pair of continuous
functions on the closed interval I, = [1/2n, 1/(2n — 1)] such that (F,dG, > 1
on I,, such that O[D, F,, G,] < (3)" for each subdivision D of I, and such that each
of F,(x) and G,(x) is in [1/(n + 1), 1/n] for each x in I,.

Let (F, G) denote the ordered function pair with x-projection the interval [0, 1]
such that if n > 0, then (1) F(x) = F,(x) and G(x) = G,(x) for each x in I,, and (2)
if x is in [1/(2n + 1), 1/2n] then the point (x, F(x)) is on the straight line con-
necting the point (1/(2n + 1), F,.;(1/(2n + 1))) and the point (1/2n, F,(1/2n)),
and (3) the point (x, G(x)) is on the straight line connecting the point (1/(2n + 1),
G,+:(1/(2n + 1))) and the point (1/2n, G,(1/2n)) for each x in [1/(2n + 1), 1/2n]
and (4) (0, 0) is a point of each of F and G.

This pair of functions (F, G) is an ordered pair having the following properties
on the interval [0, 1]:

(1) each of F and G is continuous on [0, 1],
(2) fi F dG does not exist, and .
(3) the function pair (F, G) satisfies the weak-Cauchy condition.

To show that (3) is true, assume 0 < ¢ < 1 and let N denote a positive integer
such that 12 < Ne and such that ) (4)' < de. Note that [, F dG exists for each
i=N
a in (0, 1).
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Let 0 denote a positive number such that if E is a subdivision of [1/2N + 1), 1]
with norm less than §, then O[E, F, G| < i¢ and such that

1/1 1
<f— = ——-).
2\2N 2N +1
Let D denote a subdivision of [0, 1] with norm less than J. Let ¢ denote an end of

an interval of D such that ¢ is in [1/(2N + 1), 1/2N].
The following subsets of D are used to show that O[D, F, G] < e.
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Il

D, =D.[11]
Dz {[pa L]] : [p, q] € D, [p, q] = [0’ l]
[p, q] & I, for each n,

g el, for some n, p * 0}.

Dy = {[p,q]:[p.a]eD, [p.q] = [0, 1]

[p. q] « 1, for each n, ‘

pel, for some n},

Dy ={[p.a]l:[p.aleD, [p,q] = [0,1],

[p, q] & I, for each n,

[p.q1¢ Dy, [p,ql¢ Ds, p + 0}

D¢ = {[P, q] : [P, 61] e D, [p, q] c I, for some n,

[p, q] c [O, t}}

Ds contains only the leftmost interval of D.

Note that O[ Dy, F, G] < ¢/3.

To show that Y {W f[p, q] : [p, ] € D,} < ¢/3 note the following. Each interval
in the sequence Iy, I,, ... intersects no more than two members of D,. If [p, q]
is an interval of D, then

1 1

wripq T -

n n+2

> : 1, intersects [p, q]} .
Thus
Swrlpa]: [pale pi} 523

since 1/N < g[12.

Likewise Y {W F[p, q] : [p, q] € D3} < ¢/3.

To show that Y {W F[p, q] : [p, q] in D,} < ¢/6 note that if n is a positive integer,
then F is non-decreasing on [1/(2n — 1), 1/2n] and (F(q) — F(p)) < (1/n —
— 1/(n + 2)). Thus

Z{WF[P, q]:[p.q] in Dy, [p.q] = [—im i]} < <1 _ 1 )

1 ! >§4s/12=s/3
i i+ 2

2n—12n n n+2

and thus

i+ 2

. ad 1
S{WFTp.a]: [p.a] in D < 3 ( ) < of6.
Also if [p, q] is the interval in Dy then W F[p, q] < ¢/12
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5
Therefore Y {WF[p, q] :[p,q] in U D;} < ¢ since
i=2

ef3+¢3+¢ef6+¢ef12<¢.
Since 0 < G(x) < ¢/12 for each x in [0, {] then

0[_0 D, F,G] < ¢(g]12) < ¢[12.

Finally since O[ D, F, G] < ) O[D,F,,G,] < ¥ (3 <e¢[3andsince O[ Dy, F,G] <
n=N i=N
< ¢[3, then O[D, F, G] <.

IV. CONCLUSION

The work of this paper could be considered in the following context. Suppose f
is a-function on the interval [0, 1], suppose 4" is a direction (filter base) in the set
of all partitions of [0, 1] and the following weak-Cauchy condition is true: for each
positive number ¢ there exists a member N of A~ such that

l.;f(xi) mA,; ——.;f(xg) ma,| <e

where (x;, 4,)5_, and (x}, 4;)i_, each is a partition in N and where partition is defined
as in [4] and thus means the finite set of number-interval pairs used instead of just
the subdivision consisting of the intervals used.

The weak Cauchy condition is equivalent to integrability or is not equivalent to
integrability depending on how A4~ and mA are defined. This paper has considered
an instance where the weak Cauchy condition is not equivalent to integrability. If
the following condition is added to the weak Cauchy condition, then, by the triangle
inequality, the two conditions together are equivalent to f being integrable: for each
positive number ¢, there exists a member N of 4 such that if each of (x;, 4;)i-,
and (y;, B;)i=, is a partition in N then there exist sequences (x});-, and (y;)i-, such
that each of (x, 4;);-, and (v}, B,)i=, isin N and

k 1
‘Z:lf(x;) mA; — ';f(y;.) mBj| < e

The following are a few example definitions for functions over an interval [a, b]
with mA meaning the length of the interval 4. The closure of the A4,’s is indicated
by A; so that one might consider the A4,’s as right closed intervals or left closed
intervals as well as intervals closed on each end.

Definition I. N € 4" means there exists a subdivision (C;)i-, of [a, b] such that P
is in N if and only if P is a partition (x;, 4;)i-, with (4;)i-, a refinement of (C;)j-,
and x;e 4, i=1,..., k.
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Definition II. N € 4 means there exists a number § > 0 such that P is in N if and
only if P is a partition (x;, 4;)i-, such that

A< (x;— 8, x;+6) and x;ed;, i=1,..,k.

Definition ITI. N € 4" means there is a function § with 6(x) > 0 for each number x
such that P is in N if and only if P is a partition (x;, 4;)i-, with 4; = (x; — &(x,),
x; + 0(x;)) and x;€ 4;, i = 1,...,k, [1,2,3].

Definition IV. N € 4" means there is a function ¢ with 6(x) > 0 for each number x
such that P is in N if and only if P is a partition (x;, 4,)—; with 4; = (x; — 5(x;),
x; 4+ 8(x),i=1,.., k

For Definitions I and II the weak Cauchy condition implies integrability. An alter-
ation by J. Kurzweil gives us Definition IIT where the weak Cauchy condition does
not imply integrability since with Definition III the weak Cauchy condition holds
for the function f where f(x) = 1/x if x € (0, 1], f(x) = 0if x e [—1, 0], but f is not
integrable with respect to Definition III over the interval [-— 1, 1].

To show the weak Cauchy condition holds for this example, suppose ¢ > 0.
Let p,, ps, P3, - .. denote an infinite decreasing sequence of numbers converging to 0
such that if n is a positive integer then |f(p,) — f(p,+,)| < & For each positive
integer n, denote by J, a positive valued function such that if x + p, then 6,(x) =
= %Ix - p,,| and 6,(p,) = 1. Let &’ denote a positive valued function such that §'(x) =
= 3|x| if x # 0 and 6'(0) = 1. Let & denote min (&', {5, : n=1,...}). If (x;, 4,)i=,
and (y;, A;)i=, each is a partition of [—1, 1] with 4, in (x; — 8(x;), x; + d(x;)),

n k

x;€ A, y;€ A, then Y f(x)) mA; = Y f(y;) ma4y| <e.
i=1 i=1

Definition IV, a further alteration by E. J. Mc Shane, which merely delates the
phrase “x; is in 4;” is enough to guarantee that if each of (x;, A)s=q and (y;, B)i=,
is in N, then there exists a sequence (C;)j-, of intervals each of which is the inter-
section of some member of (4;)f-; and some member of (B;);; such that there
exist two members (w;, C;)i—; and (v;, C;)j=; of N with w; = x; for some i,j =
=1,...,tand v; = y;forsome i, j = 1, ..., t. Thus if some function is not integrable
by Definition 1V, then the weak Cauchy condition does not hold.

In a more general setting, this idea can be used with the definitions discussed in
[4] which have property (4.4) of [4], to show that for each such integral definition,
if the weak Cauchy condition has meaning then it implies integrability.

The question, “Why doesn’t the example just given, f(x) = 1/x if xe(0,1],
f(x) =0 if xe[—1,0], furnish a counter example with respect to Definition IV
as well as with respect to Definition III?”, is an enlightening puzzle concerning the
two definitions, even though one could take a less challenging attitude that the
preceeding proof is all the answer that is necessary.
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The main results of this paper concern Definitions I and II with mA meaning
g-length of A for a real valued function g, giving us the Riemann Stieltjes refinement
integral and the Riemann Stieltjes norm integral respectively.

In fact, by the proof of Theorem 2, there exists an ordered function pair (F, G)
such that F is not G integrable by the Riemann-Stieltjes refinement interior definition,
but the weak Cauchy condition with respect to the Riemann-Stieltjes norm definition
is satisfied by (F , G). Thus, with respect to each of the definitions, Riemann-Stieltjes
refinement interior, Riemann-Stieltjes norm interior, Riemann-Stieltjes refinement,
and Riemann-Stieltjes norm, F is not G integrable, but the weak Cuachy condition
holds for F and G, with respect to each of the four definitions, where “interior”
signifies that the numbers which determine the ordinates of F used in the Riemann
sums are restricted to the corresponding segments (open intervals) of the Riemann
sums, while without the word, interior, these numbers are in the corresponding closed
intervals of the Riemann sums.

Another interesting example results from a sequence (fi, g:)7 similar to the
construction of Theorem 1 such that the uniform limits F = lim f; and G = lim g;

i— i—» o
exist with [F dG nonexistant and the weak Cauchy condition holding for F and G.
There exists such an example which works for all four Riemann-Stieltjes definitions
just mentioned.

The example constructed in the proof of Theorem 2 was chosen for presentation
in this paper because the two functions F and G, are each continuous and because
the number 0 is an isolated point of nonintegrability. That is, if # is a number-in (0, 1)
then F is G integrable on the interval [, 1], and F is not G integrable on [0, 1].
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