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ON REPRESENTATIONS OF TOLERANCE ORDERED
COMMUTATIVE SEMIGROUPS

BeDRICH PONDELICEK, Praha

(Received Dezember 7, 1979)

In this paper we shall give an algebraic representation and a categorial representa-
tion of tolerance ordered commutative semigroups. This investigation was started
by V. Trnkova [1] and [2] who considered the representations of non-ordered
commutative semigroups. In [3] J. Adamek and V. Koubek studied the representa-
tions of ordered commutative semigroups.

By a tolerance ordered commutative semigroup (S, +, <, ~) we mean an
ordered commutative semigroup <S, 4+, <) on which there exists a tolerance (i.e.,
reflexive and symmetric) relation ~ satisfying the following conditions:

(1) If x~uano y ~uv, then x +y ~u + 0.
(2 If x ~y, x<u and y < v, then u ~ v.

Let & =<8, +, <, ~), Z2=(P, +,X,~) be two tolerance ordered com-
mutative semigroups. A mapping h: S — P is said to be an isomorphic mapping
of & into P if h is an injective homomorphism of the semigroup ¢S, +) into the
semigroup (P, + ) satisfying the following conditions for x, y € S:

(3) x £ y if and only if h(x) Z h(y);

(4) x ~ y if and only if h(x) ~ h(y).

We shall say that & is a tolerance ordered subsemigroup of P (write & < 9’)
if S € P and the embedding of S into P is an isomorphic mapping of & into Z.

Proposition 1. Let a, b be two elements of a tolerance ordered commutative semi-
group & =<8, +, £, ~) such that a ~ b. Then there exists a tolerance ordered
commutative semigroup ? = (P, +, <, &) with & < #? and card P = N,.card S
such that z <X a, z X b for some z € P.

Proof. Let & = (S, +, £, ~) be a tolerance ordered commutative semigroup
and let a, be S and a ~ b. By N we denote the additive semigroup of non-negative
integers. We can suppose that 0e N\ S. Put Z = Su {0} withx + 0 =x =0 + x
for all x € Z. Define 0 < 0 and 0 ~ 0 and suppose that there exists no element x of S
such that either 0 £ x or x £ 0 or 0 ~ x. It is easy to show that {(Z, +, <, ~)
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is a tolerance ordered commutative semigroup. Put P = Z x N. Evidently, card P =
= N, .card S.

Define an operation + in P:(s,m) + (t,n) = (s + 1, m + n) for s,1eZ and
m, n € N. It is clear that (P, +) is a commutative semigroup. For any s € S we put
¢(s) = (s, 0). Then ¢ is an isomorphic mapping of the semigroup {S, +) into the
semigroup (P, +).

Define a relation < on P : (s, m) Z (¢, n) for s,1e Z and m, n e N if and only if
m=my; +m, +n and s + ma + myb <t for some my, my, e N. (Notice that
Ox = 0and kx = (k — 1)x 4+ x for xe Z and k — 1 € N.) It is clear that the rela-
tion X is reflexive. We shall show that =< is transitive. Let s, t,ue€ Z, m,n, pe N,
(s,m)Z(t,n) and (1,n) 2 (u, p). Then m = m; + my, + n, s + mya + myb < 1,
n=mny; +n, + pandt+ na+ n,b =< u for some my, my, ny, n, € N. Hence we
have m = (m, + ny) + (my + ny) + p, s + (my +ny)a + (my + n,)b < u and
so (s, m) = (u, p). Now we shall prove that the relation X is antisymmetric. Sup-
pose that (s, m) < (t,n) and (1, n) < (s, m), where s,1€Z and m,neN. Then
m=m; +my, +ns+ma+mbstn=n+n,+mandt+ nja+ n,b =
< s for some my, m,, ny, n, € N. Hence we have m; = m, = n; = n, = 0 and so
m = n, s = t. Therefore, (s, m) = (¢, n). Finally, we shall show that the order < is
compatible with +. Let (s, m), (1, n), (u, p) € P and (s, m) Z (t, n). Then m = m, +
+ m, + nand s + mya + m,b < t for some m,, m, € N. Hence we have m + p =
=my 4+ my, + (n+ p), (s+u)+ mua + myb <t + u and so (s, m) + (u, p)
=Z(t,n) + (u, p). Thus <P, +, =) is an ordered commutative semigroup. It is
casy to show that for s, €S we have s < ¢ if and only if ¢(s) = (5, 0) Z (1, 0) =
= ¢(t). This implies that ¢ is an isomorphic mapping of the ordered semigroup
(S, +, =) into the ordered semigroup (P, +, X).

Define a relation ~ on P : (s, m) ~ (t,n) for s, t € Z and m, n e N if and only if
there exist (s;, p), (t; p) € P such that (s;, p) Z (s, m), (t, p) 2 (1, n) and s; ~ 1.
Clearly, =~ is a tolerance relation on P. We shall show that ~ is compatible with +
(i.e., ~ satisfies (1)). Let (s, m), (t, n), (u, p), (v, r) € P and (s, m) = (1, n), (u, p) ~
~ (v, r). Then there exist (s, k), (¢, k), (uy, I), (vy, ) € P such that (s, k) < (s, m),
(t;, k) Z (1, n), (ug, [) 2 (u, p), (v, 1) 2 (v, 7), sy ~ t; and u; ~ v,. Hence we have
sy +up, k+ )2 (s+u, m+p), (ty+v, k+)Z2(t+v, n+7), sy +u ~
~ t; + vy and so (s, m) + (u, p) = (¢, n) + (v, r). 1t is easy to show that the rela-
tion = satisfies (2) nad so (P, +, <, &) is a tolerance ordered commutative semi-
group. Now we shall prove that for s, t € S we have s ~ tif and only if (s, 0) =~ (1, 0).
Evidently, s ~ t implies that (s, 0) ~ (1, 0). Suppose that (s, 0) ~ (¢, C). Then there
exist (sq, k), (t;, k) € P such that (s;, k) < (s,0), (t;, k) Z(1,0) and s; ~ t,. This
implies that k = k; + k, + kj; for some ky, k,, k5 € N such that either

x=s5 +kia+ka+kb=ss, y=t; +kia+ kyb+ kb=t
or

Ii

x=sl+kla+k2b+k3b§5, y t1+k1a+k2a+k3b§t.
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Since by hypothesis a ~ b, we have x ~ y and so s ~ t. Hence ¢ is an isomorphic
mapping of the tolerance ordered semigroup Sinto the tolerance ordered semigroup P.
We put z = (0, 1). Tt is clear that z < (a, 0) = ¢(a) and z < (b, 0) = ¢(b). This
concludes the proof.

Let <Q, +, <) be an arbitraty ordered commutative semigroup. We can define
a compatible tolerance &~ on Q in a natural way. For x, y € Q we put x ~ y if and
only if there exists z € Q such that z < x and z X y. Clearly, <Q, +, X, &) is
a tolerance ordered commutative semigroup. We shall write ~ = ().

Proposition 2. For every tolerance ordered commutative semigroup & = (S, + <,~)
there exists a tolerance ordered commutative semigroup 2 = <{Q, +, X, 1(X)) such
that ¥ < 2 and card Q = N, . card S.

The proof is a simple adaptation of the proof of Theorem 1.3 [3] and proceeds
in two steps by iterating Proposition 1.

(I). For & there exists a tolerance ordered commutative semigroup &* =
= (8% +, =X, ~) with & g &%, card S* = Ny.card S and whenever x ~ y
in S(!), then exists z in &* such that z < x and z < y.

Proof. By C we denote the set of all couples (x, y)in & with x ~ y(ie, C= ~
on S) and we choose a bijective mapping m : « — C, where « = card C. Define
a chain of semigroups &; = <S;, +, <, ~), where i is an ordinal < «, i.e., i€a.
Put ¥, = &. Given &;, then according to Proposition 1 there exists a tolerance
ordered commutative semigroup %, with respect to the couple m(i) = (x, y)in S
such that ¥, ¢ &;,,card S;,, = Ny.card S;and z < x, z < yforsome z€ S, ;.

Given &, j < i, for a limit ordinal i, we put S; = |J S;. This is a tolerance ordered
i<i
commutative semigroup &;; +, < and ~ are defined in the obvious inductive way.
The tolerance ordered commutative semigroup &* with S* = (J S; satisfies the
i<a

condition (I).

(II). Using the symbol * as in (I) we define a sequence of tolerance ordered com-
mutative semigroups 2, = {(Q,, +, <, ~) such that 2, = & and 2,,, = (2,)*
for any n e N. We can prove by an analogous argument as in (I) that 2 = (Q, +,

0
<, =) with Q =) Q, is a tolerance ordered commutative semigroup, & < 2
n=0

and card Q = X, . card S. We shall show that & = ¢(X). It follows from (2) that
(=Z) & ~. Let x & y in 2. Then x ~ y in 2, for some n e N and so there exists z
in 2,4+ such that z < x and z £ y. Therefore x (<) y in 2 and thus we have 2 =
=0, + 2, (2.

Now, we shall prove an algebraic representational result. Let o« be an arbitrary
cardinal. Denote by N* the additive semigroup of all functions f: o — N, and by
exp N” the set of all non-void subsets of N*. For A, Beexp N* we put A + B =
={f+g; fed and g e B}. Then {(expN% +, ,7(g)) = A, is a tolerance
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ordered commutative semigroup (via inclusion). It is clear that 4 7(<) B if and only
if AnB % 0.

Theorem 1. (A", are universal tolerance ordered commutative semz’groups.)
For every tolerance ordered commutative semigroup & = <S, +, £, ~) there
exists an isomorphic mapping h of & into N, where « = N, . card S.

Proof. Given &, then according to Proposition 2 there exists a tolerance ordered
commutative semigroup 2 = <Q, +, <, (<)) such that & < 2. It follows from
the theorems of 1.3 [3] that <Q, +, =) is an ordered subsemigroup of an ordered
semigroup <R, +, =<). There exists an injective homomorphism h of (R, +) into
{exp N%, + ), where « = N, . card Q = N, . card S, such that x <y, if and only if
h(x)  h(y) for any x, y e R. If x t(X) y in R, then there is z € R such that z X x
and z X y and so h(z) € h(x) and h(z) < h(y). Then h(z) < h(x) n h(y) # 0 and
so h(x) 1(€) h(y) in exp N* Conversely, if h(x) n h(y) # @ then it follows from the
construction of h in the second theorem of 1.3 [3] that there is z € R such that
h(z) € h(x) o h(y). Then z < x and z < y. Putting # = (R, +, X, 1(X)) we see
that h is an isomorphic mapping of Z into 4",. To prove our theorem, it suffices to
show that & < Z.

Itis clear that 2 € Zif and only if o(X) N (Q x Q) € (=
tion, we assume that there exist a, be Q such that a7(=
Putting W = {we R; w =< a and w < b} we obtain that

). By way of contradic-
)b and anont(<)b.

(5) W+0=WnQ.

It follows from part (II) of the first theorem of 1.3 3] that R = G R,, where Ry = @
and R, € R, for any n € N. According to (5) there exists m enl\_losuch that

(6) WAR,., #0=R,nW.

By part (I) of the first theorem of 1.3 [3] we have R,,,; = |J Q; for a certain ordinal «,

i<a
where Q = R, and Q; £ Q; for arbitrary ordinals i < j < a. It follows from (6)
that there exists an ordinal f such that 0 < f <a, Wn Qy 0 and Wn Q; =0
for any ordinal i < B. If B is a limit number, then it follows from (I) of 1.3 [3]

that Q; = {J Q; and so Wn Q; # 0 for some j < f, which is a contradiction. If
i<p

is an isolated number, then there exists an ordinal y such that § = y + 1. It is clear

that a, b € Q,. Since Wn Q4 # 0, we have z < a, z X b for some z € Q. It follows

from (c) of 1.2 [3] that x < a, x < b for some x € Q, and so Wn Q, * 0, which

is a contradiction. Consequently, 2 = £. Since ¥ < 2, we have & < X.

Note 1. Putting ~ = (<) in Theorem 1 we obtain Addmek-Koubek’s Theorem
(see [3]):

For every ordered commutative semigroup & = (S, + <5 there exists an
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injective homomorphism h of (S, +) into {exp N*. +) (a = N,.card S) such
that x < y if and only if h(x) < h(y) for all x, y € S.

By a tolerance commutative semigroup <S, +, ~> we mean a commutative
semigroup ¢S, +) on which there exists a tolerance relation ~ satisfying the con-
dition (1).

Corollary 1. For every tolerance commutative semigroup & = (S, +, ~)
there exists an injective homomorphism h of <S, +) into {exp N% +) (a = N,.
.card S) such that x ~ y if and only if h(x) N h(y) % 0 for all x, y € S.

The proof follows from Theorem 1 when we put < = id;.

Note 2. It is clear that ids = t(ids) and so Theorem 1 implies Trnkovéa’s Theorem
(see [1]):

For every commutative semigroup & there exists an injective homomorphism h
of & into {expN*, +) (o = N, .card S) such that x % y if and only if h(x) N
A h(y) = 0.

Finally, we shall show a categorial representation of tolerance ordered commutative
semigroups.

Let 2 be a category. Denote by [ [ (or V) the sum and by [] (or x) the preduct
of objects in 4. We write A =~ B if 4, B are isomorphic objects. An object A is said
to be a summand of an object Bif A v X = B holds for an object X. We shall say
that objects A4 and B have a common nontrivial summand if there exist objects C, X
and Ysuch that A ~ C v X, B~ C v Yand C is not isomorphic to a sum of the
empty collection.

A category A is said to be distributive if it has all sums and finite products and if
any collections {A4,},; and {B;} ;.; of objects satisfy

(LJIA") X (jSUJB,)g I 4:x B;.

(i, )el xJ
(See [2])

Let A4 be an object in a distributive category. By A° we mean a product of the empty
collection. Put A"** = A" x A for any n € N. A collection {4} of objects in a dis-
tributive category 4  is said to be t-independent if the following implication holds.

Let f;eN' (jeJ) and g, e N' (k e K). If the objects [[ [1A4F®, 1T []A%?

jeJ el keK el
have a common nontrivial summand, then f, = g, for some a € J and some b € K.

Theorem 2. If a distributive category A" with products has arbitrarily large
t-independent collections of objects, then for every tolerance ordered commutative
semigroup & = S, +, <, ~) there exists a collection {T,} (s€ S) of S-indexed
objects in A" such that for x, y € S we have

() Ted T, if x + »;
(ii) T, x T, = T,

x+ys
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(iii) T, is a summand of T, if and only if x < y;
(iv) Ty, T, have a common nontrivial summand if and only if x ~ y.

Proof. Put o = N, . card S. Then there exists a t-independent collection {4},
of objects in A, where oo < card I. It follows from Theorem 1 that there exists an
isomorphic mapping of & into A”,. It is easy to show that there exists an isomorphic
mapping of A", into A", = (exp N', +, <, 1(<)) and so there exists an isomorphic
mapping h of & into A";. We can see that every t-independent collection of objects
is independent in the sense of [3] and so it follows from Theorem 2.4 [3] that there
exists a collection {T;} (s € S) of S-indexed objects in A~ satisfying the conditions (i),
(ii), (iii) and

(iv') if x ~ y for x, y € S, then T, and T, have a common nontrivial summand.

To prove our theorem it suffices to show that the following implication holds:

(iv") If T, and T, have a common nontrivial summand, then x ~ y in .

Suppose that T, and T, have a common nontrivial summand. According to the
proof of Theorem 2.4 [3] we have

To=1I T4, 7, =11 [T4,

v feX iel v geY iel

where X = h(x), Y = h(y), y = card N' and the symbol [[A means the sum of y

b
copies of A. Since the collection {4;} ; is t-independent, we have X N Y # 0 and so
h(x) ©(<) h(y) in A",. Hence, by (4), we have x ~ y in &.

Corollary 2. If a distributive category A with products has arbitrarily large
t-independent collections of objects, then for every tolerance commutative semi-
group & = (S, +, ~) there exists a collection {T,} (s€S) of S-indexed objects
in A" such that (i), (ii) and (iv) from Theorem 2 hold for x, y € S.

Note 3. The following categories are distributive with products and have arbitrarily
large t-independent collections of objects: completely regular topological spaces,
universal algebras with two unary operations (see [2]), posets, symmetric graphs
(see [4]) and some others. :
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