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0. INTRODUCTION

An equational theory of type 4 is a set of equations (identities, ordered pairs of
terms) of type 4 containing all its consequences. There are various papers devoted
to the study of the lattice %, of equational theories of an arbitrary type 4 (or to
the study of the lattice of varieties of 4-algebras, which is antiisomorphic to Z,);
some of them are listed in the bibliography at the end of this paper. The present trea-
tise will be a continuation of this study. It will be divided into several parts. The
present Part 1 brings the proof of a single result — the description of all modular
elements of the lattice .#,, i.e. clements that are not the central elements of any
subpentagon of .Z,. Various aspects and consequences of this result will be contained
in a further part of this treatise. The result is formulated in Theorems 4.1, 4.2 and
5.1. Theorems 4.1 and 4.2 solve the case of a small type, while in Theorem 5.1 nine
conditions necessary and sufficient for an equational theory of a large type 4 to be
a modular element of ¥, are formulated. The proof of 5.1 is divided into six sec-
tions; in Sections 6, 7 and 8 the necessity and in Sections 9, 10 and 11 the sufficiency
of the nine conditions is proved. For every full set U of A-terms (i.e. a set of terms
such that if te U then f(tf)e U and u e U for any substitution f and any term u
extending t) we can define two equational theories My and Ny as follows: (a, b) € My
iff a, b are terms such that either a = b or a, beU; (a, b)eNU iff either a = b
or a, be U and a, b contain the same variables. It turns out that My and Ny are
modular elements of % ,. Moreover, for any modular element T of Z, (in the case
of a large type 4) there exists a full set U of terms such that T differs only “a little”
from either My or Ny; in fact, Tresults from either My or Ny by adding a set of equa-
tions of the form (a, p(a)) where p is a permutation of the set of variables occurring
in the term a. The following condition is necessary (but not sufﬁcient) for T to be
modular: for every term a, the set of the permutations p such that (a, p(a)) e T is
a modular element of the subgroup lattice of the symmetric group over the (finite)
set of variables occurring in a. For the description of all modular elements of £,
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it is thus necessary to know all modular elements of the subgroup lattice of the
symmetric group over any finite set. These modular subgroups are described in Sec-
tion 3. In Section 1 we give a brief formulation of some basic notions from equational
logic that are necessary for our investigation. For a more detailed explanation
of these notions see e.g. 3], [12], [13], [17].

1. BASIC NOTIONS FROM EQUATIONAL LOGIC

By a type we mean a set of operation symbols. Every operation symbol F is as-
sociated with a non-negative integer, called the arity of F. Symbols of arity n are
called n-ary; for n = 0, 1, 2, n-ary symbols are called nullary, unary, binary. A type
containing either at least one symbol of arity =2 or at least two unary symbols is
said to be large; all the remaining types are said to be small.

We fix an infinite countable sequence X,, x,, X3, X4, ... of symbols, called variables.
The set of variables is denoted by V. For every type 4, the set of A-terms is just the
least set with the following two properties:

(i) every variable is a A-term;

(ii) if n 20, Fe 4is an n-ary symbol and t,, ..., t, are 4-terms, then the inscription

F(ty, ..., t,) is a 4-term, too.

Especially, every nullary symbol from 4 is a 4-term. The set of 4-terms is an absolute-
ly free 4-algebra over V (with respect to the operations defined in the natural way);
it will be denoted by W,. If the type 4 is fixed, we write Winstead of W, and call the
elements of W terms; various similar conventions will be often used without explicit
preliminary notice. If F € 4 is unary and ¢ is a term, then the term F(t) will be some-
times denoted by Ft.

The length A(r) of a term ¢ is defined as follows: if te V then A(t) = 1; if t =
= F(ty, ..., t,) then A(1) = 1 + A(ty) + ... + A(1,).

For every term ¢, the set of subterms of ¢ is defined in this way: if t € V'thean ¢ is the
only subterm of t; if t = F(ty, ..., t,) then u is a subterm of ¢ iff either u = t or u
is a subterm of at least one of the terms ¢, ..., t,. The set of subterms of any term ¢
is finite. By a proper subterm of ¢t we mean a subterm of ¢ different from ¢. The set
of variables occurring in ¢, i.e. variables that are subterms of ¢, will be denoted by
var (t); it is a finite subset of V. For every x €V and every term t we define a non-
negative integer P,(t), called the number of occurrences of x in ¢, as follows: if t = x
then P(t) = 1; if te V\{x} then P(t) = 0; if t = F(t;, ..., t,) then P(t) =
= P,(t;) + ... + P(t,). We have x e var (1) iff x e V and P,(t) + 0.

By a substitution (in W,) we mean an endomorphism of the algebra W,. Evidently,
if f, g are two substitutions and f(r) = g(¢) for a term ¢, then f(x) = g(x) for all
x € var (1).

For any set M, the identical permutation of M will be denoted by 1,,. If f is a map-
ping of a set M < Vinto W,, then the mapping f U 1y can be uniquely extended
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to a substitution; this substitution will be denoted by f and we shall sometimes
write f (t) instead of f(¢). If x is a variable and u is a term, then the substitution f,
where f is the (unique) mapping of {x} into {u}, will be denoted by o}. If xe V
and 1, u e W, we put t[u] = o}(t); for every k = 0 we define a term 1{9[u] by
{90u] = u and i Ou] = 1 [Eu]]. 16 var () = {x}, we put f[u] = 1o[u]
and 1®[u] = t9[u].

Evidently, u is a subterm of ¢ iff ¢ = v,[u] for some variable x and some term v
with a single occurrence of x. Using this observation, the notion of an occurrence of
a subterm in ¢ could be defined precisely. A term ¢ is said to be a constant extension
of a term u if there exists a variable x and a term v with a single occurrence of x
such that var (v) = {x} and ¢ = v[u]. Evidently. if the type 4 contains no nullary
symbols then ¢ is a constant extension of u iff t = F, ... F,,(u) for some finite sequence
F,, ..., F, of unary symbols from 4.

Let a, b be two terms. We write a < b if there exists a substitution f such f(a)
is a subterm of b. If @ < b and b < a, we write a ~ b and say that the terms a, b
are similar. Evidently, a ~ b iff b = f(a) for an automorphism f of W,; also, a ~ b
iff b = p(a) for a one-to-one mapping p of var (a) onto var (b). If a < b and a, b
are not similar, we write a < b. There exists no infinite sequence a,, a,, a,, ...
of terms such that a; > a;, for all i.

By an equation (of type 4) we mean an ordered pair of terms (of type 4). An equa-
tion (¢, d) is said to be an immediate consequence of an equation (a, b) if there exist
a substitution f, a variable x and a term ¢ having a single occurrence of x such that
¢ = t1o[f(a)] and d = 15[ £(b)]-

Let E be a set of equations (i.e. a binary relation in WA). By an E-proof we mean
a non-empty finite sequence ay, ..., a, of terms such that for every ie{l, e n}
either (a;_y, a;) or (a;, a;_,) is an immediate consequence of an equation belonging
to E. The number n is called the length of ay, ..., a,. An E-proof a,, ..., a, is said
to be an E-proof from a to b if a;, = a and a, = b. By a minimal E-proof we mean
any E-proof a, ..., a, such that there is no E-proof from a, to a, of length less than
n. An equation (c, d) is said to be a consequence of E if there exists an E-proof from ¢
to d.

By an equational theory of type 4 we mean a set T of equations of type 4 such that
every consequence of T belongs to T. Equivalently: T'is an equational theory of type 4
iff T'is a fully invariant congruence of the algebra W,, i.e. a congruence such that
(a, b) e T implies (f(a), f(b))e T for any substitution f. The set of all equational
theories of type 4 is a complete algebraic lattice with respect to inclusion; it will
be denoted by Z 4. 1y, is the least and W, x W, is the greatest element of £ 4. The
lattice %, is antiisomorphic to the lattice of varieties of A-algebras.

If A, B are two equational theories, then 4 v B (the join of 4, B in the lattice £ )
is just the equational theory generated by A U B. Thus (a, b) € A v B iff there exists
an A u B-proof from a to b. Evidently, a non-empty finite sequence aq, ..., a,
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isan 4 U B-proof iff (a;_y, a;)e A U Bfor alli € {1, ..., n}. The join of an arbitrary
family of equational theories can be described similarly. The meet of a family of
equational theories coincides with its intersection. The lattice %, is a complete sub-
lattice of the equivalence lattice of W,.

For every type 4, one particular equational theory of type 4, namely E,, will
play an important role in this paper. It is defined as follows: (u, v) € E iff var (u) =
= var (v).

By a full subset of W, we mean a subset U such that a € U and a < b imply b e U.

Evidently, if U is a full subset of W, then (U x U) u 1y, is an equational theory.

2. MODULAR ELEMENTS IN GENERAL LATTICES
AND IN EQUIVALENCE LATTICES

An element e of a lattice Lis called modular if (a v e) A b=a v (e A b) for
all the pairs a, b of elements of Lsuch that a < b.

Let Lbe a lattice and e, a, b, ¢, d € L. We write Pent (e, a, b, c,d) if c < e < d,
c<a<b<d,eva=d,enb=c (so that the elements e, a, b, ¢, d constitute
a five-element non-modular sublattice of L).

2.1. Proposition. Let L be a lattice and e € L. The following four conditions are
equivalent:

(1) e is a modular element of L;

(2) e is a modular element of the dual of L;
(3)(@aveyabz=av(eAb)foralla,beLsuch that a < b;

(4) there exist no elements a, b, ¢, d € Lsuch that Pent (e, a, b, ¢, d).

Proof. The equivalence of the first three conditions is clear. (1) implies (4): if it
were Pent (e, a, b,c,d) for some a,b,c,deL, then b=(ave)ab=av
v (e A b) = a, a contradiction. (4) implies (1): suppose that e is not modular, so
that a v (e A b) <(a v e) A b for some a,beL with a < b; then evidently
Pent(e,a v (e A b),(a v e) A b, e Ab, eV a),a contradiction. )

2.2. Proposition. Let M be a set and I an equivalence on M. Then I is a modular
element of the equivalence lattice of M iff I = (N x N)u 1, for some N = M.

Proof. First, let I be modular. It is enough to derive a contradiction from the
existence of pairwise different elements a, b, ¢, d € M such that (a, b) eI, (¢, d)el,
(a, ¢) ¢ 1. Denote by A the equivalence on M with a single non-one-element block
{a, ¢} and by B the equivalence with just two non-one-clement blocks {a, c}, {b, d}.
We have (b,d)e(A vI)n B = A4 v (In B), so that there exists a finite sequence
Qg --, Gy such that ay = b, a, = d and (a;-,, a;)e Au(In B)forallie{l,..., n}.
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Evidently, if ie{1,...,n} and a;_, = b, then a; = b, too. Hence a, = b and we
get a contradiction, since a, = d =+ b.

Next, let I = (N x N)u 1, where N is a subset of M. Suppose that I is not
modular, so that Pent (I, 4, B, C, D) for some equivalences 4, B, C, D. There exists
a pair (a, b)e BN\ A4; since B = I v A, there exists a finite sequence by, ..., b,, such
that by =a, b, =>b and (b;,_y, b)el U A for all ie{l,...,m}. Let a,,...,a,
be a finite sequence of minimal length among all the finite sequences such that
(a9, a,)e BN A and (a;_y, a;)el U A for all ie{l,...,n}. Then (ay, a;) el and
ay =% ay, since otherwise (ao, a;)€ A would imply that ay, ..., a, is a sequence
contradicting the minimality of a,, ..., a,. Hence a, e N. Quite similarly, a,e N
and so (ao, a,,) el n B = A, a contradiction.

3. MODULAR ELEMENTS IN THE SUBGROUP LATTICE OF Sy

For every finite set M we denote by S,, the group of all permutations of M and
by A, its subgroup formed by the even permutations of M. The identical permutation
of M will be denoted by 1, (or only 1). If ay, ..., a, are pairwise different elements
of M and n 2 2 then [ay, ..., a,] denotes the permutation p of M such that p(a,) =
= a,,..., p(a,-1) = a, p(a,)=a, and p(b)=b for all beM~{a;,...,a,}.
If a, ..., a,, by, ..., b, are pairwise different elements of M and n, m = 2, we put
[as, .. a5 by, oo by] = [ay, ..oy ay] [y, -5 bl

3.1. Proposition. Let M be a finite set of cardinality =5; let G be a subgroup
of Sy Then G is a modular element of the subgroup lattice of Sy iff either G = {1}
or G = Ay or G = Sy,

The proof of this proposition will be divided into several lemmas. First of all, the
subgroups {1}, Ay, Sy are modular elements of the subgroup lattice of Sy, since
they are normal subgroups and it is easy to see that any normal subgroup of any
group is a modular element in the subgroup lattice of the group. Nowlet G be a modu-
lar element of the subgroup lattice of S, and G =* {1}. Since 4, is a maximal sub-
group, it is enough to prove G 2 Ay,.

3.2. Lemma. Suppose that there are three pairwise different elements a, b, ce M
such that [a, b, c] € G and [b, c] € G. Then G = Sy,.

Proof. Let d, e be any pair of elements of M such that the elements a, b, ¢, d, e
are pairwise different. Denote by A the subgroup of Sy, generated by [a, d; b, €]
and by B the subgroup generated by [a, b, d, e]. We have A < B and [a, b, d, ] =
= [a,b,c] [a,d; b, €] [a, b, c][a,d; b, e][b,c]e(AdVv G)nB=A4 v (Gn B);
hence G B & A4, so that G B = B, i.e. B = G. We have proved [a, b, d, e] € G.

It is enough to prove that if i,j are two different elements of M then [i, j]€G.
If i,je{a, b, ¢} then either [i,j] = [b,c] or [i,j] = [a,c] = [b,c][a, b,c] or
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[i,j]1 = [a, b] = [a, b, ] [b, c], so that [i,j]eG. If i.j¢{a, b, c} then [i,j] =
=[a, b,j,i][a, b, i,j] [a, b, j, i], so that [i,j] € G by the above argument. Now
it is enough to consider the following case: i ¢ {a, b, ¢} and j = a. Since Card (M) =
> 5, there exists an element ke M\ {a, b, ¢, i}. We have [i, a] = [a, b] [a, b. i, k] .
.[a, b, k, i] and so [i, j] = [i, a] € G by the above proved result.

3.3. Lemma. Suppose that there are two different elements a, b e M such that
[a, b] € G. Then G = S,

Proof. There exist three different elements ¢, d, ee M \ {a., b}. Denote by A the
subgroup of S, generated by [a, ¢, d] and by B the subgroup of S, generated by
[a,c,d] and [a,c]. We have A4 = B, [a,c] = [a,b][a,c, d][a,c, d][a,b].
.[a,e,d] [a,b] [a,c,d]e(A v G)nB = A v (Gn B),sothat G B ¢ A. Hence
either [a,c] e G or [a,d]eG or [c,d]eG. If [a,c]€G then [a, b, c] = [a,c].
.[a, b] € G, so that G = S, by 3.2. If [a, d] € G then [a, b, d] = [a, d] [a, b] € G,
so that G = S,; by 3.2 again. Hence it is enough to consider the case [c, d]eG.
Quite analogously, it is enough to consider the case [c, e] € G. We have [¢, d, e] =
= [c, €] [¢, d] € G; this together with [¢, d] € G gives G = S, by 3.2.

3.4. Lemma. Suppose [a, b, c] € G for some triple a, b, ¢ of pairwise different
elements of M. Then G 2 Ay,.

Proof. It is easy and well known that the group A,, is generated by the permuta-
tions [i, j, k] (i, j, k being pairwise different elements of M). So it is enough to prove
[i, j, k] € G for all triples i, j, k of pairwise different clements of M.

Let d e M\ {a, b, ¢}. Denote by A the subgroup of S, generated by [b, d] and
by B the subgroup generated by [b, d] and [a, d]. We have 4 = B and [a, d] =
= [a,b,c] ' [b,d][a,b,c]le(AVv G)nB=A Vv (Gn B), so that GNn B & A.
This together with 3.3 implies [a, b, d] € G.

Hence if {i, j, k} has at least two elements in common with {a, b, ¢}, then [i, j, k] €
e G. If {i, j, k} has exactly one element in common with {a, b, ¢} (say a = i), then
by the proved result [a, b, k] € G and applying the above argument again we get
la,j, k] €G, ie. [i,j, k]eG. Finally, let {a, b, ¢}, {i,j, k} be disjoint. Applying
the above proved result we get [a, j, k] € G and applying the above result again we
get [i, j, k] € G.

3.5. Lemma. Suppose [a, b; ¢, d] € G for some quadruple a, b, ¢, d of pairwise.
different elements of M. Then G 2 Ay,.

Proof. There exists an element ee M\ {a, b, c, d}. Denote by A the subgroup
of Sy generated by [a, e] and by B the subgroup generated by [a, e] and [b, e].
We have 4 = B and [b, e] = [a, b; ¢, d] [a,e][a,b;c,d]e(AVv G)nB=A v
v (G n B),so that G n B & A. This by 3.3 implies that [a, b, e] e Gand so G 2 A,
by 3.4.
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3.6. Lemma. G 2 A4,,.

Proof. Assume first there exist a permutation p € G and an element a € M such
that the elements a, p(a), p*(a) are pairwise different. Denote by A4 the subgroup
of Sy generated by [a, p(a)] and by B the subgroup generated by [a, p(a)] and
[p(a), p*(a)]. We have 4 = B and [p(a), p*(a)] = p[a, p(a)] p ' €(4d v G)n B =
=Av (G N B), so that G N B & A. It follows from 3.3 and 3.4 that G 2 A,,.

Now assume that p?> =1 for any pe G; let g€ G, q %+ 1. If ¢ is a transposition,
we have G = S); by 3.3. In the opposite case there exist pairwise different elements
a, b,c,de M with g(a) = ¢, q(c) = a, q(b) = d, q(d) = b. Denote by A the sub-
group of S,, generated by [a, b] and by B the subgroup generated by [a, b] and
[c,d]. We have A = B and [¢,d] = g[a,b]ge(4 v G)n B = A v (Gn B), so
that Gn B & A; by 3.3 and 3.5 we get G 2 Ay,.

This completes the proof of 3.1.

Let us recall that x,, x,, x3, x, are four pairwise different variables. We define
three subgroups P, P,, P3 of S, ., x,) as follows:

Py = {1, [xy, %]},
Py = {1, [x1, x3]} = [x2, x3] Py[x2, X3],
Py = {1, [x5, x3]} = [xy, x5] Py[x4, x3].

Moreover, we define four subgroups Q, R;, R,, R; of S,

71 .X2,X3,X4

y as follows:
0 = {1, [xy, x3: X3, Xa ], [X1, X35 X5, X4 ], [ X1, X43 X2, X3},
Ry = QU {[x1, x5, X3, X4 ], [X1, x40 X3, X5 ], [x1. x3]s [%25 x4},
Ry = Q U {[xy, x5, x40 X3], [X1, X3, X4, X,], [x1, X4 ], [0, x3]} =
= [x3, X4 ] Ry[x3, x4],
Ry = Q U {[xy, x3, X3, X4, [X1, X45 X2, X3, [X1, x5 ], [X3, x4} =
= [x3, X3] Ry[x,, x3].
3.7. Proposition. If Card (M) < 3 then every subgroup of Sy is a modular

element of the subgroup lattice of Sy. The subgroup lattice of S, ., has
exactly six elements, namely, the following ones:

{l}s Pl’ PZ’ P3’ A{xl.xz.xs)’ S{x.,x;,x;) .
We have Ay, +, <y = {1, [X1, X2, X3 ], [x1, X3, x5 ]}

Proof. It is evident.

3.8. Proposition. The subgroup lattice of Si,, ., ., . has exactly seven modular
elements, namely, the following ones:

{l}a Qa Rly RZ’ R37 A{x,.xz.x;,xd? S{x;,xz,x;,xd *
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We have Ay, . . o =0 U {[i,j,k]; i.j, ke{xy, X3 X3, Xa}, i #j, 1 ¥k, j * k}.

Proof. It is a routine work of drawing a picture of the subgroup lattice of
Sixy,x2,03,x4 and finding all its modular elements.

4. MODULAR ELEMENTS IN THE LATTICE OF EQUATIONAL
THEORIES OF A SMALL TYPE

4.1. Theorem. Let A be a type consisting of nullary operation symbols only and
let T be an equational theory of type A. Then T is a modular element of &, iff
either T = Wy x Wy or T=(C x C) U 1y, for some C < 4.

Proof. It follows from 2.2, since the elements of £, different from W, x W,
constitute a sublattice of &, isomorphic to the equivalence lattice of 4.

4.2. Theorem. Let A = {F} U A, where F is a unary operation symbol and 4,
is a set of nullary operation symbols; let T be an equational theory of type A.
Denote by Y the set of all the terms t such that var (t) = 0 and (t,t') € T for some
t' % t. Then T is a modular element of &, iff at least one of the following three
conditions is satisfied:

(1) T= (U x U) U 1y, for some full subset U of W,;
(2) TS E; and Y X Y is a block of T:

(3) T < E, and there exists a ¢ € Ay such that whenever t € Y then t = F*c for some
k=0.

The proof of this theorem will be divided into several lemmas.

4.3. Lemma. Let T be modular; let ¢c,de Ay, ¢ +d, k,1 20, (F'c, F'd)e T.
Then (Fc, F**™c) e T for some m > 0.

Proof. Denote by A the equational theory generated by (F'd, F**'d) and by B
the equational theory generated by (F'c, F**1¢), (F'd, F'*1d). We have (F¥c, F**1c) e
€(AvT)nB=Av(TnB). Let ao,...,a, be a minimal AU (TN B)-proof
from F*c to F**1¢. Since {F*c} is a block of 4 and ao * a,, we cannot have (ao, a)e
€ A; hence (ag, a,) € T B. The set {Fc, pk*1¢ pr+2,, ...} is a block of B and so
a; = F**"c for some m > 0. We get (Fc, F**"e)e T, ’

4.4. Lemma. Let T be modular; let ¢, d e Ao, c £ d, k,1=0, mn >0,
(F'e, F**"c)e T, (F'd, F**"d) e T. Then (Fre, Flg)eT

Proof. Denote by 4 the equational theory generated by (F**™c, F**"d) and by B
the equational theory generated by (F¥c, F'd), (Fk*mc Fi**d). We have (Fkc, F'd) e
€(AvT)nB=Av (TnB). Let Gy ...,a, be a minimal AU (TN B)-proof
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from Fc to F'd. Since {F*c} is a block of 4 and ao * a,, we cannot have (a,, a,) €
€ A; hence (ay, a;) e T B. Since {Fc, F'd} is a block of B, a, = F'd. Hence
(Fic, F'd)e T.

4.5. Lemma. Let T be modular and T & E,. Then (1) takes place.

Proof. Since T & E,, there exists a positive integer n such that (F"x,, F"x,) e T.
Denote by U the set of all the terms u such that (u, u) € T for some v #+ u. Evidently,
U is a full subset of W, and it is enough to prove (u, F"x,) e T for all u e U. Let
(u,v)e T and u = v. If either var (u) = 0 or var(v) = @ or u = F*c and v = F'c
for some k, I = 0 and some ¢ € 4,, then (u, F"xl) e T follows from the fact that T
is an equational theory. The case u = F*c and v = F'd where k,1 2 0, ¢,d € 4,
and ¢ # d remains. By 4.3 we have (F*c, F**"c) e T for some m > 0; hence we get
(F*c¢, F'x,)eT.

4.6. Lemma. Let T be modular and T < E. Then either (2) or (3) takes place.
Proof. It follows from 4.3 and 4.4.

4.7. Lemma. Let either (1) or (2) or (3) be satisfied. Then T is modular.

Proof. Suppose that T is not modular, so that Pent (T 4, B, C, D) for some
A, B, C, De #,. There exists a pair (a, b) € B\ A4; since B< T v A, there exists
a T u A-proof form a to b. Let n be the minimal positive integer such that there
exists a T A-proof aq, ..., a, with (ao, a,) € B\ A and let us fix one such Tu 4-
proof ay, ..., a, It is evident that n = 3, n is odd, (a;-q, a;)€ TN A if i is odd and
(a;-y,a;)e ANTIf i is even. For every i€ {0, ..., n} define a non-negative integer
k(i) and an element u;e VU 4, by a; = F*Vu,

Suppose T ¢ E,4. Then T= (U x U) U 1y, for a full subset U of W,. Since
(ap, a;) € T and a, #+ a,, we have a, € U. Quite similarly, a, € U. Hence (a,, a,) €
€ Tn B < A, a contradiction.

Hence T < E, and so either (2) or (3) is satisfied.

Suppose that either uge V or ug = u; = ... = u, € 4,. Evidently, there exists
an m; > 0 such that (a,, F™a,) e T for all i > 0; there exists an m, > 0 such that
(ao, F™ay) € B for all i 2 0; there exists an m; > 0 such that (a,, F™a,) e B for
all i > 0; since either (2) or (3) is satisfied, there exists an m, > 0 such that
(ay, F™a,)e T for all i 2 0. Put m = mymymsmy. If i = 0 then (ao, F™a,) e B
nTc 4, (a, F"a,)e BN T< A, so that (F™a,, F™a,)e B\ A. The sequence
Fimg,, ..., F™g, is evidently a Tu A-proof. Let us fix an i = 0 such that im >
= k(1) — k(0) and im Z k(1) — k(2). Then (Fm*kOy  Fim+kO+K2)-k(y )e 4
and (Fm*HO*k2)-k)y, pim*k2)y ) e T. Hence the sequence F™a,

FimtkO)+k2) =Ky, Fimg, ..., F™a, is a Tu A-proof, too; however, the pair
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(Fimay, Fim+O+K2 =KDy ) belongs to A and so there exists a shorter T'U A-proof,
which contradicts the minimality of n.

We get u, ¢ V. Similarly, u, ¢ V. Evidently, it is enough to consider the case u,, ...
.., u, ¢ V. We have aq,...,a,eC. If C x C is a block of T then (ay, a,)e T
N B < 4, a contradiction. In the opposite case (3) is satisfied and so uy = u; = ...

. = u, € 4,; however, this was already proved to be impossible.

This completes the proof of Theorem 4.2.

5. MODULAR ELEMENTS IN THE LATTICE OF EQUATIONAL
THEORIES OF A LARGE TYPE

If T is an equational theory of type 4, we denote by U the set of all the terms a
such that there exists a term b with (a, b) e T and b # p(a) for any permutation p
of var (a); for every term a we denote by Gr(a) the set of all the permutations p of
var (a) such that (a, p(a)) € T, so that Gy(a) is a subgroup of Sy,(a)-

5.1. Theorem. Let A be a large type and T an equational theory of type A. Then

T is a modular element of & , iff the following nine conditions are satisfied:

(1) Uy is a full subset of Wy;

(2) if u,ve U and var (u) = var (v) then (u, v) e T;

(3) for every t € Wy, the group G(t) is a modular element of the subgroup lattice
Of Svar(t);

(4) if a,beW,, var(a) = var (b) = {x,, X5, x3} and Gy(a) = Gf(b) = Py, then
either a £ b or b £ a;

(5) if a, b e Wy, var (a) = var (b) = {x,, x,, X3}, G(a) = P; and G,(b) =
= Ay, xs.xy then a < b;

(6) if a,teW,, var(a) = {xy, X5, X3}, Gg(a) = P,, var (1) = {x} for some xeV,
t & x and if x has a single occurrence in t, then there exists a positive integer k
with Gr(1%[a]) = Six, vy a3

(7) if a,beW,, var(a)=var(b) = {xy, X3, x3,X,} and Gg(a) = Gy(b) = R,,
then either a < b or b £ a;

(8) there exist no two terms a, b € W, such that var (a) = var (b) = {xy, X,, X3, X4},
GT(a) = Rl and GT(b) = A(Xl:xl’x3)x4}:

(9) if a,teW,, var(a) = {xy, x5, X3, x4}, Gr(a) = Ry, var(t) = {x} for some
x eV, t =+ x and if x has a single occurrence in t, then there exists a positive
integer k with Gr(t*[a]) = Sie, x3.x5.xa1-

Notice that in the case of a large type 4 containing neither nullary nor unary
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symbols the two most complicated of these nine conditions, namely (6) and (9),
are empty.

The proof of this theorem will be divided into the following six sections. In these
sections let 4 be a large type and let T be an equational theory of type 4; put U = Uy.

6. DIRECT IMPLICATION: PRELTMINARIES

6.1. Lemma. Let a € U. Then there exists a term b such that (a,b)eT, b £ a
and var (a) = var (b).

Proof. Since a € U, there exists a term ¢ such that (a, ¢)e Tand ¢ #+ ﬁ(a) for any
permutation p of var (a). Consider first the case var (a) % var (c) Then there exist
a term d € {a, ¢} and a variable x such that x € var (d) and x ¢ var (a) N var (c).
Let us take a non-nullary symbol F e 4 and define a substituion f by f(y) =y
for all y € var (a) n var (c) and f(y) = F(a, a, ..., a) for all the remaining variables y.
It is evident that the term b = f(d) has the desired properties. Now let var (a) =
= var (c). If ¢ £ a, we can put b = c. If ¢ < a, then a = 1,)[c] for a variable x
and a term ¢ with a single occurrence of x; it is easy to see that the term b = t,[a]
has the desired properties.

6.2. Lemma. Let F € A be a symbol of arity n 2 1. Let E = W, x W, be such
that if (u,v) € E then v = F(u, w,, ..., w,) for some terms w,, ..., w,. Let (a,v,) € E
be such that if (u, v)eE then either u = a or u £ a. Let a’ be a term such that
(a, @') is a consequence of E. Then there exist a non-negative integer k and terms

13y oeus t,f, .., t,f, e e ti‘, such that

a’ = F(..F(F(a,ty ooy ty), 13, s 12), ooy B, oo 18)

Proof. Denote by H the set of all the terms of the form F(... F(F(a, tj, ..., 1)),

15, .. 10), .. 5, ... 1k). It is enough to prove that if be H and (b, c) is an im-
mediate consequence of an equation from E U E~! then ce H. Let

b=F(. . FFa,ty .. th), thy o ty),..sts, .. 1) eH

and let (b, ¢) be an immediate consequence of an equation (u, v) € E U E~'. There
exists a substitution f such that f(u) is a subterm of b and ¢ results from b by sub-
stituting f(v) for one occurrence of f(u). If the occurrence of f(u) is contained in
some tJ then it is evident that ¢ € H. Let the occurrence of f(u) be not contained in
any t]. Then it follows from the properties of E and a that f(u) = F(... F(F(a, t}, ...
s tn)s oy e 12)y ooy B3 oo, 1) for some me{0,...,k} and if (u,v)e E”' then
m =# 0. If (u, v) € E then v = F(u, w,, ..., w,) for some w,, ..., w, and we have

¢ =F(... F(F(a, tyy ..os 1), coes 13, s 1), f(w2)s s (W) 5

+1 +1 k k
7S L RN R 1T - I8
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If (u, v) € E~" then u = F(v, w, ..., w,) for some w,, ..., w, and we have

= F(.. F(F(a, tyy .. t}), ooy 37 o m ), ), L, L k) e .

6.3. Lemma. Let T be modular and a € U. Then (a, b) € T for a term b such that
var (a) = var (b) and a is a proper subterm of b.

Proof. Let us fix a symbol F € 4 of arity n = 1. By 6.1 there exists a term ¢ such
that (a,c)e T, ¢ £ a and var (a) = var (c). Denote by A the equational theory
generated by {(c, F(c,...,c)) and by B the equational theory generated by
(a, F(a, ..., a)) and (¢, F(c, ..., ¢)). We have 4 = B and (a, F(a, ...,a))e(4 v T)n
N B = A v (T~ B). Hence there exists an A U (T " B)-proof from a to F(a, ..., a).
Especially, there exists a term b = a such that either (a, b) €A or (a, b) e Tn B.
Since A < E, and B < E,, we have var (a) = var (b). Since ¢ £ a and a #+ b, we
cannot have (a, b) € 4; hence (a, b) € T B. Especially, (a, b) e T. Since (a, b) € B,
it follows from 6.2 that a is a proper subterm of b.

6.4. Lemma. Let T be modular; let p,q,r,s be terms such that p £r, q £,
pEs, gfs, r£s, s£r var(r) =var(s) and (r,s) is a consequence of Ty
v {(p, q)}. Then (r,s)eT.

Proof. Denote by A the equational theory generated by (p, q) and by B the
equational theory generated by (p, g) and (r, s). We have A < B, (r,s)e(4 v T)n
A B =A v (T B) and so there exists a term ¢ =# r such that either (r, ¢) € 4 or
(r,c)e T B. Since p £ r and g £ r, we cannot have (r, c) e A. Hence (r,c)e
€ T B. Now it is enough to prove that if ¢ is a term such that either (r, t) or (s, t) is
an immediate consequence of an equation belonging to {(p, q), (r, s), (¢, p), (s, r)},
then either t = r or ¢t = 5. For the reasons of symmetry it is enough to consider the
case of (r, f) being an immediate consequence of an equation from {(p, q), (r, s),
(g, p). (s, r)}. Since p,q,s £ r, (r, t) is an immediate consequence of (r, s). There
exists a substitution f such that f(r) is a subterm of r and t results from r by replacing
the subterm f(r) by f(s). But f(r) = r, f(x) = x for all x e var (r) = var (s), f(s) = s
and t = s.

If F is an n-ary symbol from 4 and i € {1, ceo n} then for any term u € W, and any
sequences sy, ..., s,€ Wi~! (where k = 0) we define a term yg (u; sy ...;5,) as
follows: if k =0 then yp(u;sy;...58) =u; if k=1 then yp(u;sy;...;8) =
= F(ty, oo tigy Ye,i5 815 005 Semq)s By ooy By—q) Where s, = (f5, ..oy tyy).

6.5. Lemma. Let T be modular. Let (a, b)e T, b £ a, var (a) = var (b); let a be
neither a variable nor a nullary symbol from A. Let x € V\var (a) and let d be
a term such that x has exactly one occurrence in d and d + x. Let F € A be a symbol
of arity n and let i € {1,..., n} be such that d is not of the form F(uy, ..., u,) where
uy,...,u, € Wy and xevar(u;). Put f =0} and g = o;. Let k > Max (A(f(d)),
Ag(d))). Let sy, ..., s, be finite sequences such that:
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(i) if var (f(d)) # 0 then s,,...,s.€(var (f(d)))'"" and every variable from
var (f(d)) is a member of some member of 15 -+ Sk
(ii) if var (f(d)) = 0 then s; = ... = 5, = (G, .- G) for some nullary symbol G
contained in a.
Then (g {a;sy;..;5), f(d)) e T.

Proof. By 6.4 it is enough to prove

Yrd(Ds 55 s0) £ ypi(@ 558
g(d) £ YF,i(a; Sq5 s Sk) ,
e.i(bs 515 .. 8) £ £(d),

g9(d) £ f(d),
veda; s .. s) £ f(d).
F(d) £ ye.assg; 5 8) -

All these inequalities except for the second and the last one are clear. Let h be either f
or g and suppose that p(h(d)) is a subterm of y¢ ;(a; s ...; 5,) for a substitution p.
Evidently, p(h(d)) is not a subterm of a and p(h(d)) is neither a variable nor a nullary
symbol. Hence p(h(d)) = y; (a;sy;...5s;) for some je{l,...,k}. Then d =
= F(uy, ..., u,) for some terms u,, ..., u,. By the choice of F, i we have x € var (u;,)
for some iy = i. Since p(h(u;,)) is either a variable or a nullary symbol G contained
in a, we get u;, = x. If h = g then p(b) is either a variable or a nullary symbol
contained in a, so that b is either a variable or a nullary symbol contained in a,
a contradiction with b £ a. If h = f then p(a) is either a variable or a nullary symbol,
so that a is either a variable or a nullary symbol, a contradiction.

6.6. Lemma. Let T be modular. Let a € U be neither a variable nor a nullary
symbol from A. Let c;, ¢, € Wy, var (¢;) = var (c,) and let a be a proper subterm
of both ¢y and c,. Then (cy, c;) € T.

Proof. By 6.1 there exists a term b such that (a,b)e T, b £ a and var (a) =
= var (b). Let x € ¥\ var (¢;). Put f = o} and g = o;. Let d; and d, be the terms
obtained respectively {rom ¢, and ¢, by replacing exactly one occurrence of the sub-
term a by x. Evidently, there exists a triple F, n, i such that F is an n-ary symbol
from 4, ie{l1,...,n} and d, is not of the form F(uy, ..., u,) where uy, ..., u, € W,
and xevar(u;). There exist a number k > Max (A(f(d,)). A(f(d2)), Ag(d,)),
X(g(d))) and finite sequences s, ..., s, satisfying the conditions (i), (ii) of 6.5 (with d
being either d, or d,; we have f(d,) = ¢, and f(d,) = c,). By 6.5, (yr.(a; s ...
..i8)¢)eT. If dy is not of the form F(uy,...,u,) where x € var (u;) then
(ve.i(a5 545 .5 8), ¢2) € T by 6.5, too, so that (cq, ¢;) € T Let dy = F(uy, ..., u,)
and x e var (u;). Since 4 is a large type, there exists a triple G, m, j such that G is
an m-ary symbol from 4, je{l,...,m} and (F, n, i) # (G, m, j). There exist an
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1> Max (A(f(d2)), A(g(d2))s A(f (7p.i(x5 515 -3 5)))s Hg(ve,i(X5 515 -5 5,)))) and finite
sequences Si, ..., s; such that:

(i) if var (c,) # 0 then si,...,s;e(var (c;))""! and every variable from var (c,)
is a member of some member of s, ..., s};

(ii") if var (c;) = 0 then s} = ... = s; = (H, ..., H) for a nullary symbol H con-
tained in a.

By 6.5 we have (yg j(a;st;..;50), f(yp.i(x; 815 .5 ))) € T and (yg ;(as si;...; s1)s
f(dy)) e T, so that (yp (a; sy; ...; ), ¢;) € T and consequently (cy, ¢,) e T.

6.7. Lemma. Let T be modular. Let a € U; let ¢, ¢, € Wy, var (¢;) = var (c,) and
let a be a proper subterm of both ¢, and c,. Then (cy, ¢c;) € T.

Proof. If a is neither a variable nor a nullary symbol, this follows from 6.6. Let a
be either a variable or a nullary symbol. By 6.3 we have (a, b) € T for a term b such
that var (@) = var (b) and a is a proper subterm of b. Evidently, b € U. Denote by ¢}
and ¢} the terms obtained respectively from ¢, and ¢, by replacing one occurrence of a
by b. Then var (¢}) = var (c3) and b is a proper subterm of both ¢} and c}; since b
is neither a variable nor a nullary symbol, it follows from 6.6 that (ci, c3)e T.
However, we have (c;, ¢j) € Tand (c,, ¢3) € T, so that (¢y, ¢;) e T.

6.8. Lemma. Let T be modular. Let a € U; let ¢ be a term such that var (a) =
= var (c) and a is a subterm of c. Then (a, c)e T.

Proof. It follows from 6.3 and 6.7.

6.9. Lemma. Let T be modular. Then U is a full subset of W, and if u,veU
and var (u) = var (v) then (u,v)e T.

Proof. Let ae U and a < b, so that f(a) is a subterm of b for a substitution f.
It follows from 6.8 that (a, c¢) € T for a term ¢ such that A(c) > A(b). Denote by d
the term obtained from b by replacing one occurrence of the subterm f(a) by f(c).
Then (b, d) € T; since A(d) > A(b), we get b e U. We have proved that U is a full
subset of W,. Let u, v e U and var () = var (v). Let us distinguish two cases.

Case 1. 4 contains a symbol F of arity n = 2. By 6.8 we have (u, F(u,v,...,0))eT
and (v, F(u, v, ..., v)) € T, so that (u,v) e T.

Case 2. 4 contains no symbol of arity >2. Then u = s,(t,) and v = s,(t,) for some
finite sequences s;, s, of unary symbols from A and some t,, t, such that either
t, = t,eV or ty,t, are nullary symbols. By 6.8, (s;(t;), ms,(t;)) e T and (s,(t,),
ms,(t,)) € T for any finite sequence m of unary symbols from 4. Since 4 is a large
type, there exist two different unary symbols F, G € 4. The equation (Fs,s,(t,),
Gsys,(t,)) is a consequence of T'U {(FFs,s,(t,), FFsys,(t,)}; evidently, the assump-
tions of 6.4 are satisfied, so that (Fs,s,(t,), Gs;5,(1;)) € T by 6.4. Hence (s,(t,),
sy(ty)) e T, ice. (u,v)e T
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6.10. Lemma. Let T be modular and let t € WA: Then the group G(t) is a modular
element of the subgroup lattice of Syars)-

Proof. Suppose Pent (G(t), H, K, M, N) for some H, K, M, N in the subgroup
lattice of S,,,,). Denote by 4 and B the equational theories generated by the equations
(t, p(1)) with p e H and p € K, respectively. We have 4 = Bandso (A v T)n B =
= A v (T B). Since H v Gg(t) 2 K, it is evident that 4 v T2 B and so
(Av T)nB=B;weget Av (TnB)=B.LetqeK~\H. Wehave (1, (1)) e B =
= A v (T~ B) and so there exists an 4 U (T n B)-proof u,, ..., u,, from 1 to g(t).
It is easy to prove u; = h(t) for some h e H by induction on i€ {0, ..., m}. Hence
g € H, a contradiction.

7. DIRECT IMPLICATION: THREE VARIABLES

Put ry = [x1.%5], 1y =[x, %3], r3 = [X5, %3], re = [X1, X5, %3] and rs =
=[xy, x3,x,] = r;". We have P, = {1, r,} and = {1, ry, rs}. Put

A{xl,xz,h)
Vy = {ae W var (a) = {x,, X5, X3}, Gz(a) = P},
V, = {ae Wy var (a) = {x;, X3, X3}, Gr(a) = Ay, 500

7.1. Lemma. Let acV; and let f be a substitution such that f(a)¢ U. Then
f(x1), f(x2) € Vand f(x,), f(x,) ¢ var (f(x3)).

Proof. Let x, y be two different variables not belonging to var (f(a)). Denote
by g the substitution with g(x;) = f(x,), g(x,) = x, g(x3) = y. We have (a, 7,(a))€T,
(g(a), g Fi(a))e T. We have g(a)¢ U, since otherwise we would have f(a)e U.
Hence g(a) ~ g Fy(a) and there exists an automorphism p of W, with p g(a) =
= g Fy(a). Hence p g(x;) = g Fy(x,), i.e. pf(x,) = x and we get f(x,) € V. Similarly
we can prove f(x,) € V. Denote by h the substitution with h(x,) = f(x;), h(x,) = x,
h(x3) = f(x3). We have h(a) ¢ U and (h(a), h 7y(a)) € T, so that h(a) ~ hF(a) and
q h(a) = h 7 (a) for an automorphism g of W,. Hence g h(x,) = hF(x,) and
q h(xs) = hi(xs), i.e. qf(x;)=x and qf(x;) = f(x3), where f(x;)eV; this
implies f(x,) ¢ var (f(x3)). We can prove f(x,) ¢ var (f(x3)) quite similarly.

7.2. Lemma. Let a€V, and let f be a substitution such that f(a)¢ U. Then
a ~ f(a).

Proof. Let x, y be two different variables not belonging to var (f(a)) L {xy, x,, x3}.
Denote by g the substitution with g(x,) = f(x,), g(x,) = x, g(x3) = y. We have
g(a)¢ U and (g(a) g Fy(a)) e T. so that pg(a) = g Fy(a) for an automorphism p
of W,. Hence p g(x;) = g F4(xy). i.e. pf(x;) = x; we get f(x;) € V. Quite similarly,
f(x,) eV and f(x;) e V. Denote by h the substitution with h(x,) = f(x,), h(x,) =
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= f(x,), h(x3) = x. We have h(a)¢ U and (h(a), h Fo(a))€ T, so that g h(a) =
= h#,(a) for an automorphism g of W,. Hence g h(x,) = h7y(x;), qh(x;) =
= h#y(x,) and g h(x3) = hFy(x;), ie. qf(x1) = f(x2), qf(x2) = x and ¢(x) =
= f(x,). This yields f(x,) = f(x,). Similarly f(x,) # f(x3) and f(x3) = f(x,).
Hence a ~ f(a).

7.3. Lemma. Let T be modular and a, b € V,. Then either a < b or b < a.

Proof. Suppose that a £ b and b £ a. Denote by A the equational theory gener-
ated by (a, 7,(b)) and by B the equational theory generated by (a, F5(b)), (a, 75(b)).
We have (a, Fy(a))e T, (Fi(a), Fs(b)) € 4, (Fs(b), 73(b)) e T and so (a, F3(b)) e
e(AvT)nB=Av (TnB). Let ag,...,a, be a minimal 4 U (T~ B)-proof
from a to F4(b). Evidently, {a, 7y(a), Fs(a), F1(b), F2(b), 74(b)} is a block of B and
{a, F5(b)} is a block of 4; hence every member of ay, ..., a, equals either a or 7,(b),
a contradiction.

7.4. Lemma. Let T be modular, ae Vy and be V,. Then a < b.

Proof. Suppose first that @ £ b and b £ a. Denote by A the equational theory
generated by (a, b) and by B the equational theory generated by (a, b), (7,(a), F4(b)).
We have (7y(a),a)e T, (a,b)e A, (b,Fy(b))e T and so (F,(a), 74(b))e(4 v T)
N B =A v (Tn B). Let a, ..., a, be an AU (T B)-proof from 7y(a) to 7,(b).
Evidently, {Fy(a), F,(b), F4(a), F4(b)} is a block of B and {F,(a),7,(b)} is a block
of A; hence every member of aq, ..., a, equals either 7,(a) or 7,(b), a contradiction.

We have proved that either a < b or b < a. Now it remains to derive a contradic-
tion from b < a. However, if b < a, then f(b) is a subterm of a for a substitution f;
by 7.2 we may suppose that f is an automorphism of W,. Let a’ be the term obtained
from a by replacing the subterm f(b) by f7,(b). We have (a,a’)e T and so a'€
€ {a, 7i(a)}, so that f7,(b) € {f(b), 7y f(b)}; this is evidently a contradiction.

7.5. Lemma. Let f be a substitution such that f(x) € V, f(x,) € Vand f(x,), f(x,) ¢
¢ var (f(x3)). Let a be a term such that var (a) = {x,, X,, x3} and f(a) is a constant
extension of a. Then a = f(a). )

Proof. Suppose that there is a term a such that var (a) = {x,, x,, X3}, f(a) is
a constant extension of a and a = f(a); let us take such a term a of minimal length.
Since each of the terms f(x,), f(x,), f(x3) contains at most two variables, a is not
a subterm of any of the terms f(x,), f(x,). f(x3). Hence a = f(d) for a subterm d
of a; since a # f(a), d is a proper subterm of a. There exist a variable x and a term ¢
with a single occurrence of x such that a = t,[d]. Since A(d) < i(a), it follows
from the minimality of A(a) that a is not a constant extension of d; hence there exists
a variable y € var (d) different from x. But then f(y) is a term containing no variable;
since f(x;) eV and f(x,) eV, we get y = x5. We get var (f(a)) = {f(x1), f(x2)}
a contradiction.
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7.6. Lemma. Let T be modular. Let aeV,. Let x€V, te Wy, var(t) = {x},
1 % X and let x have a single occurrence in t. Then there exists a positive integer k
with G(1%[a]) = S,

Xy,X2,X3}°
Proof. Suppose that there is no such k. Denote by A the equational theory gener-
ated by (a, t[F,(a)]) and by B the equational theory generated by (a, t[F,(a)]).
(a, F4(a)). Put
Z = {t"[p(a)]; pe{l,ryrs}, i 20, ieven} U

U {t(i)[l—,(a)]; pe {rl, s, 1‘3}, i=>1,1i Odd} .

We have Z n U = 0. Let us prove that if d € Z and e is a term such that either (d, ¢)
or (e, d) is an immediate consequence of one of the equations (a, f[F,(a)]) and
(a, 74(a)), then e € Z. There exists a substitution f such that either f(a) or f(t[F,(a)])
or f(a) or f 74(a) is a subterm of d and e results from d by replacing one occurrence
of this subterm by f(1[7,(a)]) or f(a) or fF,(a) or f(a). If f(a) is a subterm then it
follows from 7.1 that f(x,) € ¥, f(x,) € Vand f(x,), f(x,) ¢ var (f(x;)); applying 7.5
we see that the restriction of f to {x;, X,, x3} is a permutation; this implies that
e € Z. In the remaining three cases we similarly obtain e € Z, too. Put

Y={1"a]; i 20, ieven} U {1'"[Fy(a)]; i = 1, i odd}.

We can prove similarly that if d € Y and e is a term such that either (d, e) or (e, d)
is an immediate consequence of (a, t[F,(a)]), then eeY. We have (a,7,(a))e
€(Av T)nB=A v (Tn B) and so there exists an 4 U (T n B)-proof aq, ..., a,
from a to 7,(a). By induction on i we see that a;€ Yfor all i€ {0,...,n}; fori =n
we get a contradiction.

8. DIRECT IMPLICATION: FOUR VARIABLES

Define ry, r,, F3, 'y, I's in the same way as in Section 7. Put
Vy = {ae W,; var (a) = {xy, x,, X3, x4}, Ggla) = Ry},
V, ={ae Wy var(a) = {x;, xp, X3, X4}, Gr(a) = A, x1xsxa)] -
8.1.(L)emma. Let aeV, and let f be a substitution such that f(a)¢ U. Then
a ~ f(a).

Proof. For every integer m denote by ¢(m) the number from {1, 2, 3, 4} congruent
with m modulo 4. Let i € {1, 2, 3, 4}. Let x be a variable not belonging to var (f(a)) v
U {x4, X, X3, X4}. Denote by p the extension of [x, x,, X3, X, ] to an automorphism
of W,; denote by g the substitution with g(x;) = x and g(x;) = f(x,) for all je
€{1,2,3,4}\{i}. We have g(a) ¢ U and (g(a), g p(a)) € T, so that q g(a) = g p(a)
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for an automorphism ¢ of W,. Hence ¢(x) = f(Xci+1) qS(Xeii=1)) = X,
4 f(xcivny) = f(Xeiiv2), qf(Xe(iv2)) :'f(xc(i—l))' Hence it follows that f(x;-1))
is a variable, f(x.;-1,) * f(Xci+1)) and f(Xei-1)) F f(Xeie2))- Since i€ {1, 2,3, 4}
was arbitrary, we see that f(x,), f(x,), f(x3), f(x4) are pairwise different variables,

ie. a ~ f(a).

8.2. Lemma. Let aeV, and let f be a substitution such that f(a)¢U. Then
a ~ f(a).

Proof. Let x,y,z be three different variables not belonging to var (f(a))u
U {Xy, X3, X3, X,}. Denote by g the substitution with g(x;) = f(x;), g(x,) = x,
g(x3) = », g(x4) = z. We have g(a)¢ U and (g(a), g 7F4(a)) e T, so that p g(a) =
= g Fy(a) for an automorphism p of W,. Hence p g(x,) = g F4(x,), i. ¢. pf(x;) = x;
we get f(x,) € V. Similarly f(x,), f(x3), f(x4) € V. Denote by h the substitution with
h(xy) = f(x1), h(xs) = f(x,), h(x;) = x, h(x,) = y. We have h(a) ¢ U and (h(a),
h7y(a)) e T, so that g h(a) = h F4(a) for an automorphism g of W,. Hence q h(x,) =
= hFy(x,) and g h(x,) = hFy(x,), i.e. g f(x;) = f(x;) and ¢ f(x,) = x. This implies
that f(x,) # f(x,). Similarly f(x,) # f(x3), f(x1) # f(xa), f(x2) * f(x3), f(x2) *
#* f(x4), f(x3) =& f(x,4). Hence a ~ f(a).

8.3. Lemma. Let T be modular and a, b € V5. Then either a < bor b < a.

Proof. Suppose that a £ b and b £ a. Denote by A the equational theory
generated by (a, (b)) and by B the equational theory generated by (a, 7y(b)),
(a, F5(b)). We have (a,7y(a))e T, (Fy(a), Fy(b))€ A, (F4(b),7s(b))e T and so
(a,73(b))e(A v T)n B = A v (T B). Let a, ..., a, be a minimal A U (T N B)-
-proof from a to F4(b). Evidently {a,F,(a), Fs(a), F,(b), F,(b), 73(b)} is a block
of B and {a, 7,(b)} is a block of 4; hence every member of aq, ..., a, equals either
a or 4(b), a contradiction.

-

8.4. Lemma. Let T be modular, a € V; and b e V,. Then either a £ b or b < a.

Proof. Suppose that ¢ £ b and b £ a. Denote by 4 the equational theory gener-
ated by (a, b) and by B the equational theory generated by (a, b), (F5(a), F4(b)).
We have (7y(a),a)e T, (a,b)e A4, (b,Fy(b))e T and so (Fy(a),Fy(b))e(4 v T)n
AnB=Av (TnB). Let ay, ...,a, be an A U (T B)-proof from 7,(a) to Fy(b).
Evidently, {F,(a), F4(a), 7,(b), F4(b)} is a block of B and {F,(a), 7»(b)} is a block of A,
so that every member of aq, ..., a, equals either 7,(a) or 7,(b), a contradiction.

8.5. Lemma. Let T be modular, a€ V3 and be V,. Then a < b.

Proof. By 8.4 it is enough to derive a contradiction from b < a. However, if
b < a, then f(b) is a subterm of a for a substitution f; by 8.2 we may suppose f = g
for a permutation g of {xy, X,, x3, X4}. Let a’ be the term obtained from a by
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replacing one occurrence of the subterm f(b) by f7a(b). We have (a,a’) e T and so
a’ = p(a) for some p € R,. Hence f F4(b) = pf(b), gra = P9, grug~"' € Ry, evidently
a contradiction.

8.6. Lemma. Let T be modular. Then either V3 or Vg is empty.

Proof. Suppose that there exist terms a e V3 and be V,. By 8.1 and 8.5 there
exist a variable x, a term ¢ and a permutation p € Sy, x,,x3,xs) SUch that x ¢ {xl, X,
X3, X4}, x has a single occurrence in ¢ and b = f(,[B(a)]- Let us prove var (1) = {x}.
Suppose, on the contrary, that a variable y € {Xy, X2, X3, X,} belongs to var (7).
There exists a permutation g € R, such that pgp~'(¥) # y. We have (a, §(a)) e T,
(P@) PT@) € T, (10[p@)]. te[pa@]) e T where to[p(@)] = b and so
twlP d@(a)] = F(t[P(a)]) for some re S, s, x> SiNCE Y € var (1) {x}, we get
r(y) = y; we have pgp~*(y) = rpp~*(y) = (y) = ¥, a contradiction. Thus var () =
= {x}. There exists an odd permutation se Gr(a). We have (a, 5(a))e T, (5(a),
p3(a)) e T, (p(a), 5" B(a))e T, (b, p5p*(b))e T, psp~' € Go(b), so that psp~!
is an even permutation, a contradiction, since s is odd.

8.7. Lemma. Let T be modular. Let acVj. Let xeV, te W,, var(t) = {x},
t + x and let x have a single occurrence in t. Then there exists a positive integer k

with GT(t(")[a]) = Stxrxz.xs.xa)

Proof. Suppose that there is no such k, so that Gr(t*'[a]) = R, for all k = 0.
Put p= [xl’ X3, X4], q= [xla X4, x3]s r= [xlg X3], § = [x3, X4]. Denote by A
the equational theory generated by (a, {[p(a)]) and by B the equational theory

generated by (a, t[p(a)]), (a,1[g(a)]). We have (a,7(a))e T, (¥(a), [5(a)]) € 4,
(t[35(a)]. 1[d(a)]) € T and so (a, t[G(a)])e(4 v T)n B = A v (T~ B). Put

Z = {¥[a]: i 2 0} L {(]p(@]: i 2 0} U (a2 0}.

We have Z n U = (. Similarly as in the proof of 7.6, Z is a block of B. Similarly, the
set
Y={tP[a]; i20, i=0(mod3)}u{r[pa)]; i=0, i=1(mod3)}u

u {t“[g(a)]; i 2 0, i = 2 (mod 3)}
is a block of 4. Let aq, ..., a, be an A U (T B)-proof from a to #[G(a)]. By induction

on i we get a; € Yforallie {0, ..., n}, a contradiction.
9. CONVERSE IMPLICATION: PRELIMINARIES

9.1. Lemma. Let the equational theory T be such that the conditions (1) and (2)
are satisfied. Then either T < E,or U x U is a block of T.

Proof. Let T4 E, and u,ve U; it is enough to prove that (u, v)eT. There
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exist terms a, b and a variable x such that (a, b) € T and x € var (a) \ var (b). We
have (a, 6§ .... »(a)) € T (where F is an arbitrary non-nullary symbol from 4) and
so aeU. Define four substitutions f, g, h, k as follows: f(y) = u for all yeV;
g(y) = vforall ye V; h(x) = v: h(y) = u for all y e V\{x}; k(x) = u; k(y) = v for
all ye V\{x}. The terms f(a), g(a), h(a), k(a) belong to U by (1). If var (a) =
= {x} then (u, f(a)) e T by (2), (f(a), g(a)) € T evidently and (g(a), v)e T by (2);
hence (u, v) € T. If var (a) # {x} then (u, f(a)) € T by (2), (f(a), h(a)) € T evidently,
(h(a), k(a))e T by (2), (k(a), g(a)) e T evidently and (g(a),v)e T by (2); hence
(u, v) € T again.

In order to prove the converse implication of Theorem 5.1, we shall suppose that
the equational theory T satisfies the conditions (1), ..., (9) and that it is not a modular
element of & 4. Hence Pent (T; 4, B, C, D) for a quadruple 4, B, C, D of elements of
Z 4 let us fix such a quadruple 4, B, C, D. By 9.1, either TS E;or U x U is a
block of T. The set U is non-empty, since U = @ would imply T = 1y, and 1y isa
modular element of Z .

9.2. Lemma. There exists a non-empty finite sequence ay, ..., a, with the following
three properties:
(i) ag, ..., a, is a T U A-proof (i.e. (a;—y, a;)e TU A for all ie{l,...,n}) and
(ao, a,) € B\ 4; '
(ii) if bg, ..., by, is any T U A-proof such that (by, b,) € B\ A, then n < m;
(iii) if by, ..., b, is a TU A-proof such that (b,, b,) € B\ A, then
Card (var (ap) U ... U var (a,)) < Card (var (by) U ... U var (b,)).

Proof. Since 4 « B, there exists an equation (a, b)eB\A; since BS TV 4,
there exists a T U A-proof from a to b. Now the assertion is evident.

In the following let ay. ..., a, be one fixed T U A-proof satisfying the three condi-
tions of 9.2.

9.3. Lemma. n = 3, n is odd, (a;_y, a;)e TNA if i is odd and (a;_y, a)e ANT
if iiseven (i €{1,..., n}). Further,var (a;) < var (a,) L var (a,) for alli € {0, ..., n}.

Proof. It is evident.
For every odd integer i € {1, ..., n} such that a; ¢ U we denote by p; the permuta-
tion of var (a;_,) with a; = py(a;-); put q; = p;.

9.4. Lemma. Let U x U be a block of T. Then var (a,) = var (a;) = ... = var (a,)
and ay, @y, ...,a,¢U.

Proof. If it were a, e U and a, € U simultaneously, then (ag, a,) e Tn B < A4,
a contradiction with 9.2(i). Hence either ay ¢ U or a, ¢ U. It is enough to consider
the case ao ¢ U. We shall prove by induction on i€ {0, ..., n} that var(a,) = ...
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. = var (a,-) and ay, ..., a; ¢ U. This is clear if either i = 0 or i is odd. Let i = 2
be even. We have var (a,) = ... = var(a;_,) and ao, ..., a;_; ¢ U by induction.
If it were a; € U then evidently ao, ..., a;_», q;4(a;), a4 1, ..., a, would be a T U A4-
proof, a contradiction with the minimality of a, ..., a,. Thus a; ¢ U and it remains
to prove var (a;_,) = var (a;). Suppose that there exists a variable z e (var (a;_,)\
\var (a;)) u (var (a;) N var (a;_,)). Take a term ¢ € U. We have cither o3(a;_,) e U
and o(a;) = a; or o3(a;)e U and oi(a;_{) = a;_;. In both cases there evidently
exists a term we U with (a;_;, w)e 4 and (a;, w)e A. If i > 2 then aq, ..., a;—3,
g2y (W), @i+1(w), aisq, ..., a, is @ TU A-proof, a contradiction with the minimality
of ag, ..., a, Ifi + 1 < nthenag, ..., a;—5 qi (W), gi+1(W), @i42s ..oy a,isa TU A-
proof, a contradiction again. If i =2 and i + 1 = n then (g7 '(w), g3(w)) € Bn
N T < Aandso(ay, a,) € A, a contradiction.

9.5. Lemma. Let T < E,. Then either ay¢ U or a, ¢ U.

Proof. Suppose that a, € U and a, € U. Then var (a,) = var (a,), since otherwise
we would have (aq,a,)e TnB < A4 by (2). It is enough to consider the case
var (ag) \ var (a,) + 0. For every i€{0, ..., n} define a substitution f; as follows:
if x e V\(var (ap) \ var (a,)) then f,(x) = x; if x € var (a,) \ var (a,) then fi(x) = a.
If i is odd then (f;_(ao), f{as)) € T~ B < A; if i is even then (f;_(ao), fi(a,)) € A
is even more evident. Hence (f;_4(a,), fi(ao)) € A for all i and so (fo(ao), fu(a,)) € A.
We have evidently (a,, fo(ap)) € T B = A and so (ao, f,(a,)) € A. Further, it is
evident that (f,(a,), a,) € T. This shows that ay, f,(a,), a, is a T U A-proof, evidently
a contradiction.

9.6. Lemma. 4 contains a symbol of arity =2.

Proof. By 9.1, 9.4 and 9.5 it is enough to consider the case a, ¢ U. Then a, =
= p,(ao) where p, is a permutation of var(a,); since ao =* a,, we get Card(var(a;)) =
= 2 and so 4 contains a symbol of arity =2.

Let us fix a variable z ¢ var (a,) U var (a,). Denote by H the set of all the terms u
such that (u, v) € A for a term v with z e var (v).

9.7. Lemma. Let T < E,. Then either a, ¢ H or a, ¢ H.

Proof. Suppose a, € H and a, € H, so that (ao, vy) € 4 and (a,, v,) € A for some
terms vy, v, containing z. By 9.4 there exists a term ¢ € U with var (¢) = var (ap) U
v var (a,). Define a substitution f as follows: if x € var (a,) U var (a,) then f(x) = x;

if x e V\(var (ao) U var (a,)) then f(x) = t. We have (a,, f(v,)) € A, (f(vo), f(vs)) €
e T, (f(v,), a,) € 4, evidently a contradiction.

9.8. Lemma. Let T < E, and ao ¢ U. Let ie{l,...,n} be such that var (ay) =
= var (a;) = ... = var (a;). Then a; ¢ U.
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Proof. Suppose a; € U; it is enough to consider the case when i is the least integer
with a; € U. Then i is even and a, 47 '(42), --., 41 '(a,), Gs4 15 ---» @, is @ TU A-proof
of length n — 1, a contradiction.

9.9. Lemma. Let T < E, and let there exist an i€{l,...,n} with var (a;_,) +
% var (a;). If ay ¢ U then a, € H; if a, ¢ U then a, e H.

Proof. It is enough to prove a, € H under the assumption a, ¢ U. Let i be the least
integer with var (a;_,) # var (a;). By 9.8, a; ¢ U for all je {0,...,i — 1}. We have
(gi=19i-3 --- 41(a0), a;) € A, var (q;-14i-3 --- q4(ao)) = var (ao), var (a;) * var (a,)
and so evidently a, € H.

9.10. Lemma. Let T < E,. Then var (a,) = var (a;) = ... = var (a,).

Proof. By 9.5 it is enough to consider the case a, ¢ U. Suppose var (a,._l) +
# var (a;) for some i. By 9.9, ao € H. By 9.7, a,¢ H. By 9.9, a, e U. If var (ao) =
< var (a,) then aq, q7 '(a,), g1 '(a3), -+, 41 "{(@y-1), @, is @ Tu A-proof of length
n — 1, a contradiction. Hence there exists a variable x € var (a,) \ var (a,). Evidently
there exists a variable y e var (ao)\ {x}. We have (0}(a,), a,) € 4, since otherwise
o¥(a), ..., o}(a,) would be a Tu A-proof contradicting 9.2(iii). Since a, € H,
there is a term u with (a,, u) € A and z e var (u). Hence (0}(a,), 05(u)) € 4, so that
(@, o3(u)) € A; we have z € var (¢}(u)) and so a, € H, a contradiction.

9.11. Lemma. We have var (a,) = var (a,) = ... = var (a,) and ay, ay, ..., a, ¢ U.

Proof. It follows from 9.1, 9.4, 9.10, 9.5, 9.8 and the assertion symmetric to 9.8.
It follows that the permutations p; of var (a,) are defined for every odd ie
e{l,...,n}; we have q; = p; and a; = g,(a;_,).

9.12. Lemma. Let i€{0,...,n — 3} be even. Then p;yy ¢ Gr(a;,,) and p;.5 ¢
¢ Gr(a;). Hence Gr(a;) & Gr(a;y,) and Gy(a;s,) § Gr(a:).
Proof. Suppose p;y; € Gr(a;4,). Then piy piss€ GT(ai+2)’

(a,-+2, qi+lqi+3(ai+2)) eT, (qi—+11(ai+2)’ ai+3) e T'and ay, ..., a; 4i_+11(ai+2)a Ait3see
..., a,is a T'u A-proof of length n — 1, a contradiction. Similarly we can prove that

Pi+3 ¢ GT(ai)‘

9.13. Lemma. Either Card (var (a,)) = 3 or Card (var (ao)) = 4.

Proof. It follows from 9.12, since if Card (M) ¢ {3, 4} and H,, H, are two modular
elements of the subgroup lattice of Sy,, then either H; < H, or H, < H,; by 3.1.
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10. CONVERSE IMPLICATION: THREE VARIABLES

In this section we shall suppose that the T U A-proof a, ..., a, from Section 9 is
such that var (a,) = {x,, X5, x3}. Define ry, ..., rs in the same way as in Section 7.
It follows from 9.11, 9.12 and 3.7 that for every odd i € {1, ..., n} we have G{a;_;) =
= Grla)e{{L,r}, {1}, {1, 3}, {Lry, rs}} and if i <n —2 then Gia;) *
+ Gr{a,+2).

10.1. Lemma. Let ie{l,...,n} be odd, pe S, ,, and (a; p(a;))e A. Then
p=1

Proof. Suppose p # 1. Put G = {q €S, «,.x; (a4, G(a;))e A} and H =
={geS,, . (a;d(a;))eB}. We have (ao,7(a;))e A and (5(a;), a,) e A for
some 1, s € Sy, 1, .5, Hence (7(a;), 5(a;)) € B\ A and so G is a proper subgroup of H;
since G # {1}, we get H = S(,, ,,.«, by 3.7. Hence (a;_,, a;) € Bn T < A, a contra-
diction.

10.2. Lemma. Let i € {1, ..., n} be odd. Then Gy(a;) = {1, ry, rs}.

Proof. Suppose G(a;) = {1, r,, rs}. It is enough to consider the case i = 3,
since otherwise we would have i £ n — 2 and the proof would be analogous in that
case. We have Gp(a;_,) #+ {1, rs, rs} and so Ggla,_,) = {1, r} for some re
€{ry, 1, rs}. We have p,_, =r and p;€{r, rs}. By (5) we have a;_, < a;_;.
Let x € V\{xy, x,, x3}. There exist a substitution f and a term ¢ with a single occur-
rence of x such that a;_; = t,[ f(a;-,)]- By 7.1, two of the terms f(x,), f(x,), f(x3)
are variables not contained in the remaining term. If it were (a;_,, u) € A for some
u € U, then evidently (a;_,, v) € 4 for some v e U with var (v) = {xy, x,, X3}; then
(@i-3, gi=2(v)) € 4, (q;-2(v), 4:(v)) € T, (q.(v), a;) € A, so that ay, ..., a;_3, g;_,(v),
q:(v), a;, ..., a, would be a T U A-proof of length n contradicting 9.3. Hence there
isnou e U with (a;_,, u) € A. We have (a;_,, t,[ f(a;-,)]) € Aand so t,[ f(a;_ )] ¢
¢ U; since (to[f(aizy)]s 1 f7a(ai=1)]) € T, there exists a peS,, ., ., with
Pltwlf(aiz1)]) = tolfFalai=y)]. Hence pf(ai-y) = fra(ai—y), pf(x1) = f(x,),
pf(x2) = f(x3), pf(xs) = f(x,). This implies that f(x,) f(x,),f(x3) are pairwise
different variables and we can assume that f = g for some g € S, ., .,;- We have
(telf(ai-2)]s teo[f(ai-3)]) € T and t[f(a;—,)] = a;_,; hence there exists a per-
mutation g € {1, ry, rs} with g(a;_,) = ty[f(a;-3)]- Hence G f(a;-2) = f qi—5(a;_,),
q9 = gr, g € {ry, r,, r3}, a contradiction.

10.3. Lemma. Let i€ {l,...,n} be odd. Then there is no u with (a;_,, u)e A4
and (u,Fy(u))e T

Proof. Suppose that there is such a term u. It is enough to suppose i < n — 2.

By 10.2, Pi+2pie{r47 "5}~ We have (ai+29 Gi+2 Qi(u))eA and (“’ div2 qi(u))e T,
hence ag, ..., a;_1, U, ;42 q,-+1(u), Q42 ... ay 1s @ T U A-proof contradicting 9.3.
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Let us fix an odd number ie{1,...,n — 2}. It follows from 10.1 that the terms
a;, a;44 are not similar; by (4), it follows from 10.2 that either a; < a;;;0ra;4+1 < a;.
We shall assume a; < a;,; in the other case we could proceed similarly. Let x be
a variable not belonging to {xy, x,, x3}. There exist a substitution f and a term ¢
with a single occurrence of x such that a;,, = 1,[f(a;)] and f(y) = y for all
Ve VN{xy, x5, X3}.

10.4. Lemma. f is an automorphism of W, and var (1) = {x}.

Proof. There exists a unique triple (yy, y,, y3) such that {yy, v, 3} = {x4, x5, x5},
pi = [y1, y2] and pisy = [v2, 3] By 7.1, f(¥,) and f(y,) are variables not con-
tained in f(y3). We have (a;+ 4, 1o f(ai+1)]) € A and (1[f(air1)],
toolf @i+2(ai1)]) € T, so that by 10.3 there is a permutation p € Sy, v, 4 N {745 s}
with ﬁ(t(x)[f(aiﬂ)]) = t(x)[fqi+2(ai+1)]- We  have pf(ai+1) = fqi+2(ai+1),
51(0r) = J01), BS0a) = fra) PI0s) = 1(02). Hence f(3y).f(3). f(vs) are
three pairwise different variables and f is an automorphism. We have (1.,[ f(a;)],
tewlfai(a)]) € T; there exists a g e{l, pira} With q(to[f(a))]) = tlf gia)];
evidently ¢ # 1 and so g = p;,; hence g2/ = fq;. We get qz’+2f(,V3) =f(,V3)
and so f(ys) = y;. From g,,(to[f(a)]) = tlf aia;)] we get y,, ys ¢ var (1)
If it were y, € var (t) then B(teo[ f(ai+1)]) = twlf dis2(ais )] would imply p(y,) =
= Y1, P = Pi+2> Pi+zf(y3) = fPi+2(.V3)> 1 = f()’z)v a contradiction.

10.5. Lemma. There exists no positive integer k with G(1*[a;]) = Sy, xrxs-

Proof. Suppose that k is such a positive integer. Evidently, (1™[a;], 7F4(1"[a;])) €
e T for every m = k. There exists an m with m = k and f™ = 1. Evidently
(a;, 1™ [ f™(a;)]) € A (this is true for all non-negative integers m, proof by induction
on m), (a,t™[a;])eA; hence (a;—y, (1" [a])j€ A, (ais2 qiso(1"[a;])) € A,
(a1 [a:]), qis2(t[a;])) e T Hence  aq, ..., iy, qi(1"[ai]), i+2(t"[ai]),
Q;4s, ..., 4y 18 @ T U A-proof contradicting 9.3.

10.6. Lemma. The identity var (ao) = {xy, X,, x5} does not hold.

Proof. It follows from 10.5 and (6).

11. CONVERSE IMPLICATION: FOUR VARIABLES

In this section we shall suppose that the T U A-proof a, ..., a, from Section 9
is such that var (a,) = {xy, X5, X3, X4}

11.1. Lemma. If ie{l,...n} is odd then Gya;)e{R;, Ry, Rs}. If ie
e{l,....,n — 2} is odd then Gr(a;} # Gr(a,;,).

Proof. It follows from 9.11, 9.12, 3.8 and from the condition (8).
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11.2. Lemma. We have ag ~ a; ~ ... ~ G,

Proof. Suppose, on the contrary, that there exists an odd ie{l,....n — 2}
such that the terms a;, a;+, are not similar. Using the condition (7), we obtain from
11.1 that either a;_; < a;4+; OF a;;; < a;_4; it is enough to consider the case
a;_y < a;y;- By 8.1, there exist a permutation pe S, ., .. .4, a variable x and
a term ¢ with a single occurrence of x such that a;.; = t,[p(a;-,)]; we have ¢ + x.
Similarly as in the proof of 8.6 we get var () = {x}. By (9) there is a positive integer k
with G(t%[a;_1]) = S(x; x3.x5,x- There exist permutations g, r € Sg,, ., s xy SUch
that (a,-p, 1[a{a,)]) & A, (O[q(ar )] OTHar )] € T, (7 o)), arra) €
€ A. Hence ay, ..., a;-1, 1®[G(a;-)], (“[Fa;-1)], aiys ..., a, is @ TU A-proof
contradicting 9.3.

11.3. Lemma. The identity var (ao) = {xy, X,, X3, x4} does not hold.

Proof. Put G ={peSy, ,0ny (G0 Plag))e A} and H = {pe Sy, 1 x,xas
(aq, P(ao)) € B}. By 11.2 we have a, = G(a,) for some g € S, , +;.xn @a0d g € H\ G.
Hence G is a proper subgroup of H. Evidently G & G{a,); {rom this and from the
fact that Gg(a,) is a modular and maximal element of the subgroup lattice of
Stxramsxg We get G v (H N Grlag)) = H. Hence g = fyf,...f, for an odd
number k = 1, ;€ G if i is odd and f; € H n G{a,) if i is even. Put g, = 1 and
gi=gi-fiforalliel, ..., k}. Thus g, = q. i ie{L, ..., k} is odd then (g;_,(ao),
glaog))eA; if ie{l,....k} is even then (§;_,(a,),dfag))eBNT< A as well.
Hence (go(ao), gi(ao)) € A4, i.e. (ay, a,) € A. We get a contradiction.

The contradiction induced by Lemmas 9.13, 10.6 and 11.3 proves the converse
implication of Theorem 5.1. Theorem 5.1 is thus proved.
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