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Czechoslovak Mathematical Journal, 31 (106) 1981, Praha 

THE LATTICE OF EQUATIONAL THEORIES 
PART I: MODULAR ELEMENTS 

JAROSLAV JEZEK, Praha 
(Received November 2, 1979) 

0. INTRODUCTION 

An equational theory of type J is a set of equations (identities, ordered pairs of 
terms) of type A containing all its consequences. There are various papers devoted 
to the study of the lattice if^ of equational theories of an arbitrary type A (or to 
the study of the lattice of varieties of ^-algebras, which is antiisomorphic to -^^) ; 
some of them are listed in the bibhography at the end of this paper. The present trea­
tise will be a continuation of this study. It will be divided into several parts. The 
present Part 1 brings the proof of a single result — the description of all modular 
elements of the lattice ^j, i.e. elements that are not the central elements of any 
subpentagon of J^^. Various aspects and consequences of this result will be contained 
in a further part of this treatise. The result is formulated in Theorems 4.1, 4.2 and 
5.1. Theorems 4.1 and 4.2 solve the case of a small type, while in Theorem 5.1 nine 
conditions necessary and sufficient for an equational theory of a large type A to be 
a modular element of ^^ are formulated. The proof of 5.1 is divided into six sec­
tions; in Sections 6, 7 and 8 the necessity and in Sections 9, 10 and 11 the sufficiency 
of the nine conditions is proved. For every full set U of zl-terms (i.e. a set of terms 
such that if t eU then /(f) G U and и eU for any substitution / and any term и 
extending t) we can define two equational theories M и and Nu as follows: (a, b) e Мц 
iff a, b are terms such that either a = b or a, b eU; [a, b) ENU iff either a = b 
or a, b EU and a, b contain the same variables. It turns out that Mjj and Nu are 
modular elements of Jêf̂ . Moreover, for any modular element Tof ^^ (in the case 
of a large type A) there exists a full set U of terms such that T differs only "a little" 
from either Mu or Nul in fact, Tresults from either M и or Nu by adding a set of equa­
tions of the form (a, p(ci)) where p is a permutation of the set of variables occurring 
in the term a. The following condition is necessary (but not sufficient) for T t o be 
modular: for every term a, the set of the permutations p such that (a, p{a)) G T is 
a modular element of the subgroup lattice of the symmetric group over the (finite) 
set of variables occurring in a. For the description of all modular elements of ^ j 
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it is thus necessary to know all modular elements of the subgroup lattice of the 
symmetric group over any finite set. These modular subgroups are described in Sec­
tion 3. In Section 1 we give a brief formulation of some basic notions from equational 
logic that are necessary for our investigation. For a more detailed explanation 
of these notions see e.g. [3], [12], [13], [17]. 

1. BASIC NOTIONS FROM EQUATIONAL LOGIC 

By a type we mean a set of operation symbols. Every operation symbol F is as­
sociated with a non-negative integer, called the arity of F. Symbols of arity n are 
called n-ary; for n = 0, 1, 2, n-ary symbols are called nullary, unary, binary. A type 
containing either at least one symbol of arity ^ 2 or at least two unary symbols is 
said to be large; all the remaining types are said to be small. 

We fix an infinite countable sequence x^, ^2, X3, X4, ... of symbols, called variables. 
The set of variables is denoted by V. For every type A, the set of zl-terms is just the 
least set with the following two properties: 
(i) every variable is a zl-term; 

(ii) if /Î ^ 0, F G /1 is an n-ary symbol and t^, ..., f„ are z1-terms, then the inscription 
F(ti, ..., t„) is a zl-term, too. 

Especially, every nullary symbol from zl is a J-term. The set of Zl-terms is an absolute­
ly free /d-algebra over F (with respect to the operations defined in the natural way); 
it will be denoted by W^. If the type A is fixed, we write PFinstead of W^ and call the 
elements of FF terms; various similar conventions will be often used without exphcit 
preliminary notice. If F G zl is unary and t is a term, then the term F(t) will be some­
times denoted by Ft. 

The length l[t) of a term t is defined as follows: if ^ e F then X{t) = 1; if ^ = 
= F(^i , . . . , t„) then À{t) = 1 + X{t^) + ... + À{Q. 

For every term t, the set of subterms of t is defined in this way: if t e F then t is the 
only subterm of ;̂ if ^ = F[t^, ..., t„) then w is a subterm of t iff either и = t or и 
is a subterm of at least one of the terms t^, ..., t„. The set of subterms of any term t 
is finite. By a proper subterm of t we mean a subterm of t different from t. The set 
of variables occurring in t, i.e. variables that are subterms of t, will be denoted by 
var (t); it is a finite subset of F For every x eV and every term t we define a non-
negative integer Px{t), called the number of occurrences of x in t, as follows: if t = x 
then P^{t) = 1; if te V\{x} then P^{t) = 0; if t = F{t^, ..., t„) then P^{t) = 
= Px{h) + •.. + Pxitn)' We have x e var (t) iff x e F and P^{t) Ф 0. 

By a substitution (in Wj) we mean an endomorphism of the algebra Wj. Evidently, 
if/, g are two substitutions and f(t) == g{t) for a term t, then f[x) = g{x) for all 
X e var (t). 

For any set M, the identical permutation of M will be denoted by Ij^. I f / i s a map­
ping of a set M Ç F into Ifj, then the mapping / u 1у\м can be uniquely extended 
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to a substitution; this substitution will be denoted by / and we shall sometimes 
w r i t e / < 0 instead of/(^). If x is a variable and м is a term, then the substitution / , 
where / is the (unique) mapping of [x] into {u}, will be denoted by a^. If xeV 
and t, и E Wj, we put t^^^[u] = (7jJ(r); for every /c ^ 0 we define a term 4x)[w] by 
i[VM - и and t\',;'\u] = h.ltfJMl If var (0 = {x}, we put t[u] = t^^lu] 
and t^'lu] - tll][u]. 

Evidently, w is a subterm of nff ^ = t̂ (:c)["] f̂ ^ some variable x and some term v 
with a single occurrence of x. Using this observation, the notion of an occurrence of 
a subterm in t could be defined precisely. A term t is said to be a constant extension 
of a term и if there exists a variable x and a term v with a single occurrence of x 
such that var (г;) = {x} and t = v\^u^. Evidently, if the type A contains no nullary 
symbols then t is a constant extension of uiïï t = F^ ... F„(w)for some finite sequence 
i^i, ..., jp„ of unary symbols from A. 

Let a, b be two terms. We write a ^ b if there exists a substitution / such / ( a ) 
is a subterm of b. If a ^ Ь and Ь ^ a, we write a ^ b and say that the terms a, b 
are similar. Evidently, a ^ b Ш b = f(a) for an automorphism/ of W^\ also, a ^ b 
iff Ь = p{a) for a one-to-one mapping p of var (a) onto var (b). If 0 ^ Ь and a, b 
are not similar, we write a < b. There exists no infinite sequence ^o, öl,Ö2'••• 
of terms such that â  > ö, + i for all f. 

By an equation (of type A) we mean an ordered pair of terms (of type A). An equa­
tion (c, d) is said to be an immediate consequence of an equation (a, b) if there exist 
a substitution / , a variable x and a term t having a single occurrence of x such that 
^ = ^(x)[/(^)] and J = ^(.)[/(b)]. 

Let E be a set of equations (i.e. a binary relation in W^. By an £-proof we mean 
a non-empty finite sequence OQ, ..., a„ of terms such that for every i e {l, ..., /1} 
either (а,_1, a^ or (a^, a,_|) is an immediate consequence of an equation belonging 
to E. The number n is called the length of ÜQ, ..., a„. An £-proof a^, ..., a„ is said 
to be an E-proof from a to Ь if «Q = a and a„ = b. By a minimal £-proof we mean 
any £-proof ÜQ, ..., a„ such that there is no £-proof from ÜQ to a^ of length less than 
n. An equation (c, d) is said to be a consequence of E if there exists an £-proof from с 
to d. 

By an equational theory of type A we mean a set T of equations of type A such that 
every consequence of Tbelongs to T. Equivalently: Tis an equational theory of type A 
iff T is a fully invariant congruence of the algebra W^, i.e. a congruence such that 
(a, Ь)Е T imphes [f{a),f(b)) e T for any substitution / The set of all equational 
theories of type J is a complete algebraic lattice with respect to inclusion; it will 
be denoted by ^^. 1^^ is the least and W^ x W^ is the greatest element of ^^. The 
lattice J^j is antiisomorphic to the lattice of varieties of .d-algebras. 

If A, В are two equational theories, then A w В (the join of A, В in the lattice ^ ^ ) 
is just the equational theory generated by A\J B. Thus {a,b)E A у В iff there exists 
an Л u Б-proof from a to b. Evidently, a non-empty finite sequence aQ,...,a„ 

129 



is an л u B-proof ifiF(ai^i5 cii)eAu Б for all i e {l, ..., n]. The join of an arbitrary 
family of equational theories can be described similarly. The meet of a family of 
equational theories coincides with its intersection. The lattice ^^ is a complete sub-
lattice of the equivalence lattice of FFj. 

For every type A, one particular equational theory of type A, namely E^, will 
play an important role in this paper. It is defined as follows: (u, v) e E^ iff var (u) = 
= var (f). 

By a full subset of W^ we mean a subset U such that a eV and a S b imply b eU, 
Evidently, if t/ is a full subset of W^ then (U x U) и 1^^ is an equational theory. 

2. MODULAR ELEMENTS IN GENERAL LATTICES 
AND IN EQUIVALENCE LATTICES 

An element e of a lattice L is called modular if (a v e) A b = a v (e A b) for 
all the pairs a, Ь of elements of L such that a ^ b. 

Let L be a lattice and e, a, b, c, d e L. We write Pent (e, a, b, c, d) if с < e < d^ 
c<a<b<d, eva = d, eAb = c{so that the elements e, a, b, c, d constitute 
a five-element non-modular sublattice of L). 

2.1. Proposition. Let Lbe a lattice and e G L. The following four conditions are 
equivalent: 
(1) e is a modular element of L; 
(2) e is a modular element of the dual of L; 
(3) [a V e) A b ^ a V (e A b)for all a, b e Lsuch that a < b; 
(4) there exist no elements a, b, c, d e Lsuch that Pent (e, a, b, c, d). 

Proof. The equivalence of the first three conditions is clear, (l) implies (4): if it 
were Pent [e, a, b, c, d) for some a, b, c, d e L, then b = (ave)Ab = av 
V (e л b) = a, a contradiction. (4) implies (l): suppose that e is not modular, so 
that a V (e A b) < (a V e) A b for some a, b e L with a < b; then evidently 
Pent (e, a V [e A b), [a V e) A b, e A b, e у a), a contradiction. 

2.2. Proposition. Let M be a set and I an equivalence on M. Then I is a modular 
element of the equivalence lattice of M iff I = (N x N) и 1^ for some N ^ M. 

Proof. First, let / be modular. It is enough to derive a contradiction from the 
existence of pairwise different elements a, b, c, d e M such that (a, b) e / , (c, d) G / , 
[a, с)ф L Denote by A the equivalence on M with a single non-one-element block 
[a, c} and by В the equivalence with just two non-one-element blocks {a, c}, {fc, d}. 
We have (b, J) G (Л v I) n В = A v (I n B), so that there exists a finite sequence 
ÜQ,..., a„ such that «o = b, a„ = d and («i- i , a,) e A KJ [I n B) for all i e {1, ..., n}. 

130 



Evidently, if i e (1, ..., n] and ßf,_i = b, then â  = b, too. Hence a„ = Ь and we 
get a contradiction, since a„ = d ^ b. 

Next, let / = (iV X iV) u Ijvf where iV is a subset of M. Suppose that / is not 
modular, so that Pent (/, Ä, B, C, D) for some equivalences A, B, C, D. There exists 
a pair {a, b)e B\Ä; since Б Ç / v Л, there exists a finite sequence bo? • ••̂  m̂ such 
that bç) = a, b^ = b and (bj_i, b )̂ e / u Л for all i e { l , . . . , m}. Let aQ,...,a„ 
be a finite sequence of minimal length among all the finite sequences such that 
(aQ,a,j)eB\A and (a,_i, a,) e / u Л for all f e {! , . . . ,n}. Then (ao,ai)eI and 
ÜQ Ф a^, since otherwise {QQ, ai)E A would imply that a^, ..., a„ is a sequence 
contradicting the minimality of aQ,...,a„. Hence ÜQEN. Quite similarly, a^eN 
and so (üQ, a„) e I n В ^ A, a contradiction. 

3. MODULAR ELEMENTS IN THE SUBGROUP LATTICE OF SM 

For every finite set M we denote by S^ the group of all permutations of M and 
by Aj^ its subgroup formed by the even permutations of M. The identical permutation 
of M will be denoted by Ij^ (or only 1). If a^, ..., a„ are pairwise difl'erent elements 
of M and n ^ 2 then [a^, ..., a„] denotes the permutation p of M such that р{а^) = 
= a2, ...,p{a„.i) == a^, p(a„) = a^ and p{b) = b for all b e M \{ai, ..., a„}. 
If a^, ..., fl„, b^, ..., b^ are pairwise different elements of M and и, m ^ 2, we put 
[ai , ..., a„; bj , ..., b j = [a^, ..., a„] [b^, ..., b j . 

3.1. Proposition. Leif M be a finite set of cardinality ^ 5 ; let G be a subgroup 
of S^' Then G is a modular element of the subgroup lattice of S^ iff either G = {1} 
or G = AM or G = Sjvf. 

The proof of this proposition will be divided into several lemmas. First of all, the 
subgroups {l}, Aj^, S M are modular elements of the subgroup lattice of S^, since 
they are normal subgroups and it is easy to see that any normal subgroup of any 
group is a modular element in the subgroup lattice of the group. Now let G be a modu­
lar element of the subgroup lattice of Sj^ and G ф {!}. Since Aj^ is a maximal sub­
group, it is enough to prove G ^ Aj^. 

3.2. Lemma. Suppose that there are three pairwise different elements a, b, с e M 
such that [a, b, c^e G and \_b, c] e G. Then G = 5^-

Proof. Let d, e be any pair of elements of M such that the elements a, b, c, d, e 
are pairwise different. Denote by A the subgroup of SM generated by [a, d; b, e] 
and by В the subgroup generated by [a, fo, J, e]. We have A c: В and [a, b, d, e] = 
= [a, b, c] [a, d; b, e] [a, b, c] [a, d; b, e] [b, c] e (Л v G) n В = A v (G n B); 
hence G n Б ф Л, so that G n В = B, i.e. В я G. We have proved [a, b, t/, e] e G. 

It is enough to prove that if i, j are two different elements of M then [i, 7] e G. 
If i,j e {a, b, c} then either [/, j ] = [b, c] or [/, j ] = [a, c] = [b, c] [a, b, c] or 
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[i, j ] = \_a, Ь] = [a, Ь, с] [6, с], so that [г, j ] G G. If i.j ф {a, b, c] then [/,7] = 
= [a, b,j, i] [a, b, Î , J ] [a, b, 7, f], so that [1,7] e G by the above argument. Now 
it is enough to consider the following case: i ф {a, b, c] and j = a. Since Card (М) ^ 
^ 5, there exists an element he M\[a, b, c, i}. We have [/, a] = [a, b] [a, b, /, /c] . 
. [a, b, /c, i] and so [i, 7] = [f, a] e G by the above proved result. 

3.3. Lemma. Suppose that there are two different elements a, b e M such that 
[a, b] G G. Then G = S^. 

Proof. There exist three different elements c, d, e e M \[a, b]. Denote by Ä the 
subgroup of S M generated by [a, c, d^ and by В the subgroup of S^ generated by 
[a, c, J ] and [a, c]. We have Ä cz B, [a, c] — [a, b] [a, c, J ] [a, c, ti] [a, b] . 
. [a, c, (i] [a, b] [a, c, J ] e (л V G) n В = Ä v [G n Б), so that G n Б ф Л. Hence 
either [a, c] e G or [a, d] G G or [с, (i] G G. If [a, c] G G then [a, b, c] = [a, c] . 
. [a, b] G G, so that G = S'jv̂  by 3.2. If [a, d]eG then [a, b, d] = [a, d] [a, b] e G, 
so that G = Sjvf by 3.2 again. Hence it is enough to consider the case [c, d~\ e G. 
Quite analogously, it is enough to consider the case [c, e] G G. We have [c, J, e] = 
= [c, e] [c, J ] G G; this together with [c, J ] G G gives G = Sjv/ by 3.2. 

3.4. Lemma. Suppose [a, b, c] G G for some triple a, b, с of pairwise different 
elements of M. Then G 3 A^. 

Proof. It is easy and well known that the group Aj^ is generated by the permuta­
tions [i, 7, k^ (i, 7, к being pairwise different elements of M). So it is enough to prove 
[i, 7, /c] G G for all triples i, 7, /̂  of pairwise different elements of M. 

Let d G M \ {a, b, c}. Denote by A the subgroup of Sj^ generated by [b, J ] and 
by Б the subgroup generated by [6, d~\ and [a, (i]. We have A c^ В and [a, (i] = 
= [a, b, c]~^ [b, d] [a,b,c]e{AvG)nB = Av{Gn B), so that G n В ^ A. 
This together with 3.3 implies [a, b, J ] G G. 

Hence if {z, 7, /c} has at least two elements in common with (a, b, c}, then [/, 7, /c] G 
G G. If {i,7, /с} has exactly one element in common with {a, b, c} (say a = i), then 
by the proved result [a, 6, /c] G G and applying the above argument again we get 
[ a , 7 , / C ] G G , i.e. [ i , 7 , / C ] G G . Finally, let {a,b,c], {i,j,k} be disjoint. Applying 
the above proved result we get \_a, 7, /c] G G and applying the above result again we 
get [/, 7, k] G G. 

3.5. Lemma. Suppose [a, b; c, (i] G G /or som^ quadruple a, b, c, J 0/ pairwise. 
different elements of M. Then G 3 A^-

Proof. There exists an element e e M \{a, b, c, d]. Denote by A the subgroup 
of SM generated by [a, e] and by В the subgroup generated by [a, e] and [b, ^ ] . 
We have A с В and [Ь, ß] = [a, Ь; с, J ] [а, e] [а, Ь; с, J ] G (Л v G) n Б = Л v 
V (G n Б), so that G n Б ф Л. This by 3.3 implies that [a, b, e^ e G and so G ^ Л̂ у̂  

by 3.4. 
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3.6. Lemma. G ^ Äj^. 

Proof. Assume first there exist a permutation p G G and an element a e M such 
that the elements a, p(a), p^'(a) are pairwise different. Denote by Ä the subgroup 
of Sj^ generated by [a, p{cij] and by В the subgroup generated by [a, p{a)] and 
[p{a), p\a)]. We have A cz В and [p(fl), p\a)] = p[a, p{a)] p~^ E{Ä v G)nB = 
= A V {G n B), so that G n Б ф Л. It follows from 3.3 and 3.4 that G ^ yl^-

Now assume that p^ = 1 for any p e G; let ^ G G, ^ ф 1. If g is a transposition, 
we have G = SM by 3.3. In the opposite case there exist pairwise different elements 
a, b, c, d G M with q[a) = c, q(c) = a, q(b) = d, q[d) = b. Denote by A the sub­
group of SM generated by [a, b] and by В the subgroup generated by [«, b] and 
l_c, J ] . We have A cz В and [c, J ] = q[a, b~\ q G{A v G) n В = A w (G n B), so 
that G n JB Ф Л; by 3.3 and 3.5 we get G ^ ĵv .̂ 

This completes the proof of 3.1. 
Let us recall that x^, X2, X3, X4 are four pairwise different variables. We define 

three subgroups P^, P2, P3 of S^^^^^^^^^^ as follows: 

P , ={ l , [Xi ,X2]} , 

P2 = {1, [Xi, X3]} = [X2, X3] Pi[x2, X3], 

Р3 = {h [:>C2, X3]} = [Xi, X3] Pi[Xi, X3]. 

Moreover, we define four subgroups Q, R^, R2, P3 of '5̂ {.х,.х2,хз,х4} ^^ follows: 

^1 = 6 ^ {[^1. ^2, ^3. ^4], [л-1, ^4, Хз, X2], [Xi, X3], [X2, X4]}, 

i<2 = g U IL-^i, X2, X4, X3J, LXj, X3, X4, X2J, L-̂ 1? ^4j? "̂̂ 2? ̂ зЛ ~ 

= [x3,X4]Pi[x3,X4], 

^3 = 6 ^ {[-^1, ^3. ^2. ^4]. [->̂ b ^̂ '4. ̂ 2. ^3], [•>̂ 1, ^2]. [^3. ^'4]} = 
= [X2, X3] Pi[x2, X3]. 

3.7. Proposition. / / Card (М) ^ 3 ^/len ei;e?'3̂  subgroup of S^ is a modular 
element of the subgroup lattice of S^- The subgroup lattice of 5'{̂ 1,х2,хз} ^^^ 
exactly six elements, namely, the following ones: 

| I j , P j , P 2 , P 3 , f̂̂ ^ ,^2,Хз}' ^{Х1,Х2,Хз} ' 

We have A^^^^^^^^^y = {1, [x^, X2, X3], [x^, X3, X2]}. 

Proof. It is evident. 

3.8. Proposition. The subgroup lattice c/5^^^^^^^^^^l has exactly seven modular 
elements, namely, the following ones: 

{ I j ? Ô? ^ 1 ? ^ 2 ? ^ 3 ' ^{Xi,X2,X3,X4)^ '̂ {Х1,Д:2,Л:з,̂ С4} • 
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We have A^,^^^^^^^^^^^ = g u {[ij, k]; i,j\ к e {x,, x^, X3, x^}, i Ф j , i Ф /c, j Ф /c}. 

Proof. It is a routine work of drawing a picture of the subgroup lattice of 
^{xi,x2,x3,x4} and finding all its modular elements. 

4. MODULAR ELEMENTS IN THE LATTICE OF EQUATIONAL 
THEORIES OF A SMALL TYPE 

4.1. Theorem. Let A be a type consisting of nullary operation symbols only and 
let T be an equational theory of type A. Then T is a modular element of S£^ iff 
either Г = ff̂  x Ж^ or T = (C x C) u V ^ for some С Я A. 

Proof. It follows from 2.2, since the elements of ^j different from W^ x W^ 
constitute a sublattice of ^^ isomorphic to the equivalence lattice of A. 

4.2. Theorem. Let A = {F} u AQ where F is a unary operation symbol and AQ 
is a set of nullary operation symbols; let T be an equational theory of type A, 
Denote by Y the set of all the terms t such that var (t) = 0 and (t, f) e Tfor some 
f Ф t. Then T is a modular element of S£^ iff at least one of the following three 
conditions is satisfied: 

(1) T=(U X U)KJ Ijy^ for some full subset U of Wy, 

(2) T я E^ and Y X Y is a block of T; 
(3) T я Ej and there exists a ce AQ such that whenever t e Y then t = F^cfor some 

/c ^ 0. 

The p roo f of this theorem will be divided into several lemmas. 

4.3. Lemma. Let T be modular; let c.deAQ, с Ф d, /c, / è 0, {F% F4) e T 
Then {F^c, F^+'^c) e Tfor some m > 0. 

Proof. Denote by A the equational theory generated by {F4, F^'^4) and by В 
the equational theory generated by (F^c, F^^+^c), {F4, F^+^d). We have ( f Ч F^^h) e 
e{Äv T)nB = ÄV (TnB). Let «o, . . . , a , be a minimal ^ u ( T o 5)-proof 
from F^c to F^+^c. Since {Fh} is a block of Л and ao Ф a„ we cannot have («o, ^1) e 
e A; hence («o, a,) e Tn B. The set {F% p^'-'c, F^+^c,...} is a block of В and so 
a^ = F^+'"c for some m > 0. We get (F^c, F^'^'^c) e T ' 

4.4. Lemma. Let T be modular; let c, d ^ AQ С + d, к I '^ 0, m, n > 0, 
(F^c, F'^^'^c) e T, {F'd, F'^4) e T Then {F'c, F'd) еТ 

Proof. Denote by A the equational theory generated by (F^^'^c, F^^^'d) and by В 
the equational theory generated by {F^c, F4), {F^'^^'C, F^^"d). We have {F^c, F4) e 
e{Ay T)r\B = Ay {Tn B). Let ÜQ, ..., a, be a minimal A u ( T o ^)-proof 
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from F^c to F^d. Since [F^c] is a block of Ä and Uo Ф a^, we cannot have (ao, a^) e 
б Л ; hence (ÛQ, а^)еТп B. Since {F^c, F'(i} is a block of Б, a^ = F^d. Hence 

4.5. Lemma. Le^ Г be modular and T ф F j . Then (l) ^a/ces place. 

Proof. Since T Ф E^, there exists a positive integer n such that {F"xx, F"x2) e T. 
Denote by U the set of all the terms и such that (u, v) e Tfor some v Ф u. Evidently, 
I/ is a full subset of W^ and it is enough to prove (u, F"xi) e T for all и EU. Let 
(w, u) G T and M Ф f. If either var (w) = 0 or var (f) = 0 or м = F^c and Ü = F^c 
for some /c, / ^ 0 and some с G JQ^ then (w, F"xi) G Г follows from the fact that T 
is an equational theory. The case и = F^c and v = F4 where /c, / ^ 0, c, de AQ 
and с Ф J remains. By 4.3 we have (F^c, F^'^'"c) G Tfor some m > 0; hence we get 
(F^c, F"Xi) G Г. 

4.6. Lemma. Le^ Г be modular and T ^ F j . T/zen either (2) or (3) â/cé̂ s place. 

Proof. It follows from 4.3 and 4.4. 

4.7. Lemma. Let either (1) or (2) or (3) be satisfied. Then T is modular. 

Proof. Suppose that T i s not modular, so that Pent (T, Л, Б, C, D) for some 
Ä, B, C, D E c^j. There exists a pair (a, Ь)Е B\Ä; since В ^ T v A, there exists 
a T u ^-proof form a to b. Let /i be the minimal positive integer such that there 
exists a T u Л-proof «о, ..., a„ with (ÖQ, a„)E B\A and let us fix one such T u Л-
proof «0, ..., a„. It is evident that n ^ 3, и is odd, (а^_1, a,) G T \ Л if f is odd and 
{cii-i, öj) G Л \ Tif г is even. For every i E {0, ..., n] define a non-negative integer 
k{i) and an element ŵ  G F u AQ by â  = F^^'^Ui. 

Suppose T $ E^. Then T = ([/ x [/) u V ^ for a full subset U of Wj. Since 
(«05 ^i) e T and flo Ф <̂ i? we have ao G L/. Quite similarly, a„ E U. Hence («o? ^n) ^ 
еТп В Я: A, a, contradiction. 

Hence T ^ E^ and so either (2) or (3) is satisfied. 

Suppose that either MQ G F or Wo = "i = ••• = ^n^^o- Evidently, there exists 
an mi > 0 such that (ao, F^'^^ao) G Tfor all i ^ 0; there exists an m2 > 0 such that 
(ao, F^'^^ÜQ) G В for all i ^ 0; there exists an m^ > 0 such that (а„, F'^^^a^) e В for 
all i ^ 0; since either (2) or (3) is satisfied, there exists an m^ > 0 such that 
(a„, F'^^'a^ E Tfor all i ^ 0. Put m = mim2m^m^. If i ^ 0 then (ao, F'^^ao) еВп 
пТя A, (a„, F^'^a^) e В n T ^ A, so that (F'^^ao, F'^a„) EB\A. The sequence 
F'^^aQ,..., F'^^an is evidently a T u Л-proof. Let us fix an i ^ 0 such that im ^ 
^ /c(l) - î (0) and im ^ /c(l) - /c(2). Then (^рт+цо)^^^ pim+k(0)+k(2)~kii)^^^^ j^ 
and (i7^-+M0)+fc(2)-/c(i)^^^ F''"-'̂ (2^W2) G T Hence the sequence ^''"ao, 
,̂,m+M0)+fc(2)-Mi)^^ |,m.^^^ ^^fm^^ is a T u Л-proof, too; however, the pair 
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(F''"ao, i7̂ "'"+fc(o)+M2)-fc(i)̂ )̂ belongs to A and so there exists a shorter T u Л-proof, 
which contradicts the minimality of n. 

We get UQ Ф V. Similarly, u„ ф V, Evidently, it is enough to consider the case UQ, ... 
...,и„ф V. We have ÖQ, ..., a„ G С If С X С is a block of T then (CLQ, a„) G TГЛ 
n Б ^ Л, a contradiction. In the opposite case (3) is satisfied and so WQ = Wi = ... 
... = u^e AQ] however, this was already proved to be impossible. 

This completes the proof of Theorem 4.2. 

5. MODULAR ELEMENTS IN THE LATTICE OF EQUATIONAL 
THEORIES OF A LARGE TYPE 

If T is an equational theory of typezl, we denote by JJ j the set of all the terms a 
such that there exists a term b with (a, b)e T and b Ф p(a) for any permutation p 
of var (ay, for every term a we denote by Gj(a) the set of all the permutations p of 
var (a) such that (a, p(a)) e T, so that Gj{a) is a subgroup of 5var(a)-

5.1. Theorem. Let A be a large type and T an equational theory of type A. Then 
T is a modular element of £^^ iff the following nine conditions are satisfied: 

(1) и J is a full subset of W/, 
(2) if u, V eU and var (w) = var (i?) then (w, v) e T; 
(3) for every t e W^, the group G^it) is a modular element of the subgroup lattice 

^f ^var(r)? 

(4) // a, Ь G Ж ,̂ var (a) ~ var (b) = {x ,̂ X2, X3} and Gj^a) = Gj{b) = P^, then 
either a -^ b or b -^ a; 

(5) if a, b G PFj, var (a) = var (b) = {xj, X2, X3}, Gr(a) = Pj anJ ОДЬ) == 
= Axi,x2,x,p then a <b\ 

(6) if a, te W^, var (a) = [x^, X2, X3}, Gĵ (a) = P^, var (t) = [x] for some x e V, 
t Ф X and if X has a single occurrence in t, then there exists a positive integer к 
with Grit^'la]) = Я,,,.,,,з); 

(7) if a, b E IFj, var (a) = var (b) = {x^, X2, X3, X4] and Gj(a) = Gj[b) = R^, 
then either a ^ b or b ^ a; 

(8) there exist no two terms a, b e Wj such that var (a) = var (b) = {x ,̂ X2, X3, X4}, 
Gr(a) = Pi and Gjib) = A^^^^^^^^^^^^y, 

(9) // a, t e W^, var (a) = {x ,̂ X2, X3, X4}, Gj(a) = Pĵ , var (t) = {x} /or some 
X e V, t Ф X and if x has a single occurrence in t, then there exists a positive 
integer к with Gr(r̂ '̂ [̂a]) = S^^^^^^^^^^^^y 

Notice that in the case of a large type A containing neither nullary nor unary 
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symbols the two most comphcated of these nine conditions, namely (6) and (9), 
are empty. 

The proof of this theorem will be divided into the following six sections. In these 
sections let zl be a large type and let Tbe an equational theory of type J ; put U = Uj. 

6. DIRECT IMPLICATION: PRELIMINARIES 

6.1. Lemma. Let a eU. Then there exists a term b such that [a, b)eT, b -^ a 
and var (a) = var (b). 

Proof. Since a eU, there exists a term с such that {a, c) e Tand с Ф p{a) for any 
permutation p of var (a). Consider first the case var [a) ф var (c). Then there exist 
a term d e {a, c} and a variable x such that x e var (d) and x ф var {a) n var (c). 
Let us take a non-nullary symbol F e A and define a substituion / by f(y) = y 
for all y e var (a) n var (c) and f(y) = F(a, a, ..,, a) for all the remaining variables y. 
It is evident that the term b = f{d) has the desired properties. Now let var {a) = 
= var (c). If с ^ a, we can put Ь = с If с < a, then a = /(x)[c] for a variable x 
and a term t with a single occurrence of x: it is easy to see that the term b = ^(x)[^] 
has the desired properties. 

6.2. Lemma. Let FеЛ be a symbol of arity n ^ 1. Let E ^ W^ x W^ be such 
that if {u,v) e E then v = F(w, W2, ..., w„) /or some terms W2, ..., w„. Let (a, VQ) e E 
be such that if (u, v) e E then either и — a or и %. a. Let a' be a term such that 
(fl, a') is a consequence of E. Then there exist a non-negative integer к and terms 

t^ a' = F{.,.F{F{a,tl.,.,tlltl,..,tl%...,tl 

Proof. Denote by H the set of all the terms of the form F(. . . F{F(a, t\, ..., tl)y 
t\, ..., r^), ..., Г2, ..., t^). It is enough to prove that if b e H and (b, c) is an im­
mediate consequence of an equation from E KJ E~^ then ceH. Let 

b = F{... F{F{a, t\,..., tl), tl ..., tl), ...,t\,..., t) e H 

and let (b, c) be an immediate consequence of an equation (u, v) e E и E~ ^. There 
exists a substitution / such that f(u) is a subterm of b and с results from b by sub­
stituting/(i;) for one occurrence of/(w). If the occurrence of f(u) is contained in 
some t] then it is evident that с e H. Let the occurrence of/(w) be not contained in 
any tj. Then it follows from the properties of E and a that/(w) = F(. . . F{F{a, t\, . . . 
..., f^), ^2, ..., r^), ..., Г2, ..., C) for some m e { 0 , ...,/c} and if (U,V)EE~^ then 
m Ф 0. If (i/, v)eE then v = F(u, W2, . •., w„) for some W2, .. -, w„ and we have 

с = F{...F{F{a, tl,..., tl),..., t^ .... t:),f{w2),...,f{w„)), 

tr\...,t:'-'),...,ti...,t':,)eH. 
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If (и, v)e E ^ then и = F(v, vv2, . • -, w„) for some W2,..., w„ and we have 

с = F{...F{F{a, tl ..., tl),..., r r S .-., C~ ' ) . t r \ .-., C ' ) , ••.. ?2,..., ^« ) e ^ . 

6.3. Lemma. Le^ T be modular and a eU. Then (a, b) e Tfor a term b such that 
var (0) = var (b) and a is a proper subterm of b. 

Proof. Let us fix a symbol F e A of arity n ^ L By 6.1 there exists a term с such 
that (a, c)eT, с ^ a and var (a) = var (c). Denote by A the equational theory 
generated by (c, F(c, ..., c)) and by В the equational theory generated by 
(a, F(a,..., a)) and (c, F(c, ..., c)). We have A Я В and (a, jp(a, ..., a)) e(A v T) n 
n В = A V (Tn B). Hence there exists an Л u {Tn 5)-proof from a to F(a,..., a). 
Especially, there exists a term b Ф a such that either (a, b)e A or (a, b)e Tn B. 
Since A ^ Ej and Л Ç £ j , we have var (a) = var (fe). Since с $ a and a ф b, we 
cannot have (a, b) e Л; hence (a, Ь)Е Tn B. Especially, (a, b) e T. Since (a, b) e Б, 
it follows from 6.2 that a is a proper subterm of b. 

6.4. Lemma. Let T be modular] let p, q, r, s be terms such that p ^ r, q ^ r, 
JP ^ 'S, q S ^^ ^ S ^^ s ^ r, var (r) = var (s) and (r, s) is a consequence of Tu 
u{{p,q)}. Then {r,s)eT 

Proof. Denote by A the equational theory generated by (p, q) and by В the 
equational theory generated by [p, q) and (r, s). We have A ^ B, (r, s)e{A v T) n 
n J 5 = y 4 v ( r n 5 ) and so there exists a term с Ф r such that either (r, c)e A or 
(r, c)e Tn B. Since p $ r and ^ J r, we cannot have (r, c) e У4. Hence (r, c) e 
e Tn B. Now it is enough to prove that if t is я term such that either (r, t) or (5, )̂ is 
an immediate consequence of an equation belonging to {(p, q), (r, s), (q, p), (s, r)}, 
then either ï = r or t — s. For the reasons of symmetry it is enough to consider the 
case of (r, t) being an immediate consequence of an equation from {(p, q), (r, 5), 
(q, p), (s, r)}. Since p, q, s ^ r, (r, )̂ is an immediate consequence of (r, s). There 
exists a substitution/ such that / ( r ) is a subterm of r and ^ results from r by replacing 
the subterm/(r) by/(s) . But / ( r ) = r,f(x) = x for all x G var (r) = var (5),/(5) = s 
and ? ==: s. 

If F is an n-ary symbol from A and i e ( l , ..., n} then for any term и eW^ and any 
sequences s^, ..., S},e W^"^ (where /c ^ 0) we define a term 7jr̂ i(w; s^; ...; ŝ ) as 
follows: if к = 0 then 7F,i(w; 5^; ...; 5̂ ) = w; if /c ^ 1 then 7^^/(1/; s^; ...; s^) = 
= Hh>'--^ti-i.yF,i{u;si; ...;sfc_i), r,-, ..., r„_i) where Sj, = (^1, .-.,^„-1). 

6.5. Lemma. Let T be modular. Let (a, b) e T, b ^ a, var (a) = var (b); let a be 
neither a variable nor a nullary symbol from A. Let xe F \ v a r ( a ) and let d be 
a term such that x has exactly one occurrence in d and d Ф x. Let Fe A be a symbol 
of arity n and let г e {1 , . . . , n] be such that d is not of the form F{u^, ..., w„) where 
u^, ...,u„eWj and xevar(t/^). Put f = cr^ and g = a^. Let к > Max (Я(/(б/)), 
Ä{g(d)y), Let s^, ..., ŝ , be finite sequences such that: 
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(i) ï/ var(/((i)) + 0 then s^, ..., 5̂  e (var (/(^)))" ^ and every variable from 
var {f{d)) is a member of some member of Si, -•-, Sj,; 

(ii) // var (/(J)) = 0 then s^ = ... = s^ = {G, .--^ G) for some nullary symbol G 

contained in a. 

Then {yF,i{a\ 5i; ...; Sj)J{d)) e T. 

Proof. By 6.4 it is enough to prove 

yFj{b;s^; ...;5fc) $ ypj(a;si; ...;si,), 

yF,i{b;s,;...;s,) ^ / ( ^ ) , 

g{d)Sf{d), 

ypj{a;s^;...;sk) Ufid). 

f{d) й ypjiais^; ...;5;t). 

All these inequalities except for the second and the last one are clear. Let h be either/ 
or g and suppose that p[h(dj) is a subterm of ypji^l s^; ...; s^) for a substitution p. 
Evidently, p{h(d)) is not a subterm of a and p{h{d)) is neither a variable nor a nullary 
symbol. Hence p(h(d)) = у^^^а; s^; ...; s^) for some j G {1, . . . , /c}. Then J = 
= F(WI, ..., u„) for some terms w ,̂ ..., u„. By the choice of F, i we have x e var (i/,.J 
for some ÏQ + i- Since p{h{ui^)) is either a variable or a nullary symbol G contained 
in a, we get ŵ^ = x. If /z = ^ then p{b) is either a variable or a nullary symbol 
contained in a, so that Ь is either a variable or a nullary symbol contained in a, 
a contradiction with Ь ^ a. If /? — / t h e n p(a) is either a variable or a nullary symbol, 
so that a is either a variable or a nullary symbol, a contradiction. 

6.6, Lemma. Let T be modular. Let a eU be neither a variable nor a nullary 
symbol from A. Let c^, Ci e W^, var (c^) = var (C2) and let a be a proper subterm 
of both Ci and C2. Then (c^, C2) e T. 

Proof. By 6.1 there exists a term Ь such that (a, b)eT, b ^ a and var (a) = 
= var (b). Let x e F \ var (с^). Put f = CF^ ^̂ ^̂  ö̂  = ^ь- Let c/̂  and ^2 be the terms 
obtained respectively from c^ and с2 by replacing exactly one occurrence of the sub-
term a by X. Evidently, there exists a triple F, n, i such that F is an n-ary symbol 
from A, i e {1, ..., n} and d^ is not of the form F(ui, ..., u„) where w ,̂ ..., w„ G Ж^ 
and xGvar(wi). There exist a number /c > Max (A(/(Ji)), ^(/(^2)), >^(^(^i)), 
'̂ (ö'(<^2))) äii^ finite sequences 5 ,̂ ..., 5̂  satisfying the conditions (i), (ii) of 6.5 (with d 
being either d^ or ^2» we have/((ij) = ĉ  and/ (^2) — ^2)- ^У ^-5, {yF,i{ai s^; ... 
...; 5J, Ci) G T. If J2 is not of the form F(wi, ..., w„) where x G var (w,) then 
{Урл{а; 5^; ,..; ŝ )̂, C2) G T by 6.5, too, so that (c^, C2) G T. Let J2 = ^ ( " i , ..., w„) 
and X G var (м^). Since d̂ is a large type, there exists a triple G, m, j such that G is 
an m-ary symbol from A, j G { 1 , ..., m} and (F, n, i) Ф (G, m,^). There exist an 
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/ > Max (/(/(^2)), K^i^i)). КАУРА^'^ ^1 ' • • •' ^кШ КФРА^1 hl"-l h)))) and finite 
sequences s[,..., s[ such that: 

(i') if var(c2) Ф 0 then s[, ..., sj G (var (02))"""^ and every variable from var(c2) 
is a member of some member of s^, ..., s[; 

(iï) if var (^2) = 0 then s[ = ... = s'l = {H, ..., Я) for a nullary symbol H con-
tained in a. 

By 6.5 we have {уо,]{а; s[; . . . ; s\)J{ypj{x; s^; . . . ; 5^)))ЕТ and ( T G , / ^ ; S[; . . . ; s\), 
/(J2)) e ?̂ so that {yF,i{(^', Sil ...; Sĵ ), C2) e Г and consequently (c^, C2) e T. 

6.7. Lemma. Let T be modular. Let a eU; let c^, C2 e Wj, var (c^) = var (^2) and 
let a be a proper subterm of both c^ and €2- Then (c^, C2) e T. 

Proof. If a is neither a variable nor a nullary symbol, this follows from 6.6. Let a 
be either a variable or a nullary symbol. By 6.3 we have (a, b) e Г for a term b such 
that var (0) = var (b) and д is a proper subterm of b. Evidently, b eU. Denote by c[ 
and C2 the terms obtained respectively from c^ and C2 by replacing one occurrence of a 
by b. Then var (c[) = var (cQ and b is a proper subterm of both c[ and C2; since b 
is neither a variable nor a nullary symbol, it follows from 6.6 that (c[,C2)eT. 
However, we have (c^, c[) e Tand (c2, ̂ 2) e T, so that (c^, C2) e T. 

6.8. Lemma. Let T be modular. Let a eU; let с be a term such that var (a) = 
= var (c) and a is a subterm of c. Then (a, c) e T. 

Proof. It follows from 6.3 and 6.7. 

6.9. Lemma. Let T be modular. Then U is a full subset of Wj and if U,VEU 
and var (w) = var (v) then {u,v)e T. 

Proof. Let a EU and a ^ b, so tha t / ( a ) is a subterm of b for a substitution/. 
It follows from 6.8 that (a, c) e Tfor a term с such that l[c) > А(Ь). Demote by d 
the term obtained from b by replacing one occurrence of the subterm / ( a ) by /(c) . 
Then (b, d) E T; since X{d) > л(Ь), we get b e U. We have proved that t/ is a full 
subset of Hj. Let u,v EU and var (w) = var (v). Let us distinguish two cases. 

Case L A contains a symbol F of arity n ^ 2. By 6.8 we have (w, F(w, i;, ..., v)) e T 
and (y, F(w, f, ..., i;)) e T, so that (м, и) G T. 

Case 2. zl contains no symbol of arity ^ 2 . Then и = s^^t^) and v = ^2(̂ 2) f̂̂ *̂ some 
finite sequences s^, S2 of unary symbols from A and some t^ 2̂ such that either 
1̂ = 2̂ G F or ^1, 2̂ are nullary symbols. By 6.8, (^^(^i), ms^{t^)) G T and (52(̂ 2)» 

ms2(^2)) ^ Tfor any finite sequence m of unary symbols from A. Since J is a large 
type, there exist two different unary symbols F,GEA. The equation (Fs2Si(ti), 
G^i^iih)) is a consequence of T u {{FFs2Si(ti), FFsj^S2{t2)}l evidently, the assump­
tions of 6.4 are satisfied, so that {Fs2Si(ti), GsiS2{t2)) G T by 6.4. Hence (siÇt^), 
S2(t2))ETi.e.(u,v)ET 
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6.10. Lemma. Let The modular and let t e W^. Then the group Gj(f) Is a modular 
element of the subgroup lattice of S^^^(^ty 

Proof. Suppose Pent {Gjt), H, K, M, N) for some H, K, M, N in the subgroup 
lattice of 5̂ var(f)- Denote by Ä and В the equational theories generated by the equations 
(t, p{t)) with pe H and p e K, respectively. We have Ä ^ В and so (A v T) n В = 
= A V {T n В). Since H v Gjlt) ^ K, it is evident that Л v T ^ Б and so 

(A V T)n В = B;wQ get A v {Tn B) = B. Ltt q e K\H.WQ have {t, q(t)) еВ = 
= A V {Tr\ B) and so there exists an A u ( T n ^)-proof UQ, ..., i/„j from t to ^(O-
It is easy to prove Ui = h[t) for some h e H by induction on / e {0, ..., m]. Hence 
q e Я, a contradiction. 

7. DIRECT IMPLICATION: THREE VARIABLES 

Put Ti = [xi,X2], Г2 = [xi, Хз], Гз = [x2, X3], Г4 = [^i,-X:2, X3] and r^ = 
= [xi, X3, X2] = r^\ We have P^ = {1, г^} and A^^^^^^^^^^ = {1, Г4, r^}. Put 

Fl = {a G If ;̂ var (a) = (x^, X2, X3}, От{а) = P j , 

F2 = {ß G Ж ;̂ var (a) - {x^, X2, X3}, Ст{а) = A^^^;^^_^^^}. 

7.1. Lemma. Let a eV^ and let f be a substitution such that f(a) ф U. Then 
/ (x i ) , / (x2) G Vandf(x^)j'{x2) Ф var (Дхз)). 

Proof. Let X, у be two difl^rent variables not belonging to var (/(a)). Denote 
by g the substitution with g{x^) = /(x^), 6 (̂x2) = x, о'(^з) = У- We have [a, r^[a))eT, 
{g{a), g /~i(a)) e T. We have g (a) ф U, since otherwise we would have / ( a ) G l/. 
Hence ö'(a) '--' g ri{a) and there exists an automorphism p of Hj with p g{a) = 
= g f^{a). Hence p g{x^ = g r^[xi^), i.e. p / ( x i ) = x and we get / (xi ) G V. Similarly 
we can prove/(X2) G V. Denote by h the substitution with h^x^) = /(x^), /i(x2) = x, 
/г(хз) = /(хз) . We have h(a) ф U and (/î(a), h ^^(a)) G T, so that h(a) ^ h ri(a) and 
q h{a) = h f\{a) for an automorphism q of Wj. Hence q h(xi) = h r^^x^) and 
qh{x^) = hr\{x^), i.e. qf{xi) = x and qf{x^)=f{x^), where /(x^) G F; this 
implies /(x^) ^ var (/(хз)). We can prove /(X2) ^ var (Дхз)) quite similarly. 

7.2. Lemma. Le^ a G K2 an<i /e^ f be a substitution such that f{a) ф U. Then 
a - / ( a ) . 

Proof. Let X, у be two different variables not belonging to var (f{a)) u (x^, X2, X3}. 
Denote by g the substitution with g{xi) = /(x^), о (̂х2) = x, g{x2,) = y. We have 
g[a) Ф и and {g{a) g Г4{а)) G T, so that p g(a) = Ö' ̂ 4(0̂ ) for an automorphism p 
of FTj. Hence p ö^(xi) = g гДх^), i.e. pf{xi) = x; we get/(x^) G F. Quite similarly, 
/(X2) G F and /(хз) G F. Denote by h the substitution with h{xi) = /(x^), /z(x2) = 
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= Дхз), (̂-Хз) = X. We have h(a) ф U and {h(a), h Г4{аУ) e T, so that q h(a) = 
= h Г4,{а) for an automorphism q of Wj. Hence q h(xj) = h r4(xi), q h(x2) = 
= ^^4(^2) and q /^(хз) = /гг4(хз), i.e. qf{xi) =/(X2), ^/(x2) = x and ^(x) = 
= / (x i ) . This yields /(x^) 4=/(X2). Similarly / ( х 2 ) ф / ( х з ) and /(хз) ф / ( x i ) . 
Hence a ~ /(«)• 

7.3. Lemma. Let T be modular and a, b e V^. Then either a ^ b or b ^ a. 

Proof. Suppose that a ^ b and b ^ a. Denote by Ä the equational theory gener­
ated by (a, Г2(Ь)) and by В the equational theory generated by (a, ^2(^))> (̂ ^ ^з(^))-
We have (a, r,{a)) e T, {г,{аУ г^ф)) e A, (г5(Ь), Гз(Ь)) e T and so (a, Гз(Ь)) e 
e (Л V г ) n JB = У1 V ( T n Б). Let ^Q, ..., a„ be a minimal Л u (Tn jB)-proof 
from a to Гз(Ь). Evidently, {a, Г4(а), ^^[a), ^^(b), Г2(Ь), Гз(Ь)} is a block of Б and 
{a, rzi^)} is a block of A; hence every member of «о? .••?«/! equals either a or ^2(6), 
a contradiction. 

7.4. Lemma. Let T be modular, a e Vi and b e K .̂ Then a < b. 

Proof. Suppose first that a :$ b and b ^ a. Denote by A the equational theory 
generated by (a, b) and by В the equational theory generated by (a, b), (^^(a), г^{ЬУ), 
We have (ri(a), a) e T, (a, Ь)еу4, (Ь, Г4(Ь)) e T and so {r^{a),r^{b))E{A v T) n 
n В = A V (Tn B). Let a-Q, ..., a„ be an A KJ (Tn jB)-proof from rj^(a) to Г4(Ь). 
Evidently, {ri(a), ri{b), Г4(а), ^4(5)} is a block of В and {^^(а), ?~i(b)} is a block 
of A; hence every member of ^o, ..., a„ equals either ri(ö) or ri{b), a contradiction. 

We have proved that either a ^ b or b ^ a. Now it remains to derive a contradic­
tion from b ^ a. However, if Ь ^ a, then/(b) is a subterm of a for a substitution/; 
by 7.2 we may suppose t h a t / i s an automorphism of W^. Let a' be the term obtained 
from a by replacing the subterm / (b) by fT\{b). We have {a, a') e T and so a' e 
e {a, rj^ay, so that /г4(Ь) e {/(b), г^ДЬ)}; this is evidently a contradiction. 

7.5. Lemma. Letf be a substitution such thatf{x^ e F,/(x2) e Vandf{x^,f(x2) ф 
Ф var (/(хз)). Let a be a term such that var (a) = {xj, X2, X3} and f(a) is a constant 
extension of a. Then a — / ( a ) . 

Proof. Suppose that there is a term a such that var (a) = {x^, X2, X3}, / ( a ) is 
a constant extension of a and a ф f{p)\ let us take such a term a of minimal length. 
Since each of the terms f{x^J{x2),f{x^ contains at most two variables, a is not 
a subterm of any of the terms / (xi) , / (x2) , / (x3) . Hence a = f{d) for a subterm d 
of a; since a Ф / («) , <i is a proper subterm of a. There exist a variable x and a term t 
with a single occurrence of x such that a = ^(х)И- Since / (J ) < Я(а), it follows 
from the minimality of /(a) that a is not a constant extension of d; hence there exists 
a variable у e var (J) different from x. But then/(3^) is a term containing no variable; 
since / (x i ) G F and /(X2) e F, we get y = X3. We get var (/(0)) = {/(xi),/(x2)}, 
a contradiction. 

142 



7.6. Lemma. Let Т be modular. Let a e Vi. Let x e V, t e W^, var (t) = {x}, 
t Ф X and let x have a single occurrence in t. Then there exists a positive integer к 
with Gr(f<">[a]) = S(,,,,,,,3,. 

Proof. Suppose that there is no such k. Denote by Ä the equational theory gener­
ated by (a, ^[^2(0)]) and by В the equational theory generated by (a, ^[^2(^)])> 
(a, r^(a)). Put 

Z = {t^^'lP^a)]; p e {1, Г4, r^}, i ^ 0, i even} u 

u {t^'\p{^)^ P ^ {^1' 2̂-> ''з}. i ^ 1. i odd} . 

We have Z nU = ф. Let us prove that if d e Z and ^ is a term such that either (J, e) 
or [e, d) is an immediate consequence of one of the equations (a, ^[^2(0)]) and 
(a, Г4.{а)), then eeZ. There exists a substitution / such that either / ( a ) or /(^[^2(^)]) 
or / ( a ) or / Г4(а) is a subterm of J and e results from d by replacing one occurrence 
of this subterm by /(^[^al^)]) or / ( a ) or fT\{a) or / (a ) . If/(ö) is a subterm then it 
follows from 7.1 that /(x^) e K, /(^2) e Fand f{xi),f{x2) ф var (/(хз)); applying 7.5 
we see that the restriction o f / to (x^, X2, X3} is a permutation; this implies that 
ее Z. In the remaining three cases we similarly obtain e e Z, too. Put 

Y= {t^^\a]; i ^ 0, i even} u {t^'^riici)]; i ^ 1, i odd} . 

We can prove similarly that if J e У and e is a term such that either (J, e) or (e, d) 
is an immediate consequence of (a, ^[^2(^)])' then e e Y. We have (a, Г4(а)) e 
e[Ä V T) n Б = Л V [Тr\ в) and so there exists an Ä и {Tn B)-proof ÜQ, ..., a„ 
from a to Г4(а). By induction on i we see that â  e У for all Ï e {O, ..., и}; for г = n 
we get a contradiction. 

8. DIRECT IMPLICATION: FOUR VARIABLES 

Define r^, Г2, Г3, r^, r^ in the same way as in Section 7. Put 

F3 = {a e Ж ;̂ var (0) = {xj, X2, X3, X4} , Ст{а) = R^} , 

F4 = {a e Pf̂ ; var (a) = (xj, X2, X3, X4} , Gj{a) = ^(х,,х2,хз,х4}} • 

8.1. Lemma. Let a e V^ and let f he a substitution such that f{a) ф U, Then 

Proof. For every integer m denote by c(m) the number from {l, 2, 3, 4} congruent 
with m modulo 4. Let / e {l, 2, 3, 4}. Let x be a variable not belonging to var (/(a)) u 
u {xi, X2, X3, X4}. Denote by p the extension of [x^, X2, X3, X4] to an automorphism 
of W^\ denote by g the substitution with g{x^ = x and ^(x^) = f{xj) for all je 
e (1, 2, 3, 4} \ {г}. We have g{a) ф U and {g{a), g p(a)) e T, so that q g[a) = g p[a) 
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for an automorphism q of W^. Hence ^(л) =/(-^^(i+i)), qfi^cu-iy) — ^^ 
^fi^cii + i)) =f{^cii+2)l qf{^cii+2)) =f{^c{i-i)\ Hence it follows that/(х,(^_1^) 
is a variable,/(x,(,._i)) + / ( x , ( , + i)) and/(x,(^_i)) ^ f{x,^i+2))- Since 1 Е { 1 , 2, 3, 4} 
was arbitrary, we see that / (xi) , / (x2) , / (x3) , / (x4) are pairwise different variables, 
i.e. a ^ f{a). 

8.2. Lemma. Let a e V^ and let f be a substitution such that f{a) ф U. Then 
a - f(a). 

Proof. Let X, y, z be three different variables not belonging to var (/(a)) u 
u (xj , ^2, X3, X4}. Denote by g the substitution with ^(^:i) = / (x^ ) , g{x2) = x, 
ßi^s) = У, Q{^4) = -̂ We have g(a) ф U and {g{a), g Г4(а)) e T, so that p g(a) = 
= g i^4.{ci) for an automorphism p of W^. Hence p g{x^) = g r4(xi), i. e. pf{x^) = x; 
we ge t / (x i ) G V. Similarly/(х2),/(хз),/(х4) G V. Denote by h the substitution with 
A(xi) = / (x i ) , h(x2) = f{x2). h{x^) == X, h{x^ = y. We have /i(a) ф U and (h(a), 
h ^4(0)) G Г, so that g /î(a) = /z Г4(а) for an automorphism ^ of И̂ .̂ Hence q /z(xi) = 
= h r^(xi) and q h(x2) = h Г4(х2), i.e. qf{x^) = /(X2) and qf{x2) — x. This implies 
that / (x i ) Ф /(X2). Similarly / ( x , ) Ф /(хз) , /(x^) Ф /(X4), /(X2) Ф /(хз), /(X2) Ф 
+ /(X4), / (хз) Ф /(X4). Hence a - f{a). 

8.3. Lemma. Let Tbe modular and a, b e F3. T/ten either a ^ b or b S. (^^ 

Proof. Suppose that a ^ b and b ^ a. Denote by Ä the equational theory 
generated by (a, fi{b)) and by В the equational theory generated by (a, ^i(b)), 
(a, Гз(Ь)). We have (a, Г2(<̂ )) e Z (г2(а), Г4(Ь)) G V4, (r^i^), r^{b)) e T and so 
(a, Гз{Ь)) E(ÄvT)r\B = Äv (Тп В). Let ад, ..., а„ be а minimal Л u ( Т п Б)-
-proof from а to Гз(Ь). Evidently {а, Г4.{^), г^(а), ri(b), Г2(Ь), r^Çb)} is а block 
of В and {fl, ri(b)} is a block of Л; hence every member of «Q, ..., a„ equals either 
a or ri(b), a contradiction. 

8.4. Lemma. Let T be modular, a e V^ and b e F4. Then either a -^ b or b ^ a. 

Proof. Suppose that a ^ b and Ь S a. Denote by Ä the equational theory gener­
ated by (a, b) and by В the equational theory generated by (a, b), (/'2(^)5 ^4(b)). 
We have (г2(а), a) G Г, (a, Ь) G Ä, (Ь, / ^ ( Ь ) ) G Г and so (г2(а), /^(Ь)) G (Л v Г) n 
п В = Ä V (Тп в). Let ао, ..., а„ be an Л u ( Г п 5)-proof from Г2(а) to Г4(Ь). 
Evidently, {^2(0), Г4(а), Г2(^)' ^4(Ь)} is а block of Л and {г2(а), ^"а!̂ )} is а block of Л, 
so that every member of aQ, ..., a„ equals either Г2(<̂ ) or Г2(Ь), a contradiction. 

8.5. Lemma. Let T be modular, a e V^ and b e V4.. Then a < b. 

Proof. By 8.4 it is enough to derive a contradiction from b ^ a. However, if 
b -^ a, then/(b) is a subterm of a for a substitution/; by 8.2 we may suppose/ = g 
for a permutation g of (x^, X2, X3, X4}. Let a' be the term obtained from a by 
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replacing one occurrence of the subterm/(b) by/г4(6) . We have (a, a') e Tand so 
a' = p{a) for some p e R^. HencQ fr^^b) = pf{b), gr^ = pg, gr^g~^ e JRj, evidently 
a contradiction. 

8.6. Lemma. Let T be modular. Then either V^ or F4 /5 empty. 

Proof. Suppose that there exist terms a e F3 and b e V4. By 8.1 and 8.5 there 
exist a variable x, a term t and a permutation p e S{xi,x2,x3,x4} such that x ф {x^, X2, 
X3, X4}, X has a single occurrence in t and b == ^(x)[K^)]- Let us prove var (r) = {x}. 
Suppose, on the contrary, that a variable у e {xi, X2, X3, x^} belongs to var (r). 
There exists a permutation qeR^ such that pqp~^{y) Ф У- We have (a, 5(^)) e Г, 
( p ( a ) , M W ) e T , (Г(.)[р(^)], t^,lpq{a)\)eT where ^(.)[Ka)] = Ь and so 
hx)[p4{aj\ = f{t^x)[.p{(^)~\) for some r e 5'{ ,̂,̂ ,,̂ з,;с4}; since j e var ( r ) \{x} , v̂ e get 
г(з;) = y\ we have jP<7P~X>̂ ) ~ ^РР~^{у) = K-̂ )̂ = У^^ contradiction. Thus var [t) = 
= {x}. There exists an odd permutation s e 6т{а). We have (a, 5(a)) e Г, (p(fl), 
p 5(a)) e Z {p{a), psp~^ p{a)) e Г, (b, psp~\b)) e T, psp"^ e Ст{Ь), so that psp~^ 
is an even permutation, a contradiction, since s is odd. 

8.7. Lemma. Let T be modular. Let ae F3. Let xe V, te Wj, var (r) = {x}, 
t Ф X and let x have a single occurrence in t. Then there exists a positive integer к 
with Grit^'^a]) - S^.„.„,3,,,}. 

Proof. Suppose that there is no such k, so that Gj{t^''\a']) = R^ for all ^ ^ 0. 
Put p = [xi,X3, X4], q = [xi,X4, X3], r = [х1,Хз], s = [^3, X4]. Denote by A 
the equational theory generated by (a, t\^p{a)]) and by В the equational theory 
generated by (a, t[p(a)']), (a, t[q{a)']). We have (a, r(a)) G T, (r(a), ^[s(a)]) e A, 
{t[s{a)'], tlq{a)]) e T and so (a, ^[g(a)]) e{A v T) n В == A v {T n B). Put 

We have Z n U =^ (/). Similarly as in the proof of 7.6, Z is a block of B. Similarly, the 
set 

Y = {t^^\a]; i^O, i~0 (mod 3)} u [t^'^^Jl^ i è 0, i = 1 (mod 3)} u 

u {^ '̂T^WJ' i ^ 0, Ï = 2 (mod З)} 
is a block of Л. Let ÜQ, ..., a„ be an A u {Tn i5)-proof from a to ^[5(^)]- Ву induction 
on / we get a I e У for all / e {0, ..., n}, a contradiction. 

9. CONVERSE IMPLICATION: PRELIMINARIES 

9,1. Lemma. Let the equational theory T be such that the conditions (1) and (2) 
are satisfied. Then either T Я: E^orU x U is a block of T. 

Proof. Let Т ф £ j and u,veU; it is enough to prove that {u,v)eT. There 
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exist terms a, b and a variable x such that (a, b)e T and x e var (a) w a r (b). We 
have (a, (T̂ (jĉ ...̂ )̂(a)) e T (where F is an arbitrary non-nullary symbol from A) and 
so a eU. Define four substitutions / , g, /?, к as follows: f(y) = и for all у e V; 
g{y) = V for all у e V; h{x) == v; h{y) = w for all у e V\ {x}; /c(x) = u; k{y) = t; for 
all ye V\{x}. The terms f(a),g(a)Ji{a),k{a) belong to U by (1). If var (a) = 
= {x} then (w,/(a)) e Г by (2), (/(a), о?(а)) G T evidently and {g{a), V)ET by (2); 
hence (w, t?) G Г. If var (a) Ф (x} then (м,/(а)) G Tby (2), (/(a), h{a)) e Г evidently, 
(/t(a), /c(a)) G T by (2), {k{a), g{a)) e T evidently and {g{a), v)eT by (2); hence 
(t/, v)e T again. 

In order to prove the converse implication of Theorem 5.1, we shall suppose that 
the equational theory Tsatisfies the conditions (1), ..., (9) and that it is not a modular 
element of ^^. Hence Pent (T, A, B, C, D) for a quadruple Л, B, C, D of elements of 
^ j ; let us ÜX such a quadruple A, B, C, D. By 9.1, either T e Ej or 17 x (7 is a 
block of T. The set U is non-empty, since U = 0 would imply T = 1цг^ and 1^^ is a 
modular element of J^^. 

9.2. Lemma. There exists a non-empty finite sequence ÜQ, ..., a„ with the following 
three properties: 

(i) ÜQ, ..., a„ is a Tu A-proof (i.e. (a|„i, â )G T u Л /or all i e {1, . . . , n}) and 
{ao,a„)eB\A; 

(ii) // bo? • • •? b^ ï-ŝ  ^^y ^ ^ A'proof such that {pQ, b,„) eB\A, then n ^ m; 

(iii) if bo, ..., b„ is a Tu A-proof such that (bo, b„)eB\ A, then 

Card (var (а^) u ... u var {a„)) S Card (var (bo) u ... u var (b„)) . 

Proof. Since A cz B, there exists an equation (a, Ь ) с Б \ Л ; since В я T v A, 
there exists a T u Л-proof from a to b. Now the assertion is evident. 

In the following let aQ, ..., a„ be one fixed T u Л-proof satisfying the three condi­
tions of 9.2. 

9.3. Lemma, n ^ 3, n is odd, (a^.j, a,-) ET\A if i is odd and {ai„^, ai) e A\T 
if i is even {i e {1,. . . , n}). Further, var (a,-) S var (ло) u var {a„)for all i e{0,..., n]. 

Proof. It is evident. 
For every odd integer i G {1,. . . , n] such that ai^U V^Q denote by pi the permuta­

tion of var(af_i) with a,- = Pi{cii-i)\ put qi = pi, 

9.4. Lemma. Let U x U bea block of T. Then var (ao) = var (ai) = ... = var (a„) 
and ao, ai, ..., a„ ф U. 

Proof. If it were ao G (7 and a„EU simultaneously, then (^o, a„)ETn В ^ A, 
a contradiction with 9.2(i). Hence either a^ фи or а„ф U. It is enough to consider 
the case ao ф U. We shall prove by induction on i e {0,..., n} that var (ao) = ... 
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... = var (aJ and QQ, ..., а1фи. This is clear if either f = 0 or i is odd. Let i ^ 2 
be even. We have var (^o) = ... = var(a^_i) and ao, ..., а^_1 ^ t/ by induction. 
If it were а^еХ] then evidently a^, ..., а^_2, ^ГЛ(^0' ^i+i^ ..., a„ would be a T u hi­
proof, a contradiction with the minimality of a^, ..., a„. Thus â - ̂  t/ and it remains 
to prove var (a^_i) = var {a^. Suppose that there exists a variable z e (var {cii-i) \ 
\ var (aJ-)) u (var (a^) \ var (a^_i)). Take a term t e U. We have either (T^t{^i-i) e t/ 
and (J%ai) — üi or o^^{a^)eU and o]{ai_i) = а̂ _-̂ . In both cases there evidently 
exists a term w eU with (a/_i, vv) G Л and (a^, w) G Л. If / > 2 then ag, ..., а^_з, 
^,~_\(w), ^1 + 1(^)5 ^i+b •••5 '̂ n is a T u Л-proof, a contradiction with the minimality 
of ao, ..., a„. If г + 1 < П then ÛQ, ..., ^^-2, ^ГЛ(^)' <?i+i(̂ )̂? ^i + 25 ..., <̂ /, is a T u Л-
proof, a contradiction again. If i = 2 and Ï + 1 — n then (^["^(w), ^3(w)) G Б n 
n T Ç v4 and so (ao, a^) G Л, a contradiction. 

9.5. Lemma. Lê  T ^ £ j . T//e/7 either ÜQ ф U or a„ ф U. 

Proof. Suppose that ÜQ eU and a„ e U. Then var («o) Ф var (a„), since otherwise 
we would have (ao„ a„) G T n Б ^ Л by (2). It is enough to consider the case 
var (^o) \ var (a„) Ф 0. For every ie[0, ..., n] define a substitution fi as follows: 
if X G V\ (var (<Яо) \ var ( a j ) then /j(x) == x; if x G var (UQ) \ var (a„) then /^(x) = a,-. 
If i is odd then (/i-i(«o)'/i(<^o)) ^ T n Б ^ yl; if f is even then {fi--i{cio),fi{a^) e Л 
is even more evident. Hence (/1-1(^0)5/1(^0)) ^ ^ f̂ ^ ^̂ ^ ^ ^^<i so (/o(<^0)5/1(^0)) ^ ^• 
We have evidently (ao,/o(<^o)) e T n Б Ç Л and so ((2o./n(^o)) ^ ^- Further, it is 
evident that (/^(flo)' ^«) ^ ^- This shows that ciQ,f„[aQ), a„ is a T u Л-proof, evidently 
a contradiction. 

9.6. Lemma, zl contains a symbol of arity ^ 2 . 

Proof. By 9.1, 9.4 and 9.5 it is enough to consider the case ÜQ ф U. Then a^ = 
= ^1(^0) where p^ is a permutation of var(ao); since GQ ф a^, we get Card (var (a Q)) ^ 
^ 2 and so A contains a symbol of arity ^ 2 . 

Let us fix a variable z ^ var (ao) u var (a„). Denote by H the set of all the terms и 
such that (w, r) G Л for a term v with z G var (и). 

9.7. Lemma. Le^ T ^ £ j . T/zen either а^фН or а„ф H, 

Proof. Suppose UQEH and a„ G Я, so that (ao, VQ) G A and (a,,, i;„) G A for some 
terms 1̂ 0, f„ containing z. By 9.4 there exists a term Г G (7 with var (̂ ) = var (ao) u 
u var (a„). Define a substitution/as follows: if x G var (ao) u var (a„) then/(x) = x; 
if X G F \ (var (ao) u var (a„)) then / (x ) = t We have (ао,/(го)) ^ ^4, (/(г^о)./(^n)) e 
G T, {f{v„), a„) G /1, evidently a contradiction. 

9.8. Lemma. Let T я E^ and ao ф U. Let i e {1, ..., n] be such that var (ao) = 
= var (ai) = .. . = var (a,). Then а1фи. 
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Proof. Suppose «j e С/; it is enough to consider the case when i is the least integer 
with a^e U. Then i is even and ao, qï^i^^i)^ •••5 4Ï^{^i), (^i+u . . . ,«„ is a T u Л-proof 
of length n -- 1, a contradiction. 

9.9. Lemma. Let T ^ E^ and let there exist an / e { l , ..., n} with var(ai_i) Ф 
Ф var (a,). If ас)фи then a^ e H; if а„фи then a„ e H. 

Proof. It is enough to prove ao e H under the assumption «o Ф U. Let i be the least 
integer with var (ai_i) Ф var (a,-). By 9.8, aj ф U for all j e {0, ..., i — 1}. We have 
((3,..i^i_3 ... ^i(ao), a , ) ^ ^ , var((2^_igi_3 ... ^i(ao)) = var (ao), var (a^) Ф var («o) 
and so evidently «o ^ ^ • 

9.10. Lemma. Let T ^ £ j . Then var («o) = var (a^) = ... = var (a„). 

Proof. By 9.5 it is enough to consider the case аофи. Suppose var(aj_i) Ф 
Ф var (Ui) for some i. By 9.9, ao e H. By 9.7, a„ ф H. By 9.9, a„ e U. If var (ao) Ç 
с var (a„) then ao, qï^iaz), ^ГЧ^з)' •••' ^ï^i^n-i)^ ^n is a T u Л-proof of length 
n — 1, a contradiction. Hence there exists a variable x e var (ao) \ var (a„). Evidently 
there exists a variable j^ e var (ao) \{x} . We have ((j^(ao), a„) G Л, since otherwise 
(T^(ao), ..., ö-J(a„) would be a T u Л-proof contradicting 9.2(iii). Since ao G Я, 
there is a term и with (ao, w) G Л and z G var (w). Hence (ö-J(ao), ö"y(w)) G Л, so that 
(a„, cr̂ (w)) G Л; we have z G var (ö-y(w)) and so a„ G Я, a contradiction. 

9.11. Lemma. We have var (ao) = var (a J = ... = var (a„) anti ao, a^, ..., а^фи. 

Proof. It follows from 9.1, 9.4, 9.10, 9.5, 9.8 and the assertion symmetric to 9.8. 
It follows that the permutations Pi ofvar(ao) are defined for every odd ie 

e (1, ..., n}; we have qi = p^ and a^ = ^.(а^.^). 

9.12. Lemma. Let / G { 0 , . . . , n — 3} be even. Then jPi+i ^ ^^7(̂ 1 + 2) ^"^ Pi + зФ 
Ф GT{ai). Hence Gjiai) ф С7 (̂а, + 2) ««(i Ст{а^+2) ф Oj(a,). 

Proof. Suppose Pi+i G Ог(а^+2)- Then Pf+iPi+з ^ Ог(а^ + 2). 
(<̂ i + 2. îi + i^r+3(«i+2)) e T, (̂ ГЛ(<я^ + 2), «. + з) e Tand ao, ..., a ,̂ ^ГЛ(«^ + 2), ^»+з. ••• 
..., a„ is а T u Л-proof of length n — 1, a contradiction. Similarly we can prove that 
p^ + 3^Gj^(a,-). 

9.13, Lemma. Either Card (var (ao)) = 3 or Card (var (ao)) = 4. 

Proof. It follows from 9.12, since if Card (M) ^ {3, 4} andH^, H2 are two modular 
elements of the subgroup lattice of SM, then either H^ Ç H2 or H2 ^ H^ by 3.1. 
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10. CONVERSE IMPLICATION: THREE VARIABLES 

In this section we shall suppose that the T u Л-proof ÜQ, ..., a„ from Section 9 is 
such that var («o) = [x^, X2, x^}. Define r^, ..., Г5 in the same way as in Section 7. 
It follows from 9.11, 9.12 and 3.7 that for every odd / e {1, ..., n} we have Gj{ai-i) = 
= От{а^) e {{1, r j , (1, Г2}, {1, Г3}, {1, Г4, Г5}} and if i un -2 then Griai) Ф 
Ф Gr(a, + 2). 

10.1. Lemma. Let i e {1, ..., n} be oJJ, p e S^^^ ^^ ̂ ^^ and (â -, p(a,)) G Л. Then 
p = i. 

Proof. Suppose ]7 Ф 1. Put G = {̂  e 5̂ ^̂  ,,2,хз}̂  (<̂ /5 5(^/)) ^ ^} ^̂ ^̂  ^ = 
= {^e%^,^^,,3j; (a,., 5(а,.))бБ}. We have ( а о , г ( « 0 ) ^ ^ ^^^ № / ) , « « ) e ^ for 
some r, s 6 S^^^^^^^^^y Hence (г(а^), ^(а^)) G JB \ Л and so G is a proper subgroup of Я; 
since G Ф {1}, we get Я = S^^^^^^^^^y^ by 3.7. Hence (a,_i, а^) e В n T Ç Л, a contra­
diction. 

10.2. Lemma. Let i e (1 , . . . , n} be odd. Then Gj(a,) Ф {1, Г4, Г5}. 

Proof. Suppose Gj(ai) = {1, Г4, r^}. It is enough to consider the case i ^ 3, 
since otherwise we would have i ^ n — 2 and the proof would be analogous in that 
case. We have Gj{ai_2) + (l? 4̂? ^5} ^^^ so Gj^(ai_2) = {1, ^} for some r e 
e {^1, Г2, Г3}. We have Pj_2 = r and p^ e {/'4, Г5}. By (5) we have aj_2 < öfj_i. 
Let X e F \ (x^, X2, X3}. There exist a substitution / and a term t with a single occur­
rence of X such that a^_i = ^(jc)[/(^i-2)]- ^У ^-l? two of the terms/(xi) , /(x2), /(x3) 
are variables not contained in the remaining term. If it were (a^_2, w) e Л for some 
и eU, then evidently (ßi-2, ^) ^ A for some v eU with var (г;) = {x^, X2, X3}; then 
(«/-3, ^ / - 2 ( ^ ) ) e ^ {qi.2{^\4i{^))^Z {qi{v\a>jeA, so that ^o, ..., а,-_з, ^,._2(ij), 
qi(v), ûi, ...,a„ would be a T u Л-proof of length n contradicting 9.3. Hence there 
is no w G J7 with(a|_2, w) e A. We have(a^_2, ^(x)[/(^i-i)]) ^ ^ ^^^ so ^(x)[/(^i-i)] Ф 
фи; since (^(^)[/(a,._i)], f(^)[/r4(a,._i)]) e T, there exists a ре^^^^^^^з^ with 
K^(x)[/(«/-i)]) = ^(х)[/Ы^^-1)]- Hence pf{ai^i) =fu{ai_^), pf{xi) = f{x2), 
Pfixi) = / ( ^ 3 ) . Р/{хз) =f{xi). This implies that / (xi) . / (x2) , / (x3) are pairwise 
different variables and we can assume that f = g for some g e '̂r̂ ^ .̂ .̂хз}- We have 
(^(x)[/(^i-2)]. ^(х)[/(<3/-з)])е Tand ^(x)[/(«/-2)] = « / -1 ; hence there exists a per­
mutation ^ e {1, Г4, Г5} with 5(a^_i) = ^(х)[/(о/-з)]- Hence5/(a,._2) = f qi-ii^i-i)^ 
qg ~ g^, q ^ {̂ i? ^̂2? ''з}? ^ contradiction. 

10.3. Lemma. Let i e {1, ..., n} be odd. Then there is no и with (ai_^, n) e Л 
and (w, ^4(1/)) e Г. 

Proof. Suppose that there is such a term u. It is enough to suppose i g n — 2. 
By 10.2, Pi+2Pi^{r4^rs}. We have {ai+2. Qi + i qi{u))e A and (w, ^^+2 ^i(w)) e Г; 
hence ao» •••> ^i-i? "? ^»+2 ^1+1(^)5 ^»+2? ••., ßq is a T u v4-proof contradicting 9.3. 
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Let us fix an odd number i e {1, ..., n — 2}. It follov^s from 10.1 that the terms 
â , а, + 1 are not similar; by (4), it follows from 10.2 that either â  < а^+^ога^+х < a .̂ 
We shall assume ai < a^. i; in the other case we could proceed similarly. Let x be 
a variable not belonging to {xj, X2, X3}. There exist a substitution / and a term t 
with a single occurrence of x such that a^+i = ^(x)[/(^i)] ^̂ ^̂  fiy) ~ У ^^^ ^^^ 
J ; E F \ { X I , X 2 , X3}. 

10.4a Lemma. / is an automorphism of W^ and var (r) = [x]. 

Proof. There exists a unique triple (у], Vj, J3) suchthat {у^, У2^ Уз} ~ {^ь ^2^ ^з}? 
Pi = [Уь yi] and Pi + 2 = [V2. Уз}- ßy 7.1, / (y i ) and /(^2) are variables not con­
tained in/(y3). We have (a^ + i, ^(x)[/(«. + i)]) e Л and (^(х)[/(«н 1)]. 
hx)[f^i+2i^i + i)]) е ^. so that by 10.3 there is a permutation p e S^^^^^^^^.^^ \ {Г4, r^} 
with K^(x)[/(«f + i)]) = ^(х)[Л/+2(^/+1)]- We have pf{a,^^) ==/^^+2(^^+1), 
P / (y i ) =/(>^i)' Р / Ы = / ( > ' з ) , P / ( J 3 ) = / ( V 2 ) . Hence /(у1),/(з;2),/(уз) are 
three pairwise different variables and / is an automorphism. We have (^(x)[/(«0]' 
^(x)[/^r(^0])e^ ' l̂̂ ê *̂  e^^sts a (?e{l,/7i + 2} with ^l(^(x)[/(«f)]) = ^:.)[/^f(<^i)]; 
evidently <? ф 1 and so ^ == ]?н-2; hence qi + 2f = fQi- We get ^̂  + 2/(^3) = ДУз) 
and so Л У З ) = Vi. From ^f+2(^(x)[/(^/)]) = hAf^ti^iJl we get 3;., Уз ^ var (r). 
If it were } \ e var (t) then lX^(x)[/(^^ + i)]) =" ^(x)[/^i+2(^H 1)] would imply p{}\) = 
- J'l, /? - Pr + 2, Р1 + 2/(Уз) =^/Р1+2{Уз1 У1 ==/(j'2), a contradiction. 

10.5. Lemma. There exists no positive integer к with Gj{t^^\ai']) = S^^^^^^^^^^y 

Proof. Suppose that к is such a positive integer. Evidently, (̂ "̂"̂ [(2̂ ], Г4(г^"'̂ [а^])) e 
G T for every m ^ /c. There exists an m with m ^ /<; and /" ' = 1. Evidently 
(a^, t '̂"^[/'"(<^i)]) e Л (this is true for all non-negative integers m, proof by induction 
on m), (а„Г^-)[а,])еЛ; hence (a,_i, ^,(^^"^[a,])) G .4, (a,+2, ^.•+2(^^"^[^.-])) e Л, 
(^.-(î^^T^^-])' ^i^2{t'"'bi])) e T. Hence ao, ..., a,_,, qi{t'"'la,]), q,^2{t'"'la:]l 
^i+2^ ..., ß„ is a T u Л-proof contradicting 9.3. 

10.6. Lemma. The identity var (^o) = {x^, X2, x^} does not hold. 

Proof. It follows from 10.5 and (6). 

11. CONVERSE IMPLICATION: FOUR VARIABLES 

In this section we shall suppose that the T u yl-proof aQ,..., a,^ from Section 9 
is such that var (ao) = (xi, ^2, X3, X4}. 

11.1. Lemma. / / ie{l,...,n} is odd then Gj(a,-) G {Я^, i?2 '^з}- V ^^ 
G ( l , ..., n — 2} is odd then Gj(a^) Ф Gj(aj + 2). 

Proof. It follows from 9.11, 9.12, 3.8 and from the condition (8). 
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11.2. Lemma. We have ÜQ ^ a^ ^ ... '^ a„. 

Proof. Suppose, on the contrary, that there exists an odd ie{l,...,n — 2} 
such that the terms a ,̂ a^+i are not similar. Using the condition (7), we obtain from 
11.1 that either а^_1 < a, + i or a^+i < a,_i; it is enough to consider the case 
ßf_i < â  + i. By 8.1, there exist a permutation ]? e 5{^^^2.хз,х4}' ^ variable x and 
a term t with a single occurrence of x such that fl^+i = f(^)[p(a^_i)]; we have Г ф x. 
Similarly as in the proof of 8.6 we get var (t) = {x}. By (9) there is a positive integer к 
with G2 (̂̂ *^̂ [̂af_i]) = S^^^ ^^ ^^ ^ |̂. There exist permutations q, r e S^^^ ^^ ̂ ^ ^^^ such 
that {a,_„t^'4qia,_,)])GA, {t^'^lq(a,^,)l 1^Ща,.,)])е T, {t^'lr{ai;)i a,,,)e 
e A. Hence ^o, ..., « i - i , ^^'"^[^(ßi-i)], ^^''^\_^^{^i~ij]^ ^i + i^ ---^ <^n is a Tuyl-proof 
contradicting 9.3. 

11.3o Lemma. The identity var {a^) = {x^, ^2, X3, X4} Joes no^ /to/J. 

Proof. Put G =^{peS^^^^^^^^^^^^^\ {aç,, p{a^)) e A] and Я = {/? e %^,,^^,.,з,^,^; 
(ao, p(öo)) ^ ^ } " ßy 11-2 we have a,, = (̂0^0) f<̂ *̂ some <̂  e »S{̂ ,,.X2,X3,X4} aî <i q E H\G. 
Hence G is a proper subgroup of H. Evidently G ф Gj(ao); from this and from the 
fact that Gj(ao) is a modular and maximal element of the subgroup lattice of 
%1,.T2,X3,X4} we get G V (Я n Gr(ao)) - Я. Hence ^ = / 1 / 2 . . . Л for an odd 
number к ^ 1, /^е G if i is odd and fi e H n Gj(ao) if i is even. Put QQ — 1 and 
ö̂ i = Qi-ifi for all f e 1, ..., /c}. Thus gj, = ^. If f e {1, ..., k] is odd then (^i-i(<3o), 
^^(ао))е^4; if / e { l , ...,/c} is even then (^,_i(ao), ^j(ao)) e Б n T ^ Л as well. 
Hence {до{ао), дк{ао)) e A, i.e. (ÖQ, «„) e Л. We get a contradiction. 

The contradiction induced by Lemmas 9.13, 10.6 and 11.3 proves the converse 
implication of Theorem 5.1. Theorem 5.1 is thus proved. 
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