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ON A KNESER PROBLEM FOR A SYSTEM OF NONLINEAR
ORDINARY DIFFERENTIAL EQUATIONS

IRENA RACHUNKOVA, Olomouc

(Received September 27, 1979)

This paper deals with a problem regarding the existence of a solution of the dif-
ferential system
©.1) d;

= filt, Xq5 o0y X, i=1,...,n
= %) )

defined in [0, +co[ and satisfying the conditions
(0.2) @(x,(0), ..., x,(0)) =0, x,(t)=0 for t=0 (i=1,....n).

Problems of such a type for differential equations of the 2nd and higher orders have
been studied in [1—5]. Let us recall at this point the works [6], [7] and [8] dealing
with analogous problems for differential systems. Unlike [ 6 — 8], the existence theorems
for (0.1), (0.2) proved in this paper refer to the case when the functions f, ..., f,
change their signs.

1. FORMULATION OF THE EXISTENCE THEOREM§
In what follows
R =]-0,4+0[, R,=[0,+00[;

L(I) is the set of real functions Lebesgue integrable on I;
L,OC(I) is the set of real functions Lebesgue integrable on each compact interval
contained in I;

D, ={(x, .., x) i x;€Ry (i=1,...,n)};
Dp(r) = {(x1s --» X) €D, :x; S 7 (i=1,...,m)}.

By writing
fEKloc(R+ X Dn)
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we indicate that the function f: R, x D, —» R satisfies the local Carathéodory
conditions, i.e.

f(*,xy,...,x,) : R, > R is measurable for arbitrary (x,,...,x,) € D,,

f(t,+,...,*): D, > R is continuous for almost all te R,
and
sup {If(-, X1y ens x,,)l S(Xqs oo X0) € Donl(0)} € Lioe(R+)
for arbitrary g€ R,.

We assume throughout the paper that n > 2, f;e K .(R. x D,) (i =1,...,n)
and ¢ : D, » R is a continuous function. We seek solutions of the problem (0.1),
(0.2) in the class of the vector functions (x,, ..., x,) : B, — D, which are absolutely
continuous on each compact interval contained in R, . The existence theorems proved
below refer to such cases when f; (i = 1, ..., n) satisfy the conditions

(1.1) fi(1,0,..,0) =0, filt,xg e Ximg, 0, X045 00y X,) £ 0
foreach teR,, (X, .. X;i—q, Xisps.e0nX)€D,_; (i=1,...,n)
and ¢ satisfies the conditions
(12,)  ¢(0,...,0) <0, o(x,...,x,) >0 for (x,....,x,)eD,, ix,- > r
with re ]0, +oo[ and me{l, ..., n}. o
Theorem 1.1. Let me{1,...,n — 1} and let the conditions (1.1) and (1.2,) be

Sulfilled. Further, let there exist a€ 0, +oo[ and mge{m,...,n — 1} such that
on the set [0, a] x D,,(r) the following inequalities hold:

(1.3) filt,xg, o0 x,) S0 (i=1,..,mg),

mp
(1.4) Y fitoxg, oo x,) £ =8(xpa) (k=1,...n —m),
=1

(1.5) S it xn )| S h0) S (1 + x)

i=m+1 i=m+1

and on the set [a, + o[ x D, the indequality

(1.6) Y filtoxg, oo x,) S h(D) Y (1 + x;)
i=1 i=1
is satisfied, where m, = min{mg, m + k — 1}, he L (R,), § : R, > R, and
(1.7) lim 6(x) = +o0.
x— + oo

Then the problem (0.1), (0.2) is solvable.

Remark. The above theorem generalizes Theorem 1 from [8].
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Theorem 1.2. Let the conditions (1.1) and (1.2,) be fulfilled. On the set R, x D,
let the inequality

(1.8) LSitxis o x) < g(t, 3 xi)
be satisfied, where g € K o (R, x D), and let the Cauchy problem

(1.9) du

P =g(t,u), u(0)=r

have an upper solution u* defined on the whole R . Then the problem (0.1), (0.2)
is solvable.

Corollary. Let the conditions (1.1) and (1.2,) be fulfilled and let on the set R, x D,
the inequality

.Zlf,.(t, Xgyeeer Xp) S h(t).zl(l + x;)
be satisfied with h € Liy(R ). Then the problem (0.1), (0.2) is solvable.

Remark. If f; (i = 1,...,n) are negative functions and ¢(xy, ..., X,) = Y, X;,
i=1

then the last proposition leads to one theorem due to Hartman-Wintner-Coffman

[6, 7].
2. LEMMAS ON A PRIORI ESTIMATES
Lemma 2.1. Suppose that me{l,...,n — 1}, mee{m,...,n — 1}, m, =

=min{mg,m+k—1} (k=1,...,n—m), 0<a< +o, 0<r< +o0. Let
h e Ly(R+) be a nonnegative function and let ay € |0, a[ satisfy

(2.1) J “h(e)de < 3.

Let further d,: R, — R, be a nondecreasing continuous function satisfying the
condition

(22) lim So(x) > = 3 r (s=0,1,2, ..., my — m),
x=+ © € k=0
where
Ax

1 fr+ry+ ... V-
7, Fp =T, "k=501< ! T 1>

€

(k =1,...,my — m) and 85" is the inverse function to d,. Then there exists r* > r



such that for arbitrary b > a and for arbitrary absolutely continuous functions
x;:[0,b] = B, (i =1, ..., n) the inequalities

(2.3) Yx0)=r, x()20 (i=1,..,n) for 0<t=<bh,

i=1

(2.4) x(t) £0 for 0=Lt1=<a (i=1,...,m,),

(2.5) ’i‘x:(t) S —0o(Xpailt)) for 0=L1=<a (k=1,...n—m),

(26) i=§+1[x,’-(t)f < h(t)i:é:H(I L x{1)) for 0<i<a
and
27) _:lx;(z) < h(z);(] +x{1) for a<i<b

imply the estimate
(28) S xi(1) £ r* exp [ J
i=1

Proof. By (2.3) and (2.4) it holds that

T

o
IIA
IIA
S5

h(x) dr] for

[

(2.9) 0

IIA

Yx{t)<r for 0<st<a.
i=1
From (2.4), (2.5) and (2.9) we get (for my > m)

= & [ 00 2 [[asws(0) 05 2 8o

1\%

,
This implies
0= xpi1(t) S xpsq(e) 7y for e<t<a.
Similarly (for my > m + 1)
my ke ke
prnt etz =8 [ ez [ 04 2 annelhe)
i=1 J (k-1 (k=1)e

and
0 < Xix(t) £ Xpislhe) =7 for ket <a (k=2,...,my—m).

If we put
mo—m
Qo = Z Fi
K=o
then we get (for my = m)
(2.10) 0= Y x(t)<g, for (my—m)e<t=<a.
i=1
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Multiplying (2.5) (for k = my + 1 — m,...,n — m) by —1 and integrating from
(mo — m) & to a, we have in accordance with (2.10)

Qo éJ" So(x{1))dt (i=mg+1,....n).

(mo—m)e

This implies the existence of points

tiel(mg—m)e,a,] (i=mo+1,...,n)

such that

(2.11) ogx,.(z,.)gé(;‘(@) (i=mo+1,..,n).
& |

Put

ti=a, (i=m+1,..,m),

01 =00 + n56‘<-g—°>~
&

Then (2.10) and (2.11) imply

(2.12) > xit) o

i=m+1
From (2.6) and (2.12) we obtain

n

Y ox(t) <o + J‘.h(‘c) Y (1 +x(t))de for 0<1t<ay.
R

i=m+1

If we denote
o* =max{ Y (1 +x{t):0=1= ay}
i=m+1
then we get from the last inequality with respect to (2.1) the relation
* =0 +n+—
2
and thus

(2.13) Yo (L+x(t) Se* <2 +n) for 05t=<a,.
i=m+1

(2.6) and (2.13) imply the inequality

(2.14) ._iﬂa + x(1) < 2oy + n)exp [ J' " h(x) dr] for aySt<a.
In accordance with (2.9), (2.13) and (2.14) we have

(2.15) i:il(l +x{) S for 0<i<a

(remember that ¢, > @0 > r),
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where
r* = 3(g; + n)exp [J h(z) d‘r].
0

Integrating (2.7) from a to t we get by (2.15)

301+ x(0) = r*exp [ j

a

t

h(r)dr] for a<t=<bh.

Thus, we can conclude that the estimate (2.8) is valid, where r* is constant in-

dependent both of (x;, ..., x,) and of b.

By means of Lemma on differential inequalities (see [9], p- 48, Lemma 4.3) we

obtain

Lemma 2.2. Let g€ K, (R, x D,) and let the problem (1.9) have an upper
solution u* defined on the whole R .. Then for arbitrary b > 0 and for arbitrary
absolutely continuous functions x;:[0,b] > R, (i =1,...,n) satisfying the

inequalities

n

(2.16) Sx(0) S, Yx() S g(nYx() for 0St=b
the estimate
(2.17) Sx()Sut(t) for 0St<b

holds.

3. LEMMA ON SOLVABILITY OF A CERTAIN AUXILIARY
BOUNDARY VALUE PROBLEM

In what follows we will use the following

Lemma 3.1. Suppose that fi,€K,(R. x D,) (i=1,....n, p=1,2,
the following relations are satisfied on the set R, X D,:

n
DECENPNEN

< folt,xyhoonx,) (p=1,2,..))

and
lim fi,(t, xqy - X,) = filt, X, ..0x,) (i=1,...,n)

p—t+
where f, € K\, o(R+ x D,). For each natural p let the differential system

dx; = fit, Xy, ..x,) (i=1,...,n)
dt

...) and
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have a solution (x, ..., x,) satisfying (0.2) and let Y(t) € Lioc(R ) be such that the
inequality

sup { gllx,.p(t)‘ cp=1,2,..} < y(1) for teR,

holds. Then the sequence of the vector functions {(Xyp, ..., Xup)}p=1 CONtains a uni-
formly converging subsequence such that its limit is a solution of the problem

(0.1), (0.2).
Proof. See [9], p. 43—48.

For the system (0.1) we consider an auxiliary boundary value problem

(3.1) @(x4(0), ... x,(0)) =0, x(b)=0 (i =2,3,...,n),
where b > 0.

Lemma 3.2. Suppose that the conditions (1.1) and (1.2,) hold and

(.2)

M=

]

|f,~(t, Xy een x,,). < h*(t)ii(l + x;)

i=1

on the set [0, b] x D,, where h* e L([0, b]). Then the problem (0.1), (3.1) has at
least one solution (x, ..., x,) such that

(3-3) x(1)z20 for 05t=<b (i=1,..,n).

Proof. First let us prove Lemma under the additional assumption that the right-
hand sides of the system (0.1) satisfy the local Lipschitz conditions with respect
to their last n arguments, i.e., for arbitrary ¢ > 0 we have

(3'4) gn:l'fi(t» Xigs vees xn) - fi(t’ Yis oees yn) = [e(t)il‘xi - J’.'I

for 0<t<b, 05x;Z2¢, 02y;Z¢ (i=1,..,n),
where 1, € L([0, b]).

Put
a(s)— 0 for s<0,
T ]ls for s>0,
(3.5) ity xy, oo %) = filt, 0(xy), .. 0(x,)) (i=1,..., n)
and consider the system
(3.6) ‘Z—’i = Tt xpnx) (i=1,.0n)

under initial conditions
(3.7) xy(b) =a, xi(b)=0 (i=2,...,n).
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According to (3.2) and (3.4), for arbitrary o € R the problem (3.6), (3.7) has a unique
solution (x,(*; «), ..., x,(+; «)) defined on the whole segment [0, b].
Put
ko, Xy, ooy x,) = fi(ts x4(150), ..oy x, (15 00))
(ot X g5 vy X150y X gy eer X)) — ki, Xq, -0 X,)
I(t; 2) = x(t; o)
0 for x(t;a)=0
(i =1,...,n). Using (1.1) and (3.5) we have
dx(1; «)
dt

for x(t;2) * 0,

< -t x(t;) for 0<1<b (i=1,..,n).
Consequently
b
xl(t;a)gaexp[fll(t;a)dr]20, x{t;0) 20 for 0<t<b, az0
t

(i=2,....n).

This implies that the vector function (x,(+; «), ..., x,(*; «)) is a solution of the system
(0.1) for arbitrary « € R,.. On the other hand, the relation (3.2) implies

a; [+ x(t: a)]<—h*(t)2(l+x(t a)) for 0<t<b, «20.

Therefore

(3-8) 2[1 + x{(t; )] = Z [1 + x,(b; a)] exp '{ (1) dr] < nexp U:h*(r) d'c]

for 0Z:t<b,

Put

#(@) = o(x,(0; @), .., x,(0; @) ,

o= a0 [ Troer]

Following (3.2) and (3.8),
b
x4(0; a*) = a* — Jfl(r, x4(t, a*), ..., x,(7, *)) dr =
()

> o* — f:h*(T)zgz[l + xi(t; 0*)] dr 2

>oa* —n th*(r) dt . exp I:th*(r) dr] =r.
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Thus, it follows from (1.2,) that
P*)=0.

On the other hand, ¢ is continuous on [0, «*] and

#(0) = ¢(x,(0,0), ..., x,(0,0)) = ¢(0,0,...,0) < 0.
So there exists a € ]0, a*] such that
@) = 0.
Obviously, (x(*; &), ..., x,(*; %)) is a solution of the problem (0.1), (3.1) and it
satisfies the conditions (3.3). To complete the proof of Lemma we must get rid of

the additional assumption (3.4). Let f; (i = 1,..., n) be the functions given by the

identities (3.5) and let w,, : B —» R, (m = 1,2, ...) be the sequence of continuously
differentiable functions such that

o) =0 for [dz L,
m

+

o,(x)dx =1 (m=1, 2,...).

- 0

Put

gim(t3 Xiyenes X”) = J

+ 0

wm(yl_xl) dyl J. wm(yn - xn)j‘i(t’ ylv CERTY yn) dyn

+
- - o0

(i=1,...,n),

Bim(ts X gy ooy Xim gy X gy oees Xp) =

+ o0 + o +o
=J wm(yl—xl)dyl"'J wm(yi-l—xi—l)dyi—l'j wm(yi+1_xi+1)dyi+1"'

- o0

+ o0
"J wm(yn - xn)ii(t’ Vi eeos yi—l’O’ Vitts oo yn)dyn (l = 1,...," - 1)’

-~ 0

By, X 15 ooy Xpoy) =

+ o + + o0
= J. wm(yl - xl) dyl "'J‘ wm(yn—-Z - xn—Z)dyn—-Z J wm(yn—l - xn—-l)'

- -

'.fn(t’ Vis oo Vno1s 0) dyn—l
and

fim(t7 X1 eees xn) = gim(t7 Xy enes xn) - gim(t’ Xgs ooy Xi_1s 0; Xit1r +es X,,) -

- |hi,,,(t, Xgy oo Xiogs Xiggs ooy %) — (8,0, .., 0)| (i=1,...,n).
Then

(39) fim(ta 0, ceey 0) =0 N fim(t’ Xy oves Xi_1s 0, Xit1s oo X") é 0
for 0St<b, (X, o0 Xig, Xj4gs--0s X,) ER?
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and

(3.10) éllf,-m(t, X1y ees X)

= 4h*(t)i:Z2 (1 + i + |x,-|> = 8h*(t)é:2(1 + [xi)

for 0<t=b, (x,...x,)eR".
Moreover, for any t € [0, + o[
(3.11) lim fou(t, Xpy s X,) = fil(t, X1, . x,) (i=1,...,n)
m— + o

uniformly on each bounded set of the space R". It is obvious from the structure
of the functions f;, (i =1, ..., n) that these functions satisfy the local Lipschitz
conditions with respect to their last n arguments. Thus in accordance with the results
proved above, for each natural m the system

(3.12) %ic—‘ = fi(t, X1y oo0nx,) (i=1,...,n)
t

has a solution (xy,,, ..., X,,,) Which satisfies (3.1) and (3.3). Using (1.2,), (3.9), (3.10)
and (3.11) we can prove that the systems (3.12) and their solutions (X, ..., X,)
satisfy the conditions of Lemma 3.1 and thus the sequence of the vector functions
{(Xgms -+ Xpm) <y contains a subsequence uniformly convergent on [0, b]. The
limit of the subsequence is a solution of the problem (0.1), (3.1).

4. PROOFS OF THE EXISTENCE THEOREMS

Proof of Theorem 1.1. Let r*, ¢, r, (k = 0, ..., my — m) be the constants appearing
in Lemma 2.1. Choose a number ¢, € |r, + o[ and a nondecreasing continuous
function ¢, : R, — R, such that

3(x) = do(x) for x =0
and
3o(x) = So(co) > L Y r for x=c¢.
& k=0
Put

oft) = r* exp [J;h(z) dr:l e,

 fs for 0 s (t)’
a(t,s) = {g(t) for s> o(t) >Q

filt,xq, .., x,) = filt,o(t, xy), ..., 0(t, x,)) (i=1,...,n)
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and consider the differential system
1) i fxnenx) (= 1)
dt
The definition of f; (i = 1, ..., n) together with the conditions (1.3)—(1.6) yields
(4.2) Fit,xg, oo x) = filty X1, ooy X,)

for 120, Yx;Z0(1), x;,20 (i=1,..,n),
i=1

(4.3) filt,xy o oux,) S0 (i=1,..,mg)),
(4.4) i:f,.(t, Xpr oo %) S —So(iman) (k=1 .con —m),
(4.5) i=mi;llﬂ(t, X103 S h(z)iz,;’;l(l +x)

for (1, x4,...,x,)€[0,a] x D,,(r)
and

(4.6) élf',-(t, Xisonus X,) = h(t)é(l + x(1))

for (1, x,,...,x,)€e[a, +o[ x D,.
Further

(4.7) él’ Tty xqs s x,)

where

< h¥(1) for (t,xy,...,x,)e[0,b] x D,,

h*(t) = max {él]f,.(t, X oo X,)| 10 S x, S 0(1), (i=1,...,n)}

and h* e L, ([0, + o).
According to Lemma 3.2, for each natural p the system (4.1) has a solution
(x4p» ---» Xnp) defined on [0, a + p] and satisfying the conditions

(4.8) @(x1,(0), ..., x,,(0) =0, x,(t)=0
for 0st=<a+p (i=1..,n).
(1.3) and (1.2,,) imply
(4.9 Yxif() £ Y x,(0)r for 0<t=<a.
i=1 i=1
On the other hand, since (4.3)—(4.6) hold we have
(4.10) x,(1)£0 for 0<t<a (i=1,..m).
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mi
(41]) 'le;p(l‘) é —50(xm+k'p(t)) for 0 § t § a (k — ]’ . — ]n) ,

(4.12) i:§+llx£p(t)l < h(t)izmiﬂ(l + x,(1)) for 0<t<a
and
@13 TG0 SHON( 4 x,0) for asiga+p

On the basis of Lemma 2.1 we get from (4.8)—(4.13) the estimate

0

n t
(4.14) le,-p(t) < r*exp [J h(T) dt] for 0<t<a+p.

We can deduce from (4.2) and (4.14) that (x,,, ..., X,,) is a solution of the system (0.1)
on [0,a + p].
Taking (4.7) and (4.14) into consideration we can prove (by Lemma 3.1) that

from the sequence of the vector functions {(x, ..., Xup)}nsy We can choose a sub-
+ . .
sequence {(xy,,, ..., X,p.)}mey such that this subsequence converges uniformly on

each segment from [0, + oo and
(Xp5 oo %) = lim (xp, ..., x,,, )
m— + oo

is a solution of the system (0.1) on [0, + oo[. On the other hand, it is obvious from
(4.8) that (x4, ..., x,) satisfies the conditions (0.2).

Proof of theorem 1.2. Put
L for 0=sZu¥r),

o(t,s) = 42 — u:(t) for u*(f) < s < 2u¥(t),

0 for s=2u*t),

fi(t, Xgs oo X)) = 0(8, Y, %) filty X15 -+ x,) (i=1,....,n),
i=1

where u* is an upper solution of the problem (1.9) and consider the differential
system

dx; =«
— = filt,xy,...,x,) (i=1,...,n).
5 = ) ( > 1)

The definition of f; (i = 1, ..., n) together with (1.8) implies that

(4.15)

(4.16) zl it X o 3) < g(t,.;"lx,-)
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on R, x D, and
.;Iﬁ(n Xy oons x")l < (1),

where

n

£50) = max {2 1lo 51, ox)| 3 < 200}

i=1

and f* € Ly,o([0, + o).

According to Lemma 3.2, for each natural p the system (4.15) has a solution
(X1p> ---» X,) defined on [0, a + p] and satisfying (4.8). Further, using (1.2,) and
(4.16) we get

@) zl xp(0) £ 7. S xi() < g(z.iix,,,(t)) for 0St<ad+p.

i=1

From (4.17) by Lemma 2.2 we have
Yoxpt) Su¥(t) for 0St=<a+p.
i=1

The rest of the proof is analogous to that of Theorem 1.1.
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