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ON LINEAR FUNCTIONS ON THE SPHERE §2
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1. Let S? be a unit sphere in E3. Let D be a domain in S2. A function f: D — R
is called linear if

(1) f(M) = (m, a) + k,

where a is a constant vector, m is the position vector of the point M e S? with respect
to the centre of S2, ke R, and (-, +)» denotes the standard scalar product in E>.
The linear function f is called homogeneous or non-homogeneous if k = 0 or k # 0,
respectively.

In [1], A. Svec found certain conditions for a function f to be linear and homo-
geneous. These conditions are expressed in terms of partial differential equations
on D or on the boundary 0D of D.

The aim of this paper is to extend the results obtained by A. Svec to the wider
class of non-homogeneous linear functions on the domains in S2.

2. Let us introduce some notations (see [1]). Consider the unit sphere S* = E>.
With each point M of S?, let us associate a tangent orthonormal frame {m, v, v,, v5}
such that m is the position vector of the point M € S%, v, v, are tangent vectors
to S? at M, and v, is a normal vector to S? at M. Then we have

2
dm = o'y, + 0?,, do, = o, + o'vy,
2
dv, = —ojv; + ©’vy, dvy = —0'v, — ©?,.

Let f:S? — R be a function. Recall that the covariant derivatives f;, fi, P,.-» S,
Ty, ..., Ts (i,j =1, 2) of f with respect to a field of tangent orthonormal frames
{m, v} (k = 1,2, 3) are defined by the following formulas:

(2) df = f1w1 + fzw2.§
3) df; — f,0] = f;,0" + f,0?,
df, + fiof = fi,0" + f0;
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(4) df,; — 2f,,0 = Po' + Qw?,
df i, + (fi, — f2) 0 = (Q + fo) o' + (R + f;) *,
df,, + 2f,,03 = Ro' + Sw?;
(5) dP — (30 + 2f,) o} = T\0' + T,0*,
dQ + (P — 2R = 2f)) 0} = (T, + 2f,)0" + (Ts + 2fy,) 0,
dR + (20 — S + 2f,) 0] = (Ts + 2f,) 0" + (T4 + 2f,,) @*,
dS + (3R + 2f,) i = Tyo' + Tsw*.

By means of these covariant derivatives, one canintroduce the following differential
operators & and ./, which play an important role in investigations of the linearity
conditions (1):

Zf = fi1 + 22 + 2,

t//[f: fnfzz - f122 + f(fn + fzz + f)

3. Let D = S? be a domain, 0D the boundary of D, D = D U 0D, and let f: D —
— R be a function. In all proofs, we shall use the following

Lemma. If L = (¢f)*> — 4.4f = 0 on D, then f is linear on D.

Proof. Supposition L= (Zf)* — 4.4f = (f;, — f22)* + 4ff, = 0 yields f;; —
- fy2 =f1, =0, and from (4) we get P =R, Q =S, Q = —f,, R = —f,. Then
df,; = df,, = Po' + Qw? = —f,0' — f,0? = —df. This implies that f;, = f,, =
= —f + ¢, where ¢ is an integral constant. Now, let us consider the vector field

(6) a=—fv;, — fou, + (f - c) U3

on D. Then da = 0 and hence a is a constant vector. From (6) we get f — ¢ =

= (vy, a). QED.

4. Let &, M, L be given as in Sections 2 and 3. In the proofs of the following
Theorems 1—8, we shall use the maximum principle in the form described in [2].

-

Theorem 1. Let D < S? be a domain, 0D its boundary and D = D U 0D. Let
f: D — R be a function. If

1. L=0 on 0D,
2. (fu - fzz) [(zif)u - (gf)n] + 4f12(>9«0f)12 = 0 on D,

then f is linear on D.

Proof. Consider the covariant derivatives of the functions Zf and L. The formulas
(2)—(5) immediately lead to the expressions

(1) (£f)y =P+R+2f, (£f)=0+S+2f;
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8 (ZFHiu=2f; +f)+ T, + Ts,
(Ll =4f12 + T + Ty,
(Lf)2z = 2(f1s + f22) + T5 + Ts
) Ly =2(fi; — f22) (P — R) + 8f12(Q + f2) .
2(fiy — f22)(Q = S) + 8fix(R + 1) 5
(10) Ly, =2(P — R + 8(Q + £,)* — 4fsn(fiy — f2n) T 24F2, +

+ 2(f11 - fzz) T1 + 8f12T2 - 2(f11 - fzz) T3 ’

Il

L,

L =2P = R)(Q—S)+8(Q + ) (R+f,) + 12f5(f,, + fro) +
+ 2fiy — fa2) To + 8F12Ts — 2(fy1 — f22) T
Ly, = 2(Q — SP + 8(R + f,)* + 4f1((f1, — f20) + 24F2, +
+2(fiy = f22) Ts + 8F12 Ty — 2(f1y — f22) Ts -
Eliminating Ty, ..., Ts from (8) nad (10), one obtains
Liy + Ly, — 4L =2(fy; — F22) [(ZF)11 — (Zf)2a] + 8F12(ZF)12 +
+8(Q + f2)* + 8(R + f1)* + 2(P — R)> + 2(Q — S)*.

Now we can conclude from 2. that this expression satisfies the conditions of the maxi-
mum principle for the function L. Thus 1.implies L= 0 on D and the theorem follows
from Lemma. QED.

Theorem 2. Let D = S? be a domain, D its boundary and D = D U dD. Let
f: D — R be a function. If
1. L=0 on 0D,

2. (f11 - fzz) [('/Ilf)u - (-/[f)zz] + 4f12(//[f)12 =0 on D,
3. Mf>0, f=0 on D,

then f is linear on D.

Proof. Consider the covariant derivatives of the function ,/f. We directly obtain
from (2)—(5) the identities '

(11) (‘//if)1 =(foa + ) (P + f1) + (fu +f)(R+f) - 2f12(Q + fz),
(-/{f)z = (fzz +f) (Q + fz) + (f11 + f) (S + fz) — foz(R + f1);
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(12) (), =2p 4 £)R 4+ f,) - Ao + o + L i — 6f% +
+ 2f05(f,, + ) + (Fo2 + )7, - 2T+ (i + )T,
()2 = ~(R + £)(Q + £2) + (5 4 £) (P + fi) + 2f iz +
T 2f0(F - fuu = f22) + (F,, + ) To = 2f12Ts +
+(fi, + f)Ta,
(#F)22 =20 1+ £,)(S+ £2) = AR + £,)° + Zf oo — 65 +
+2u(f + ) + (o2 + f) 7, — 2f0aTe + (i + ) T -
(10) and (12) yield
(F2 + F) L,y — 2fioLiz + (f,, + ) Loy — 2%fL=
= 2f1, ~ f,,) [(#f)ys - (AF)22] + 8Fia(Af)12 +
+ 2fis + £)(Q + 5+ 26,2 — 4P 4 R + 2f) (0 + S + 2,) fus +
+2f + ) (P + R4 2f, + 4(Zf)[(R + f)(R = P) + (Q + f2) (Q — S)] .
From (9) we get
R+f)L; = (Q+fo) L, =
= =2fi, -~ f.) [R+ f) (R — P) + (2 + ) (2 — 5)]

and hence [(R +f,)(R — P) +(Q + f,) (0 — S)] = —oL, + oL,, where ¢,
satisfy 2(fi; — fo2) 0 = R + f1, 2(fy; — f2;) o = @ + f,. Thus we have '
(13) (faa + f)Lyy = 2f,,L15 + (f1y + f) Ly, + 4%foL, — 4%foL, — 24fL=
= 2f11 — f22) ()11 — (MF);2] + 8Fra(Mf)iz +
+2(fis + ) (Q + S + 2f,)* — 4f1,(P + R+ 2f) (Q + S + 2f,) +
+ 2(fo, + f) (P + R + 2fy)*.

The quadratic form on the right hadn side is positive definite because of 3. This
implies that the expression (13) satisfies the conditions of the maximum principle for
the function L, and we must have L= 0 on D. The theorem now follows from
Lemma. QED.

Theorem 3. Let D = S? be a domain, 0D its boundary and D = D U dD. Let
f: D > R be a function. If

1. L=0 on 0D,

2. "gf[(‘?f)ll + (yf)ZZ] - 2[(‘/ﬂf)11 + (-/ﬂf)n] z 0 on D,
then f is linear on D.
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Proof. From (8), (10) and (12) we get
Liy + Ly, = 22f[(£F) 11 + (Lf)22] — 4[(AF)yy + (#F)22] +
+2(P + R+ 2f,)* + 2(Q + S + 2f,)*.
This expression satisfies the conditions of the maximum principle for the function L,

and we must have L = 0 on D. The theorem now follows from Lemma. QED.

Theorem 4. Let D = S? be a domain, 0D its boundary and D = D U 0D. Let
f: D — R be a function. If
1. L= 0 on 0D,
2. Zf[(fao + £)(LF)1s — 2f12(LF)12 + (fiy + ) (L1)22] —
- 2[(f22 + f) (‘//[f)u — 2f (M )12 + (fir + f)(4f)22] 2 0 on D,
3. #f >0, f=0 on D,
then f is linear on D.

Proof. From (8), (10) and (12) we get
(14) (faz + f)Lyy — 2f1,Lys + (fyy + f) Lay =
= 22f[(f22 + ) (Lf)11 — 2F12(LF) 1z + (fur + ) (£f)22] -
= 4[(f2o + ) (f)1y = 2f12(MF)1z + (Fiy + F) (M)s2] +
+ 2fay + ) (P + R + 2f1)> — 4f,,(P + R + 2f;)(Q + S + 2f,) +
+ 2(fys + f)(Q + S + 2f,)*.

The quadratic form on the right hand side is positive definite because of 3. This
implies that the expression (14) satisfies the conditions of the maximum principle for
the function L, and we must have L = 0 on D. The theorem now follows from Lemma.
QED.

5. Let us consider the orthonormal tangent vector fields V;, ¥, on S2. Let the
tangent frames on S? be chosen in such a way that v; = V(i = 1, 2). Put v;f = df(v;).

Theorem 5. Let D = S? be a domain, 0D its boundary and D = D U 0D. Let
f: D — R be a function satisfying f;, = 0 on D. If
1. L= 0 on 0D,
2. on D, there is a couple of orthonormal tangent vector fields V,, V, such that
(fii — F2) (ViVy = VoV2) £f 2 0,
then f is linear on D.

Proof. From df;, =0 we get (f;; — f2) 0] = (Q + f,) @' + (R + f,) 0.
Consequently, there are functions o, f such that

(15) o} = a0 + pu?,
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and o, p satisfy (f;; — fo;) @ = Q + (fir — f22) B = R + f;. We have v, %f =
=P + R + 2f,, v,4f = Q + S + 2f,. This together with (15) implies

(16) 0,0, 2f = 2fiy + f22) + (@ + S+ 2f)a + Ty + T,
030, 2f = 2fyy + F22) = (P + R+ 2f) B + Ty + Ts.
Eliminating T}, ..., Ts from (10) and (16) we obtain
Ly, + Ly, — 4L=2(f}; — f22) (0101 - uzyz) Zf +
+2[(P + fi) = 3R+ f)F + 2[(S + f) - 3(Q + F)]* +
+30Q + ) + (R+f,)7].

Now we can conclude from 2. that this expression satisfies the conditions of the
maximum principle for the function L, and L = 0 on D. The theorem follows from
Lemma. QED.

Theorem 6. Let D = S?> be a domain, D its boundary and D = D U 0D. Let
f: D — R be a function satisfying f;, = 0 on D. If

1. L=0 on 0D,

2. on D. there is a couple of orthonormal tangent vector fields Vy, V, such that

(fir — F22) ViV = VoVa) lif 2 0,
3. Mf >0, f=0 on D,
\2
4. 4 < (f2 + f)_z < 11 on D,
11 (fyy +f) 4
then f is linear on D.

Proof. We have
v lf=(fi1 + )R+ ) + (Fr + ) (P +F), °
vallf = (fiy + ) (S + ) + (far + 1) (Q + )
from (15), we obtain
(17 v dlf =2P + f) (R + fi) — 2(Q + £,)* + 2Fo(fyy + f) +
+ Zf foy + [(Fo + S+ )+ (fz + ) (Q+ )] o +
+(fa+ T+ (fiu +F) 15,
0y0,f = 2(Q + £) (S + fo) = 2R + f1)° + 2fua(foy + ) +
+ Zf for = [(f + DR+ f1) + (B2 + ) (P + £)]  +
+(far + ) Ts + (s + ) Ts-
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Eliminating T, ..., Ts from (10) and (17) we obtain

(fzz + f) Ly, + (f11 + f) L,, — 29fL= 2(fu - fzz) (U1U1 - Uz”z) ME +

+2m1+ﬂ{ks+ﬁ)—G~FQQ;Q(Q+ﬁ]2+

2 fut+f
+4m+n{@+M—G+2S%yR+mT+
(4 e

Now we can conclude from 2., 3. and 4. that this expression satisfies the conditions

of the maximum principle for the function L, and L = 0 on D. The theorem now fol-
lows from Lemma. QED.

Theorem 7. Let D = S? be a domain, 0D its boundary and D = D L dD. Let
f: D — R be a function satisfying f;, = 0 on D.If
1. L=0 on 0D,

2. on D, there is a couple of orthonormal tangent vector fields Vy, V, such that
Lf(ViVy + V,V,) Lf — 2V, + VoVa) dlf 20,
then f is linear on D.
Proof. From (10), (16) and (17) we obtain
Ly + Ly, + aly — BLy = 2Lf(vyv; + v0,) Lf —
— 4(vyvy + vy0,) MF + 2(P + R + 2f,)* +2(Q + S + 2f,)*.
This expression satisfies the conditions of the maximum principle for the func-

tion L, and we must have L = 0 on D. The theorem now follows from Lemma. QED.

Theorem 8. Let D = S? be a domain, 8D its boundary and D = D U 0D. Let
f: D — R be a function satisfying fi, = 0 on D.If
1. L=0 on 0D,

2. on D, there is a couple of orthonormal tangent vector fields V,, V, such that
gf[(fzz + f) ViviZf + (fn +f) Vszgf] -
- 2[(f22 + f) Vividf + (fu +f) Vszﬂf] 20,
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3. Mf>0, f =0 on D,
then f is linear on D.

Proof. From (10), (16) and (17) we obtain
(18) L (foz + f)Lyy + (fix + f) Loz — (fiy + f) BLy + (fa2 + f) oL, =
= 22f[(f22 + f) 0,0.LF + (f11 + f) v20,LF] —
— 4[(fo2 + f) g0, Mlf + (F1y + F) vo0,f] +
+ 2(fa2 + f) (P + R + 2f1)* + 2(fis + ) (Q + S + 2f,)*.

The quadratic form on the right hand side is positive definite because of 3. This
implies that the expression (18) satisfies the conditions of the maximum principle
for the function L, and we must have L = 0 on D. The theorem now follows from
Lemma. QED.
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