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A CHARACTERIZATION OF O-MINIMAL (m, n)-IDEALS 

ROBERT TILIDETZKE, Dhahran 

(Received February 27, 1979) 

In [2], Kapp defined an equivalence relation В on a semigroup and used it to 
characterize 0-minircal bi-ideals. (see p. 84 in [ l ] for a definition of bi-ideals). In 
this paper we define equivalence relations Б", for m and n non-negative integers and 
use these relations to characterize O-minimal (m, n)-ideals. For m, n ^ 1 we have 

Kapp also showed that if R [L] is a O-minimal right- [left-] ideal of a semi­
group S, then either RL = {0} or RLls a O-minimal bi-ideal. We present here four 
generalizations of this result in section 2. 

S will always denote a semigroup with zero element 0 unless stated otherwise. 

1. CHARACTERIZATION OF O-MINIMAL (лл, «)TDEALS 

Definition (1.0). [See Def. 1.1 in [4]] jA subsemigroup Л of 5 is called an (m, n)-
ideal of S if Ä"'SÄ" я A, where m and n are non-negative integers. 

Definition (1.1)'For a, b e S (for any semigroup S) we write аБ"„Ь if and only if 
either 1) a = b or 2) There exist u.veS such that Ö'" и a!^ — b and b'" v b" = a, 
where m and n are non-negative integers. 

The following two propositions can be readily verified: 

Proposition {\Л) The relation Б^ is an equivalence relation. Moreover, B^ я В 
if m, n ^ 1, where В is the equivalence relation defined by Kapp in [2]. 

Proposition (1.3)7/ A is an (m, n)-ideal of S, then A = \j B'l^[a), i.e., any (m, n)-
aeA 

ideal is the union of its B'l^-classes. B^(a) is the Б^ class containing a. 

Definition (1.4) A non-zero (m, /i)-ideal A of S is said to be O-minimal if there 
is no (m, n)-ideal A' of S such that {0} =¥ A' "r A. 
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Corollary (1.5). (to proposition (1.3)). Let В be an (m, n)-ideal of S. If В is a single 
non-zero B"„-class union {0}, then В is a 0-minimal (m, n)-ideal of S. 

Lemma (L6). Let a.beS, Then aB^b if and only if Bl{a) = Bl{b). That is to 
say, aB'^b if and only if a and b generate the same principle (m, n)-ideal. 

Proof. Suppose aB'^b. If a = b, there is nothing to prove, so we can assume that 
a Ф b. Then there exist elements u, v e S such that a = b"" и b" and b = a"" v a". 
Note that a^ = (b^ и b"f E b"" S b" Ç Bl{b) for each k, 1 ^ к й m + n. Moreover, 
fl^ 5 a" = (b'" и У'У S (Ь'" и b^^y Я b'^'Sb''^ Bl{b). Thus, Bl{a) ç Bl{b). By a dual 
argument we can show that Б,^(Ь) ^ Б ^ а ) . 

Conversely, suppose B'^{a) = Б",(Ь). Again, we can assume a + b. There are four 
cases to consider. 

Case 1. a = b'' for some k, 2 ^ к -^ m + n, and b E a"" S a". Then, there exists 
UES such that b = a"" и a" = b̂ "̂  и b"^ and a = b^ = (b'"^ и b"^f E b"^ S b\ There­
fore, we have aB'^b. 

Case 2. a = b^, and b = â  for some к and / between 2 and m + n, (since a Ф b). 

This impHes that a =^ b^ = a'^ = a'^" = a^'^' = .. . b'^''""' = ... . Thus, we can 
chose an r so that /7c'"''^ > m + n + 1, which implies that a E b"" S b"^. Similarly, 
we can show that b E a"" S a'^ and thus, аБ^Ь. 

Case 3. a e b'" S b" and b = a^ for some I, 2 ^ I й rn + n. 
This is simply the dual of case 1. 

Case 4. aEb'^Sb" and b E a"^ S a\ 
Obviously, aBl^b. 
Therefore, in all cases, we have that if Б^(а) = Б^(Ь), then aB^Jj. 

Note that lemma 1.6 could be used to define the equivalence relations Б^ in a way 
that generalized Green's relations L, R and J. 

Theorem (1.7)//l/i (m, n)-ideal A of S is 0-minimal if and only if it is one non-zero 
ßlf class union {O}. 

Proof. By corollary (1.5), if A is one non-zero 5JJ -̂class union {O}, then A is 
a 0-minimal (m, n)-ideal. 

Conversely, assume that Л is a 0-minimal (m, n)-ideal. Let a, b e ^ \ { 0 } . Again 
we can assume a ф b. Let Б = ВЦр) and С = Б^„(а). Since Б Ф О, С Ф О and 
Б ^ Л, С Ç Л, we have В = А = С because А is 0-minimal. But, then by lemma 1.6, 
we have aB^^b. Thus, A is just one non-zero Б^-class union {O}. 

Proposition (1.8). Let I be a 0-minimal (m, n)-ideal. If P Ф 0, then I is also a 0-
minimal bi-ideal, (with m, n ^ 1). 

49 



Proof. Case 1. There exists a bi-ideal J of S such that 0 ф J ^ /. Then, since J 
is also an (m, n)-ideal, we have J = I since I is 0-min (m, n)-ideal. But then / is a bi-
ideal and in fact, a O-minimal bi-ideal. 

Case 2. There do not exist any bi-ideals J of S such that 0 Ф J Ç J. Since 0 ф 
Ф /2 Ç / and / is a O-minimal (m, n)-ideal, we have P = / . Thus, I SI =^ Г S F ^ 
ç 7 => / is a bi-ideal, and by the hypothesis of case 2,1 must be a O-minimal bi-ideal. 

Corollary (1.9)/(to proposition (1.8))|У4 O-minimal (m, n)-ideal A of S is either 
null or a group union {O}, (m, n ^ 1). 

Proof. If Л^ = 0, we are done. If A^ Ф 0, then proposition (1.8) implies A is 
a O-minimal bi-ideal and theorem 1.8 in [2] yields the desired result. 

The following example will show that despite the similarity between our corollary 
(1.9) and theorem 1.8 in [2], the class of O-minimal bi-ideals and the class of O-minimal 
(m, n)-ideals are distinct. 

Example (1.10). Let N be the non-negative integers, and T = iV/(6) be the set N 
mod 6. We will denote the elements of Tby the symbols 0, 1, 2, 3, 4, 5. 

Let 

S = j r y , a,b,c,deT 

Then iS is a semigroup under multiplication with zero element 

^Hl> 
Let 

Then P = {0} Ç J and 

—МГо)-(::)}-
imply that J is a bi-ideal. Moreover, since ^ 

1>ГНЛ /0 0 \ ^ / 0 0 \ / 0 2 \ /( 
\2 O) - \4 O) \0 O) \. 

o o j ( 2 0 ) ^ ( 2 0 ) ^ ( 2 0 ) 

and 
/ 0 0 \ _ / 0 0 
[4 0) - [2 0. 

we have that / is a single non-zero Б-class union {Ö}, and so by corollary 1.6 in 
[2], J is a O-minimal bi-ideal of S. 
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However, we can choose {0} Ф X = <0, I |> J J and have that X^ = {0} 

and hence K^SK = {0} ^ K. Therefore, К is a proper, non-zero (2.l)-ideal contained 
in J, and so J is not a Ö~minimal (2,l)-ideal. 

Moreover, К is a 0-minimal (2.l)-ideal which is not a bi-ideal, and hence not a 0-
minimal bi-ideal. Thus, the class of 0-minimal bi-ideals and the class of 0-minimal 
(m, n)-ideals are distinct. 

2. FACTORING A 0-MINIMAL (m, «)-IDEAL 

In [2], proposition (1.9), it is shown that if R [L] is a 0-minimal right-[left-] ideal 
of S, then either RL = {0} or RL is a 0-minimal bi-ideal of S. The following four 
propositions represent an attempt to obtain a generalization of this result. 

Proposition (2.1). / / iS has the property that it contains no non-zero nilpotent 
(m, n)-ideals, and if R [L] is a 0-minimal right - [^left-^ ideal of S, then either 
RL = {0} or RL is a 0-minimal (m, n)-ideal of S. 

Proof. If JRL Ф {O}, then by proposition (1.9) in [2] we have i^Lis a 0-minimal 
bi-ideal, and hence it is also an (m, n)-ideal. It remains to show that i^Lis a 0-minimal 
(m, /i)-ideal. 

Let {0} Ф v4 ^ RL be an (m, n)-ideal of S. Note that since RL я R n Lwe have 
Ä я Rn Land hence Ä я R and A Я: L. By hypothesis, A"^ Ф {0} and A" Ф (0}. 
Thus {0} Ф A'^S^ ^ R=> A'^S^ = R since R is 0-minimal. Also, {0} Ф S^A" ç 
Ç L=> S^A"" = L since L is 0-minimal. Therefore, A ^ RL= (A'^S^){S^A") ç 
Ç A'^S^A'' = Ä^^"" u A^SA"" ^ A since A is an (m, n)-ideal. Thus Л = RL, which 
means i^Lis a 0-minimal (m, n)-ideal. 

Proposition (2.2). Let R [L] be a 0-minimal right- [left-l ideal of S. If R'^E 
is a subset of the center of S, then either R'^E = {0} or R'^E is a 0-minimal (m, n)-
ideal. 

Proof. If R'^E Ф {0}, then R"" Ф {0} and E Ф {0}, and hence {0} Ф Я'" ç К =^ 
=> R"" = R and {0} ф L" ç L=> L" = L since R [L] is a 0-minimal right- [left-] 
ideal of S. Thus, R^'E = i^Lis a 0-minimal bi-ideal by proposition (1.9) in [2], and 
hence is also an (m, n)-ideal. Now we show that R'^E is 0-minimal. Let {0} ф A я 
Ç R'^E = jRL Ç î  n L be an (m, n)-ideal of S. Then A ^ R Sind A ^ L=> {0} Ф 
Ф AS^ ^ RS^ ^ R and {0} Ф S^A ^ S^L^ L and thus AS^ = R and S^ = L 
since R [L] is a 0-minimal right- [left-] ideal. Therefore, A ^ R^'E = (AS^)"". 
. {S^Af = v4'"(5^)^+M'* Ç Л^5М" = Л'"-*"" u ^'"S'^" ç A since Л is in the center 
of S and is an (m, n)-ideal of S. This means that ^ = R'^E and so JR'"L" is a 0-minimal 
(m, n)-ideaL 
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We conclude this paper with two propositions that use theorem 2 in [3] which 
says that S is (m, n)-regular if and only if/ = I'^SF for every [m, n)-ideal / of S. 

Proposition (2.3). / / S is (m, n)-regular, and if A \ß\ is a 0-minimal (m, 0)-
[(0, л)-] ideal such that AB я A n В, then either AB = {0} or AB is a 0-minimal 
(m, n)-ideaL 

Proof. Let С = AB. If С Ф {О}, then С^ = (AB) (AB) ç (AB) В я AB = С. 
Moreover, C^SC" = {АВу 8{АВу ç (Л'"5) F ' ^ AB" ^ AB = С. Thus, С is а sub-
semigroup such that ^"SC" ^ C, i.e., С is an (m, f2)-ideal. 

Let {0} Ф D Ç С be a nonzero (m, n)-ideal. Then since S is (m, n)-regular we 
have {0} Ф D - D'"^/)" and hence D'^S Ф {0} and SD" Ф {0}. Further, D ç С = 
= AB ç A n В => D ^ A ând D ^ В, therefore, {0} Ф D'^S Я A'^S Ç A since A 

is an (m, 0)~ideal, and D'^S = A since A is O-minimal. Likewise, {0} Ф SD" я В => 
=> SD" = Б. So we have 

D Ç: AB = (D'^S) (SD") Ç D'^SD" = D. 

This means D = AB and hence Л Б is 0-minimal. 

Proposition (2.4). / / S is (m, n)~regular, and if A [Б] is a 0-minimal (m, 0)-
[(0, n)-] ideal, then either A n В = {0} or A n В is a 0-minimal (m, n)-ideal. 

Proof. Once we establish that Л n ß is an (m, n)-ideal, the rest of the proof is 
the same as in (2.3) above. 

Let С = yd n Б, then C^ я A^ я A and C^ Я B^ я В. Hence, C^ Œ A n В = 
= С. So С is a subsemigroup, 

C'SC" с (A'^s) Б" Ç ЛБ" Ç 5Б" Ç Б. But, we also have ^"SC" ç ^'"(Sß") ç 
£ Л^Б ç Л'"^ ç Л. Thus, C^SC" Ç Л n Б = С and so С is a nonzero (m, п)-
ideal. 

References 

[1] Clifford, A. H. and Preston, G. В.: The Algebraic theory of semigroups, Math. Surveys of the 
American Math. Soc. 7 Vol. 1 (Providence, R.I., 1961). 

[2] Kapp, К. M.: On Bi-ideals and Quasi-ideals in Semigroups, Publ. Math. Debrecen, 16 (1969), 
179—185. 

[31 Krgovic, D. N.: On (m, w)-regular Semigroups, Publ. Inst. Math. Belgrade 18 (32) (1975), 
107—110. 

[41 Lajos, Sandor: Generalized Ideals in Semigroups, Acta Sei. Math., 22 (1961), 217—222. 

Author's address: Dhahran International Airport, P.O. Box 144, Dhahran, Saudi Arabia. 


		webmaster@dml.cz
	2020-07-03T02:37:05+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




