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INTRODUCTION

The point-arboricity Q(G) of a graph G is the minimum number of subsets in any
partition of the point set of G such that each subset induces an acyclic subgraph.
We let ¢'(G) denote the minimum number of subsets in any partition of the point
set of G such that each subset induces a connected acyclic graph. Since a connected
acyclic graph is a tree, we refer to Q'(G) as the tree-covering number for G.

If Vi, ..., V, is a patrtition of the point set of G such that the subgraph {V;) of G
induced by V; is connected and acyclic, i = 1, ..., n, we call V,, ..., V, a connected
acyclic partition for G (or simply a partition for G when there is no chance for
confusion). Any connected acyclic partition for G is an acyclic partition, so ¢(G) <
< ¢'(G) for any graph G.

If H is a subgraph of G, it is always true that ¢(H) < ¢(G). This property does not
hold for g’, as the graphs in Fig. 1 indicate. Consequently many theorems about
point-arboricity whose proofs rely on induction on the number of points or edges
in the graph do not easily carry over to results about the tree-covering number.

G G-v G- e
e
v
¢(G)=2 0(G-v) = 3 0'(G=e)= 3 Fig. 1.

All definitions not given here may be found in [1].

SOME BOUNDS FOR ¢/(G) .
If Vi, ..., V, is a partition of the points of G such that each V; contains at most
two points, then each (¥, is acyclic. Thus ¢(G) < [n/2] where G has order n and [x]

denotes the smallest integer greater than or equal to x. However, it is not always
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possible to partition the points of G into [n/Z] sets of size at most two such that
each set induces a connected acyclic subgraph. For example, if G is the graph of order
10 formed by three K,’s which share a common point, then it is not possible to find
five point-disjoint edges in G.

Nevertheless, the same upper bound of [n/2] also holds for ¢'(G) if G is connected.
To prove this we need the following lemma about blocks.

Lemma 1. Let G be a block with n points.

a) If n = 3 there exists an edge v,v, in G such that G(v) = G — v, — v, is
connected.

b) If n = 4 there exist disjoint edges usu, and v,v, in G such that G(u) =
=G —u; —u, and G(v) = G — v, — v, are connected.

The proof of this lemma uses the following theorem by ROBERTS [3].

Theorem (Roberts). If G is a 2-connected graph which is not a single point,
then we can write G as the union of subgraphs G = P, U Py U ... U P, where P,
is an edge graph and for i =1, ..., k, P; is a simple path which avoids B;_; =
= PyUP,U...UP;_; except for its distinct endpoints which are contained
in V(B;_,).

Roberts’s theorem is proved by induction on the number of edges in G and relies
on a theorem by WHITNEY.

Theorem (Whitney). Let G be a 2-connected graph. Suppose K is a 2-connected
proper subgraph of G containing at least one edge. Then we can write G as H U L,
where H is a 2-connected proper subgraph of G containing K, and L is a simple
path in G that avoids H except for its distinct endpoints which are in V(H).

For a proof of Whitney’s theorem see [4] p. 19.

Proof of Lemma 1. a) For n = 3 the concepts of block and 2-connected graph
are identical so by Roberts’s theorem we can write G = P, U ... U P, where P, is
an edge and P; is a path avoiding B;_; = P, U ... U P;_, except for its distinct
endpoints which lie in B;_, i = 1, ..., k. It is easy to see that each B; is a block.
Since P; has length at least 2 there exists a largest j = 1 such that P; has length at
least 2. Then for i > j, P;is an edge between two points of B;_;. Let V(P;) = {vy,v,,...

., Uy} Where vy, v, € V(B;_;), v;¢ V(Bj—y) for 2<i<m—1, and m = 3. Let
G(v) = G — vy — v,. Since B;_, is a block, B;_; — v, is connected. B; — v; — v,
consists of B;_; — v; plus a path joined to B;_; — v; at v, so it is also connected.
Since G(v) is just B; — v; — v, plus additional edges, G(v) is also connected.

b) The proof will be by induction on n. If n = 4, G is K4, K, minus an edge,
or C, and the result holds by inspection. Now assume that if H is any block on m
points with 4 < m < n, there exist two disjoint edges such that removing either
one from H leaves a connected graph. Let G be a block of order n = 5. By part a)
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there exists an edge v,v, such that G(v) is connected. Moreover if the path P; used
in the proof of part a) has length at least 3 we can let u; = v, u, = v,_,;. By the
same reasoning as above G(u) is connected and we have the desired result. Thus we
may assume that P; has length 2. Then G is B;_; + v;v, + v,v; plus possibly other
edges, so we may regard G as a block H together with the point v, joined to H at
vy, U3, and possibly other points.

Since H has order n — 1 the induction hypothesis implies the existence of disjoint
edges x,x, and y,y, such that H(x) = H — x, — x, and H(y) =H — y, — y,
are connected. If {x,, x,} = {v, v;} the edges v;v, and y,y, in G have the desired
properties. If x; = v; but x, # v; use the edges x,x, and v,v;. Similar arguments
apply when {y,, y,} = {v;,v5} and y, = v; but y, & v;. Thus we may suppose
X1, X3, Y1, Y2, U1, and vy are all distinct, and the edges x,x, and y,y, have the desired
property. This completes the proof.

Theorem 2. If G is a connected graph of order n then ¢'(G) £ [n/2].

Proof. We use induction on n. If n is 2 or 3 the result is easily checked. Suppose
that if H is any connected graph of order m < n then ¢'(H) < [m/[2], and let G
be a connected graph of order n = 4. If G is a block then Lemma la implies the
existence of an edge v,v, such that G(v) = G — v, — v, is connected. If V, ..., V;
is a connected acyclic partition for G(v), {v;, v,}, Vi;..., Vi is a partition for G.
Since the induction hypothesis applies to G(v) we have

g«n§1+ﬂqmg1+["—ﬂ=[q_

2 2

Now suppose G is not a block. Then there exists a cut-point v of G such that all
blocks of G containing v with at most one exception are endblocks (see [1], p. 29).
Let By, ..., B, be the endblocks of G containing v, with k = 1. If |V(B;)| = 4 for
some i then Lemma 1b implies the existence of disjoint edges u,u, and v;v, in B;
such that removing either one from B; leaves a connected subgraph of B;. Without
loss of generality u,u, does not contain the point v, so G(u) = G — uy — u, is
connected. Applying the induction hypothesis to G(u) we again have

_ H

If ]V(B,.)| = 3 for some i then B; = K3 and there exists an edge u,u, in B; — v whose
removal leaves a connected subgraph of B;, namely (v). Then G(u)is again connected
and use of the induction hypothesis on G(u) gives the desired bound.

. k
Thus we may assume ]V(B,-)| =2fori=1,...,k so that U V(B,)) is acyclic.
k i=1
Let H= G — J V(B;) + v. Then H — v is connected of order n — k — 1 so by
i=1

ﬂ®§1+ﬂam§1+P%§

induction
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(G)S1+o(H-v)S1 +

n—k-—1 _|r- k+1 < n
2 2 2
since k = 1. This completes the proof.

The graphs for which the inequality of this theorem is an equality are characterized
in the final section of this paper.

Corollary 3. If G is a graph on n points with k components then

n+k—1

0'(G) £ >

Proof. Let Cy, ..., C; be the components of G and let n; = |V(Ci)|, i=1,...,k
Then for each i, ¢'(C;) < [n;/2] by Theorem 2, so

<Z"ni+1_‘n+k
=& 2 2 '

n;

2

Q/(G) - iélgl(Ci) é iil

Since ¢'(G) is an integer,

If G is a connected graph of order n, then ¢(G) and ¢'(G) are both bounded by
[n/2]. However, the ratio ¢’(G)/e(G) can be arbitrarily large. To see this consider
the graph G consisting of k copies of K,, all sharing a common point v, where m = 4
is even. Let V; consist of a pair of points from each K,, — vfori = 1, ..., (m — 2)/2.
The remaining points induce an acyclic graph, so ¢(G) = (m — 2)[2 + 1 = m|2.
It is not hard to see that

Q'(G)=k<mT_2>+ o Mm=2)+2

2
Thus
2'(G) _ k(m — 2) + 2
o(G) m
which becomes arbitrarily large as k increases.
Given any graph G, its complement G has V(G) = V(G) and uv € E(G) if and only

if uv ¢ E(G). NorDHAUS and GADDUM [2] found bounds on the chromatic number x
of a graph and its complement:

Theorem (Nordhaus and Gaddum). Let G be a graph of order n. Then
2Jm) = 1G)+2G)=n+1, n=xG)xG) = (n+1)*4.

We prove a similar theorem for g’.
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Theorem 4. Let G be a graph of order n. Then
V() = @(G) + ¢'(G) = [3n)2], nf4 <0(6)e'(G) < n(n + 1)[2.

Proof. Since ¢'(H) 2 o(H) = x(H)/2 for any graph H, the lower bounds in each
case follow from the theorem of Nordhaus and Gaddum. Observe that for any
graph G, at least one of G and G must be connected, so without loss assume G is
connected. Then ¢'(G) < [n[2] and clearly ¢'(G) < n, so

?'(G) + ¢'(G) = n + [n[2] = [3n[2],
0(G). ¢'(G) < n[nf2] < n(n + 1)/2.

The upper bounds in Theorem 4 are best possible, since equality holds when G =
= K, with n odd. If G is a path v;, v,, ..., v4, then any 5 points of G induce a cyclic
subgraph. Since the sets {vy, ..., v4}, {vs, ..., Vg}, ..o, {Dag—3, ..., Vgr} form a con-
nected acyclic partition for G, we have ¢'(G) = k. Thus ¢'(G) ¢'(G) = n[4 and the
lower bound in the second inequality is best possible.

The lower bound in the first inequality is also best possible as the following
example shows. Take n = 16k* and let G’ be the complete 2k-partite graph
K(Sk, e 8k). Let U;, j = 1,2,..., 2k be the basic partitioning sets for G, so that
each (U;) consists of 8k isolated points. Let U; = {v,;, v,), ..., vg ;}. Form G by
adding to G’ the edges v; ;41,5 1 S <8k, 1 =j =2k (so that each U; induces

Vi3 =) . Vie-3,2%
Vie-2,1 Vie-2,2 Vie-2,2%

Vig-1,1 Vig-1,2 Vie-1,2x

Vi1 Vie,2 Vi, 2k

Fig. 2. Subgraph of G induced by V.

a path in G) and deleting from G’ the edges v; jv; j44, 1 £j <2k, 1 £i < 8k,
i = 1 mod 4. The sets Uy, ..., Uy, form a connected acyclic partition for G, so
0'(G) £ 2k. LetV, = {v, ;|41 — 3 < i £ 41,1 < j < 2k} fort = 1,..., 2k. Then the
subgraph of G induced by each V, has the form indicated in Fig. 2, so the sets V, ...,
..., V3 form a partition form G. Thus ¢'(G) £ 2k so that ¢'(G) + ¢'(G) < 4k = {/n.

THE CASE OF EQUALITY IN THEOREM 2

In this section we characterize those connected graphs for which the tree-covering
number is as large as possible. Before stating the theorem, we present some notation.
We use K,(u) to denote any graph obtained from K, by the deletion of at most
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n — 3 edges incident with u. Although K,(u) refers to a family of graphs, we will
treat the family as a single graph for simplicity, since we will not be concerned with
the number of deleted edges.

Given n,; and n, odd integers, let A = K, and B = K, and take two additional
points x; and x,. Form the graph G(n,, n,) of even order n; + n, + 2 by joining x,
and x, to all points of 4 and all points of B, and possibly to each other. Since we
will not be concerned with whether or not x, and x, are joined, we use the same
notation for both graphs.

Given ny, ..., n, odd integers =3, we form the “daisy” graph D(ny, ..., n;) of
even order n, + ... + n, — k as follows. Let x,, x,, ..., X;, x; be a k-cycle. Use
Xy, X, and n; — 2 more points distinct from x;. ..., x, to form a K, . Similarly,
construct a K,,, on x; and x;, for i = 2, ..., k (read subscripts modulo k). The resul-
ting graph is D(ny, ..., n,); in this case the notation refers to a single graph.

Figure 3 illustrates the above notation.

Ks(u) G(3.1)

x/ X,

X X3
D(5.3,3,3) Fig. 3.

If a block has even order, we will refer to it as an even block. Similarly an odd
block is a block of odd order. We now characterize those graphs with tree-covering
numbers as large as possible.

Theorem 5. Let G be connected of order n. Then ¢'(G) = [n/2] if and only if
1) All odd blocks of G are complete;
2) G has at most one even block;
and
3) if G has an even block, that block is K,, K,(u), G(ny, ny) or D(ny, ..., ny).

The proof essentially consists of a case by case analysis of the possibilities; it is
available from the authors upon request.
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