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1. INTRODUCTION

Let E be a finite field with the prime field F. E — {0} is the multiplicative cyclic
group generated by an element a. We suppose [E : F| > 1, in particular, the number
of E, IE] > 3, V denotes n-dimensional vector space over E with a non-singular
alternating form. We have a canonical base {xi, yil 15igm n= 2m} for V,
ie., x;x; = y;y; = 0foralli,j, and x;y; = 0 or 1 accordingto i + jori = J(resp.).
Sp.(E) or Sp(E) is the symplectic group on V. An element ¢ in Sp(V) is called an
isometry on V. If ¢ fixes a hyperplane of V¥, then ¢ is called a transvection on V. The
set of all transvections is denoted by T. We know T generates Sp(E). However it
does not need the whole T to generate Sp(E).

In the present paper we shall give a minimal set of generators of Sp(E) which
consists of n elements of T and an element 4 of Sp(E).

Sp(F) is the symplectic subgroup of Sp(E) defined on V; = @ (Fx; @ Fy,).
. i=1

Let 4 be an isometry of Sp(E) defined by 4x; = «~'x; and Ady; = ay; for each i
in {1,2,...,m}.
The our goal is the following:

Theorem. Sp,(E) is generated by A and n transvections in Sp,(F). This system
of generators is minimal.

For subsets U and W of V, the set theoretic difference is denoted by U — W.
M @ N denotes a direct sum of subspaces.

2. TRANSVECTIONS

For a subset U of ¥, we define U* = {x e VI xU = 0}.
Let x, y be vectors in V'with xy = 0, and a be an element of E. Then V = Ex @ y*.
Hence a linear map t defined by x = x + ay and © = 1 on y* is a transvection if

629



a # 0 and is identity map if a = 0. 7 is denoted by 7,4, and y* or (Ey)* is called
the axis of .
Conversely, any transvection t can be expressed as above for some x, y € V and

ackE.
We note x is not unique, more precisely, for any z with zy # 0, there exists b in E

with 7, . = 7,4,

3. PROOF OF THE THEOREM
We have E = F(x) and the canonical base {x,, y; |1 < i < m} for V.

Notations.

Z =X +X+ ... +x, 1 SiSm

S = {Ty0 yo Tyors | | < i <.m}, (hence |S| = n and S < Sp(F)).
4 e Sp(E) with 4x; = o™ 'x; and 4y; = ay; for i =1,2,...,m.
T = the set of transvections in Sp(E). '
T,, = the set of transvections in Sp(E) with axis y}.

T,, = the set of transvections in Sp(E) with axis zj.

Let G = [S, 4], i.e., the subgroup generated by S and 4 in Sp,(E). Then our pur-
pose is to show G = Sp,(E). Since Sp,(E) = [T, it suffices to show T = G.

Lemma 3.1. For some even numbers r and s, it holds o™ + o = o or & — o = «.

Proof. Since o # 1, we have « — 1 = 0. Write « — 1 = o’. If s is even, then the
lemma is clear (let r = 0). If s is odd, then o — a = o°** gives the lemma. Q.E.D.

Lemma 3.2. T), = G and T,, = G for any i in {1, ..., m}.

Proof. Since At,,,, 47" = T4y, 4y, = Ta-t210p: = Tzia2y it is Obvious that for

any even r, T, ., is contained in G. Next, by Lemma 3.1, taking some even
. +1 _ .

r and s, we have 7, ., in G, because (7., ..) (Tziasp)™" = Toparsasy, SifCE
4, ., A7 = 1, .5, by the same way as above, we see G contains 7, ., for all
odd r, whence for any integer r.

Take any 7 in T,,. Since z;y; # 0, t is written as t = t,, ,,, for some a in E. Since
E — {0} is a cyclic group generated by «, we have T,, = G.

By the same way we have T,, = G. Q.E.D.

Definition. Let ve V and write v = )" (axx; + b;y;), a;, b € E. Then {h;, k;} are
i=1

projections defined by h,(v) = a; and k;(v) = b, for 1 <i < m.
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Definition. For j = 1, ..., m we define G; = [1,,,,, 7., |1 S i < j].

Lemma 3.3. Let 0 = ve V and 1 < j be the largest number with h;(v) + 0 or
kj(v) # O, then there exists ¢ in G; such that h;_(ov) + 0, h;(gv) + 0 and k;(¢v) * O.

Proof. i) Case of h;(v) + 0.

By h;(v) =% 0, we have vy; = 0. Hence for any a in E we can define 0, = 7,4, and
have 0,0 = v + ay;. Since |E| > 2, there exists a in E with k;(0,v) = k;(v) + a + 0
and (0,v) z; = vz; — a + 0. We take such a. Then we can define 0, = 7p,,,, for
any b in E. Therefore, 0,0,0 = v + ay; + bz; and k;(0,0,v) = k;(0,v) + 0. Again
by |E| > 2, we can choose b with h;(0,0,0) = h;(v) + b #+ 0 and h;_(0,0,0) =
=h;_y(v) + b *0.

Thus ¢ = 0,0, is the desired one.

ii) Case of h;(v) = 0.

We shall show that for some 0 in G; we have h j(ev) #+ 0, i.e., reduce the case to the
first.

First we show there exists 0, in G, with h,(6;v) # 0 for some i in {1, ...,j}. So
we assume h(v) = O for all i = 1,..., j. This implies, for some i in {1, ...,j}, we
have vz; # 0, since Vis non-singular. Put 6, = 7, , for such i. Then we have h;(0;v) =
hv+z,)=1=%0. ’

Next, since h(0;v) + 0, we have (0,0) y; + 0. Hence 0, = 14,,,4,, is well-defined
for all @ in E. Since |E| > 1, we have (0,0,0) z; = (0,0 + ay;) z; = (0,v) z; — a *
#0 for some a. Take such a. Then 03 = 7y,p,,4,, is defined for any b in E and we
have 030,0,v = 0,0,0 + bz;. Therefore, for a suitable choice of b we have
hj(050,0,0) * 0, i.e., 0 = 050,0, is the desired one. Q.E.D.

v,z

Lemma 3.4. Let veV, and h;_,(v) + 0, hj(v) 0 and kj(v) % 0. Then there
exists 0 in G; with hj(0v) = k;(6v) = 0.

Proof. To simplify the notations we write a = h;_,(v), b = h;(v) and ¢ = k;(v).
Then, since b # 0, we can define 0, = 7, _,,. Since a # 0, we can also define
0, = Toway,., for any deE. Take d with (0,0 + dy,_,)z; # 0. Then 0, =
= Tg,0,0,~bz; 18 Well-defined and 6 = 030,0, is the desired one. Q.E.D.

Lemma 3.5. Let 0 & v € V. Then, there exists ¢ in G such that ov e Ex, or Ey,.

Proof. Let j be the largest number with k;(v) % 0 or k;(v) % 0. We shall prove the
lemma by the induction on j.

Let j = 1. Then we may write v = ax; + by, a,b€ E. If a = 0 then let 0 = 1.
If a + 0, then for ¢ = 7, _,, We have ovin Ex;.

Next, let j > 1. Then by Lemma 3.3 there exists ¢ in G; with h;_,(ev) =% 0, h;(ov) *
+ 0 and k;(gv) # 0. Hence, by Lemma 3.4 we have 0 in G; with h;(fgv) = k;(0gv) =
= 0. Thus, by the induction on j we complete the proof. Q.E.D.
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Take any 7 # 1 in T and write t < 7,,. Let o be an isometry as in the lemma.
Then o7,,0~ " is contained in T,, or T, (note z; = x;). Since T;,, Ty, < G, we have
T = G. Thus, we have proved that Sp (V) is generated by S and 4. It is clear that
{S, 4} is minimal.
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