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1. INTRODUCTION

1.1. A Tauberian theorem is such a theorem which says that if any series of

0
complex numbers ) a, is summable by a certain method and, moreover, satisfies
n=1
a certain condition (usually on the terms a,), then it is convergent. This condition is
called a Tauberian condition (cf. [4], § 7.1).

In 1944 H. Hadwiger [3] proved that there exists a constant M, such that
limsup | ¥ axs — ¥ @] < M, lim sup n|q,|,
n—>oo k=1 k=1 n— o

00
where x, = 1 — 1/n and ) a, is an arbitrary series of complex numbers. This con-
k=1

stant.was called a Tauberian constant, because the well-known first Tauber’s theorem

is a consequence of Hadwiger’s result. Further, WINTNER [9] proved existence of
0

a constant M, such that for an arbitrary series of complex numbers ) a, and
k=1

x,=1—1/n,

© n . n
limsup | ¥ apxk — Y. 4] £ M, lim sup—1 | Y kay| .
K=1 k=1 now N OK=1

n— oo

This fact, by the way, implies the second Tauber’s theorem for the Abel summability
method. HARTMAN [5] found that the least (it means the best) values of these con-
stants are M; = [p (1 —e ™) u"'du + [T e u " duand M, = M, + 27"

1.2. We say that a series of complex numbers Y a, is summable by the (D, 1)
k=1

summability method to a sum s, if the series f(f) = Y. a, exp (—A,f) converges for
k=1
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t > 0 and lim f(t) = s. We assume that the sequence {4,},, is an increasing sequence
t—0+ ‘

of positive numbers and lim A, = oo. It is easily seen that the Abel summability

n—ow
method is a special case of the (D, A) summability. It suffices to put 4, = n for all
neN (cf. [10]).
This work concerns (in comparison with the older results) a more general (D, 4)
summability. Let {/1,,},‘,”:1 be an increasing sequence of positive numbers such that
lim 4, = oo and {t,},%, an arbitrary sequence of positive numbers, lim t, = 0. We

n-w n=w

shall examine for which sequences {,};-; and {t,},=, there exists a constant M

=)
such that for every series of complex numbers Y a, with

k=1
. Adla
Ay =11msup—"l—f]~ < .
Lind n — ‘n-1

the inequality
lim sup |s, — f(1,)| £ M4,

holds, where s, = Y. a;, n € N, and f(t) = ¥ a, exp (—4t) for t > 0. We call this
k=1 k=1

constant the Tauberian constant for the (D, 1) summability method under the
condition A; < c© belonging to the sequence {t,,},fil. We solve the same problem
under the Tauberian condition

A, =lim supl|z,1kak| <.
n—o A k=1

n

. 1 2 4 4 1/p
AP = lim sup<—* Y 2l > ,

Ink=1 (A — M)’ ™!

n— o

where p = 1. (We put 4, = 0 if necessary.)

The present work is based on two general theorems of 1. J. Mappox [8]. (Cf.
further Theorem 1, Theorem 2.) It is shown how the conditions of these theorems
can be simplified for the special case of the (D, 4) summability. Our results which
concern the conditions A; < o0 and A4, < oo are presented in the third section.
(Cf. Theorem 3, Theorem 4.) As to the condition Agp) < o0, one theorem was
proved in 1971 by K. A. Jukes. (Cf. [7], p. 754, Corollary 1.) We shall give here
a simple necessary and sufficient condition (see further condition (*)) for the existence
of a Tauberian constant under the condition A%’ < oo, p = 1. We avoid (cf. Theorem
5) the application of Jukes’ theorem. In fact, we obtain a little more than the straight-
forward application of his theorem yields, because we have no such restriction on
{An+1/An}n=1 as him (cf. [7], p. 750, (11) and (11)'). On the other hand, Jukes con-
siders more generally p > 0.
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2. TWO GENERAL THEOREMS OF 1. J. MADDOX

2.1. We denote the set of all natural numbers by N. For an infinite matrix B =

0
= (by), ke N, neN, and a series Y, a, we write
k=1

Bn(a) = Z bay
k=1

A(bnk) = bnk - bn,k+1
for all ke N, neN.

We shall use these general theorems of 1. J. Maddox [8] to our purposes:

Theorem 1. B,(a), C,(a) exist for each n € N and there is a constant M such that
lim sup |B,(a) — C,(a)| £ M4,
n— o
whenever A; < oo if and only if
(by lim (b,,k — ¢y) = 0 for each keN,

© 3 A“(
ﬂlbnk_

(d) D =limsup z
nvw e

If (b), (c) and (d) hold we may take M, = D and this constant D is then the best
possible.

bul + |cw]) < o0 for each neN,

Cu] < 0.

Theorem 2. B,(a), C,(a) exist for each n € N and there is a constant M, such that
11m ) sup |B.(a) — C,(a)| £ M, 4,

whenever A, < oo if and only if
() lim (|by| + |cu|) = O for each neN,
(b) klrr: (b — cw) = 0 for each keN,
0 3 (2
= Ak, Ak
(d) D = limsup Zlk' <¥>
k

n-ow k

>< o for each neN,

< 0. .

If (a)—(d) hold we may take M, = D and this constant is then the best possible.
The words “this constant D is the best possible” have the exact meaning “there

exists a series y a, such that A; = 1 (or 4, = 1) and lim sup ‘B,,(a) - C,(a)| = D
k=1 oo

in these theorems.
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2.2. For the application of Theorems 1 and 2 to the (D, ) summability we need
to choose matrices B, C in this way:

(1) by=1 for k<n, by=0 for k>n,
e = exp (—At,) foreachn, keN.

In the third section we establish (imposing only a small restriction on the sequence
{An|An+1}2-1) that the exigtence of Tauberian constants under the conditions 4, < oo,
A, < o and AP < o, p = 1, is equivalent to a quite simple condition.

Firstly, we shall verify the conditions of Theorems 1 and 2 whose validity does
not depend upon the choice of sequences {1,};= and {,}:% ;.

Lemma 1. Matrices B, C defined by (1) satisfy the conditions (b)',(c)’ of Theorem
1 and (a), (b), (c) of Theorem 2 for arbitrary sequences {A,}x=y and {t,} ;.

Proof. We have for each ke N
lim (b, — cy) = lim (1 — exp (—/4t,)) =0

n—ao

so that the conditions (b) and (b)’ are fulfilled. As to the condition (c)’, we evaluate

for ne N
Z }i:ilk_l(lbn,J + an)=zlk_/1k-l +Zlk"_lk

K=1 k K=t Ay K=1

“Lexp (—Aty) -
The sum Y (4, — A—1)/4 is clearly finite for each n € N. Moreover,
k=1

AT At o (2 ) = 3 Cate — Aaty) SRR o0y
K=1 Ak k=2 kln
is finite, too, because the sum on the righthand side is the lower integral sum belonging
to the division '@ = {llt,, < At < ...} of the interval {1,t,, +0) and to the func-
tion e *x~'. The integral [;° e”*x~ ' dx converges for arbitrary ¢ > 0.

Let n be an arbitrary natural number. For k > n we have Ib,,k| + |c,,k| =
= exp (—X,) and lim (|b,| + |cu) = O, hence the condition (a) holds. It is easy

k=

to verify the condition (c) because

AL b + |4 (&) =
k=1 Ay D
n—1 ©
= Z’lk<i_ 1 )+1+z)~k exp( lkt")_.exp( lk+1tn) =
& k=t = A+ 1
2 e — e

=z":lk_lk—l+z

k=1 A k=1 X

Ck

~Lexp (—Aty)

which is finite for each n € N as we have proved already. This completes the proof.
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Now, we shall consider the conditions (d) and (d)’. We estimate the sums in these
conditions from above by integrals similarly as in the verification of the condition
(c) in the proof of Lemma 1. To obtain a necessary and sufficient condition for the
existence of a finite Tauberian constant we need to restrict ourselves to those sequences
of exponents {1,}:>; which satisfy at least one of the conditions of the next conven-
tion. For the sake of brevity we shall denote A, = A,/ 1.

Convention. In the next application of Theorems 1 and 2 to the (D, 1) summability
we shall suppose that the sequence of exponents {4,}:2, fulfils at least one of these
conditions:

L liminf A, > 0 (cf. [7], p. 750, (11), (11)),

II. limsup 4, <1,
II. if liminfA4, = 0 and limsup 4, = 1, then there exist ¢ <1 and KeN

such that in every group {A,, A,iq, ..., A,4x—1} We can find at least one
element 4, =< gq.

3. THEOREMS OF HADWIGER-WINTNER TYPE FOR THE (D, 2)
SUMMABILITY

3.1. In this part of the present paper we shall formulate condition (x) (cf. Theorem
3) and we shall show successively that this condition is necessary and sufficient for
the existence of finite Tauberian constants M, M,, M, p = 1 (cf. Theorems

3,4,5).

Theorem 3. A constant M, such that the inequality
lim sup s, — f(t,)] < M4,
n—> o 0
holds for every series of complex numbers Y, a, for which A; < oo, exists if and
only if k=1
() there is k 2 0 such that liminf 4,4, > 0 and

there is k' < 0 such that lim sup A4 t, < 0©

n— oo

at the same time. If the condition (%) holds, we may take
n — © A’ —_
M, =limsup( ¥ b = Fet (1 —exp(—At) + Y "—l'ﬂexp (= Aatn)
n—oo k=1 lk k=n+1 '{k
and this constant is then the best possible in the sense that there exists a series

Y. aysuch that A, = 1 and lim sup |s, — f(t,)| = M;.

k=1 n—o
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If matrices B, C are defined by (1) then the proof of Theorem 3 from Theorem 1
(with regard to Lemma 1) requires only to verify that the condition (d)’ is satisfied
if and only if the condition () is. Consequently, we want to prove that the condition
(*) is equivalent to

(2) limsup (g = M (1 — exp (= Auty)) + Z —#exp (—lkt,.)) <.

n— o A k
We divide the whole proof of Theorem 3 in two parts.
Proof of Theorem 3 (sufficiency part). Let the condition (x) hold. Then there
exist ny € N and constants L, M such that n, + k'’ = 1 and foreachn = n,,0 < L <
< Apsitns Ansrts < M < o0. Let us take such n = n,. Then

"Ai_li— & }'i_'_li—
Ay(n) =.~;1_“T_1 (1 —exp (=4,) + Z -—[*‘“ICXP (—4it) =

i i

ntk —_ n , — .
z M= Rt () exp (= auty) ) 4= Ao (1 exp (= auty)) +
i= A; =ntk'+1 A;
n+k /1 0 A —
+ Y =—"lexp(—4it,) + S Tilexp (—Ady) £

i=n+1 , i=n+k+1 i

ln+k"n ©
§J (1—e"")x'1dx—k’+k+f e *x ldx £

o An+ktn

'M ]
gj (1-—e®)x"tdx + (k— k) +f e *x 'dx.
0 L

v
(Of course, we set Y a, = 0if k' < k.)
i=k

Thus lim sup 4,(n) < [§f (1 —e ™) x7'dx + (k — k') + [ e”*x " "dx < c0. So

(2) holds and the condition (d)’ is satisfied. According to Theorem 1 the constant
M, = lim sup 4,(n) is the best possible.

n— oo

We prove one lemma before the necessity part of the proof.

Lemma 2. Let liminfA,4xt, =0 hold for each k=0 (limsup A, ity = ©

n—oo n—o

for each k' £ 0, respectively). Then there exists an increasing sequence of natural
numbers {n;}{> such that

(3) lim A, 4t,, = 0 for each k=0
4 (lim Ap,+4:ts, = ©  for each k' £0,
respectively).
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/

Proof. Firstly, letlim inf A, ¢, = 0 hold for each k = 0. Let us consider increasing
sequences no e

S {(nP}e, o ...
which are defined in this way:

ne{n®} < t, <%,

ne{ni™} < dyymty < m——t

-]
Every sequence {n{™}, m =0, 1, ..., is, of course, infinite. Evidently () {n{™} is
m=0

empty. That is why there surely exists an increasing sequence of natural numbers
{ji}1, lim j; = oo such that {n{?} \ {n*V} % 0. Let {n;}7=, be a sequence of
i» o0

natural numbers such that n; e {nf?} \ {n{/**V}.
Let us choose from it an increasing sequence and call it again {n;}{2;. Then
lim 2,,44t,, = 0 for each k = 0. Indeed, for each k = 0 and for each & > 0 there

i=
exists me N such that m = k and (m + 2)™! <'e. Further, there exists ipeN
such that n; € {n{™} for all i 2 i,. It means that

'1n.~+ktni -S— A’ng+mtm <

<e
m+ 2
for all i Z i,. Therefore the relation (3) holds.
Now let lim sup 4,41, = o hold for each k' < 0. It is again possible to choose

n— o

an increasing sequence of natural numbers {n;};>; such that the condition (4) is
satisfied. It is enough to define

ne{n®} < At,>1,

ne{n™} <A _nt,>m+1,

and to choose a sequence {n;};~, exactly in the same way as in the previous part of
i y p p

this proof.

Remark 1. (See [6], p. 121.) Let —1 < L < 0 and let {u;};>, be a sequence of
real numbers such that L < u;, < 0 for each k e N. Further, let {k,};>, and {k;};,
be any sequences of natural numbers such that k, < k, for each n e N. Let us put

K'n K'n
So= 2 U, Po=11(1+u).
k=kn k=kn
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o

Then the sequence {s,};>; is bounded if and only if there exists K; > 0 such that
P» = K, for each ne N.

Proof of Theorem 3 (necessity part). Let us assume that the condition () is not
satisfied. It means that the assumptions of Lemma 2 are satisfied. Thus either (3) or
(4) holds. Firstly, let (3) hold. To each i € N we find I(i) € N such that

(5) Aniwriy—1ta; S 1 < Apysigiyt; -

We have lim I(i) = co. Namely, if we choose K € N then according to (3) there
exists io € N such that A, .xt,, < 1 for all i = iy and hence I(i) 2 K + 1 for all
i = iy For i = 1 let us consider the sum
neHl() 4 g
Si= Y ).,2—/1,_1 exp (—A;t,) .

Jj=ni+1 j
By (5) we obtain for i = 1

ni+1(i)

(6) Size' ¥ , (1= A;21) + (1 = Apsigiy-1) (X (= A waiptn) — €71 Z

Jj=ni+
nl(i)

ze ' Y (1—4;,)-1.

j=ni+1

Now if the alternative I holds there exists 6 > 0 such that for each n = 2 we have
A,y >dand so —1+5< 4, —1<0. If we use Remark 1, putting u, =
=A,oq — Lky=n;+ 1, ki =n; + I(i), n = 2, i = 1, we obtain that the sequence

nrii(i) 1—11._1 ©
j=mi+1 A; ])i=t

is bounded if and only if there exists K; > 0 such that

ni+1(i)
R TS
Jj=ni+1 AJ Anﬁ'l(i)

for each i e N. But according to (3) and (5) we have

ni 'lngtm

0 < lim sup = lim sup <limsup ,t,, =0.
i Ayt im0 Ayyicta i~ oo

This relation implies that such a constant K; > 0 does not exist and by Remark 1

ni+1(i)

(7 limsup Y (1 —A4;_4)=c.

i»o j=n;j+1
It follows from (6) and (7) that limsup S; = oo and, because 4,(n;) = S;, also

lim sup A,(n;) = lim sup 4,(n) = oo.

n—>o 1=+
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If the alternative II holds, then there exist 0 < g < 1 and j, € N such that 1 —
— Aj_y > 1 — g for all j = j,. Then, we have with regard to (6) S; = e~ * I(i).
.(1 — q) — 1forieN withn; + 1 = j, and so

lim sup A,(n) = lim sup 4,(n;) = limsup S; = o
n—o i= o i— o
for lim I(i) = oo.
i—o0

If the alternative III holds and m € N is arbitrary, then according to (6) S; =
= e (1 — q)m — 1 for i e N with I(i) = Km. Consequently, lim sup 4,(n;) = o
again and lim sup 4,(n) = oo as well. iz e

n—o

Now, let the condition (4) be satisfied. For each i € N we find I(i) < 0, the integer

such that (5) holds. We have lim I(i) = — o again. Further
i—o0

' ¢ AT A PN
®) si= Y T -ep(-An)z-e) ¥ (1-4,0).

J=ni+ (D) A; j=nit 1(i)

We can deduce lim sup S} = oo from (8) identically as we have deduced lim sup S; =
i~ i~

= oo from (6) in the previous part of this proof, if at least one of the conditions I, II,

III holds. In view of the fact that A4,(n;) = Sj, we obtain lim sup 4,(n) = oo.

Theorem 3 is proved. ' noe

Corollary 1. Let liminf A, > O (i.e. the alternative I holds). Then a finite Tau-
n-o
berian constant for the (D, ) summability under the condition A; < o belonging

to a sequence {t,}; exists if and only if
) 0 < liminf A,t, < lim sup A,t, < o .
n-»o0 n—*o

(Cf. [2], p. 227, Theorem 7.1.)

Proof. Sufficiency of (9) follows directly from Theorem 3. On the contrary, if
there exists a finite Tauberian constant for the (D, /1) summability under the con-
dition A4; < oo belonging to a sequence {,},% 4, then aceording to Theorem 3 there

exist k = 0 and k' £ 0 such that

(10) liminf A,,,t, > 0,

(11) ]i"m :up Apsrty < 0.

Since lim inf A4, > 0, there exists K > 0 such that 4, = K for all n € N. Further
we have"-'w

(12) Amiits = ATlicg eeee A7 A, S K754t ,

(13) Anirty = Apir 0eee. A1ty Z K_k,/lntn >
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where (13) holds for all n > —k’. The relations (10) and (12) imply lim inf 4,¢, > 0,
(11) and (13) yield lim sup 4,t, < 0. This completes the proof. ne

Remark 2. The condition (*) can be formulated in the symmetrical form: there
exists k = 0 such that lim inf 4,4, > 0 and lim sup A4, _;t, < oo.

n—o n=»o

Remark 3. According to the first part of the proof of Theorem 3 the condition (x)
is sufficient for the existence of a finite Tauberian constant for the (D, 4) sum-
mability under the condition 4; < oo, belonging to a sequence {t,};; for any se-
quence of exponents {4,}:>,. We mention an example showing that the condition (x)
is not necessary if the sequence {}»,,},‘,”:1 satisfies none of the conditions I, II, IIL.

Define {A,};21, {tn}nry as follows:

| -
,1,,:6,61,63,...,65,7,...,k!, T I Bk ST I
6 6 6 k!
1 1 1 1 1 1
A A+ 1 4+ 2] A 5T A 3 T (k)
1 1 1

k+ ) +1" T+ )+ k=17 (k+ 1)+ K

Then A, <1 and thus Y (1 — Ae_q) (1 —exp (—At,)) £ fo (1 —e ) x™ ! dx.
k=1

If we denote by {n;}?% 5 the sequence of those natural numbers for which 4, = il,
t,, = 1/(i + 1)!, we have lim A, +4ts, = O for each k = 0. It means that the condition
i+

() is not satisfied. Take any neN. Let 4, = k! + ifk!, 0 < i < k!. Then t, =
=1/((k + 1)! + i). Only the NUMbELS Aty Ay 1ty --or Anlus --o» Aplyy Where A, =
=(k + 1), A, =(k + 1)! + 1, can lie in the interval <0, 1). Really, 4,.t, =
= (k + 2)!/((k + 1)! + i) = k + 1. Since ‘

!
Im—y _ K41 <2 and 11_,,_=(k+1).+1§_2
A k! + ifk! A (k + 1)
for each keN, i =0, 1, ..., k!, we have
) m—1 —_ 3.
T AT Aot g (—at) = ¥ 4= Mt oxp (= 2,t) +
j=n+1 ; j=n+1 y
p —
+ AL@ exp (—Amtn) —+ Z l-i—lj—l exp (—A'jtn) +
}'m j=m+1 lj
g }. — l Am=1tn Aptn
+ Y '—j——xj‘—lexp(/ljt,,)§J‘ e""x‘ldx+1+J. e *x ldx + 1+
j=p+1 4 Intn Amtn



© 22Antn 2 Amtn
+f e"‘x‘ldx_s_'[ e *x 1dx + 1 +f e *x ldx +1 +

Ap+1tn Antn Amtn

0 2a 2b )
+f e *x 1dx §f x’ldx+2+.[ x~1dx +J e *x l1dx =2+ 2log2 +

1 b 1

@
+ f e *x 1dx.

1

a

Therefore A;(n) < 2 + 2log2 + f§ (1 — e *)x~'dx + [{ e *x~ ! dx. Thisimplies
lim sup A,(n) < oo and so there exists a finite Tauberian constant for the (D, ) sum-

n—o
mability under the condition 4; < oo, belonging to the sequence {t,};;. The se-

quence of exponents {4,},%, does not satisfy anyone of the conditions I, II, III.

3.2. In the rest of this paper we shall again suppose that at least one of the condi-
tions I, II, III is satisfied.

Theorem 4. A constant M, such that the inequality
lim sup s, — f(t)] < M, A4,

e

holds for every series of complex numbers Y. a, for which A, < oo, exists if and
k=1

only if the condition () is satisfied. If the condition (*) holds, we may put

Mz—hmsup<zl"——/1kl(1 exp (— ik’))‘*‘ Z e

n—w  \k=1 Ak k

Lexp (= Aty) +

22,
+

n+1

€Xp (_ j’n+ Itn)>

and this constant is then the best possible in the sense that there exists a series
o0

Y a, such that A, = 1 and lim sup Is,, —f(t,,)l =M,.

k=1 n— oo

Proof. With regard to Lemma 1, the proof of Theorem 4 requires only to verify
that the condition (d) of Theorem 2 is satisfied if and only if the condition (*) holds.
By definition of the matrices B and C we have for each n e N
4 <b,,k - c,,k) 1 —exp(=At,) 1 —exp(— lkﬂt)
A

ZA"‘ P

Ax(n) iif"

)'k'i'l
Y 1 —exp(=uts)  —exp(—Ausily) S ol exp (= Atn)
}.” ).,,.*.1 k=n+1 ;Lk
— A
Z E21 (1 — exp (—Aut)) + —= exp (—Ays1ty) +
A1 k=1 n+1
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i A = hi—1

k=n+1 k

exp (=At,) = Ai(n) + 24, exp (— A4 1t,) -

Since we know by Theorem 3 that

(14) lim sup A,(n) < oo <> () holds

n— oo

"and moreover 0 < 24, exp (—A,+1t,) < 2, the equality 4,(n) = A,(n) + 24, exp.
. (= Ap+1t,), n € N, yields that lim sup 4,(n) < oo if and only if lim sup 4,(n) < co.

n—>w n— o

The assertion of this theorem follows now from (14).
3.3. We turn to the condition 4%’ < oo, p = 1. We shall need the next lemma.

Lemma 3. (R. P. Agnew, [1]). Let (a,,), n 2 1, k 2 1, be an in ﬁmte matrix of

complex numbers Let lim a,;, = 0 for each ke N and lim supz |a,,k‘ =C < .
Then n— o0 n»o k=1

lim sup | Z a"kskl C lim sup [s]

n— o0
for every sequence of complex numbers {Sk}k 1 such that llm sup lsk| < 00. More-
over, there exists a sequence {s,};-, withlim sup |s| = 1 and 11m 1 sup | Z aus| = C.
k=

We present this lemma without a proof. It is used in proofs of Theorems 1 and 2
and we shall use it in the proof of the next theorem.

Remark 4. It is possible to improve slightly the assertions of Theorems 3 and 4
(compare the proof of our Lemma 3 in [1]) in this sense: If M1 = lim sup 4,(n) = o

n—o
or M, =limsup A4,(n) = oo then there exists a series Zak such that 4; = 1 or
n—oo

K=1
A, = 1, respectively, and lim sup ls,, - f(t,,)l = 00. We shall use this fact essentially
n—oo

in the proof of the next theorem.

Theorem 5. Let p = 1. A constant M such that the inequality
lim sup |s, — f(t,)| = MAY

@

holds for every series of complex numbers Y. a, with AP < oo exists if and only
k=1

if the condition (x) holds.

Proof. Let the condition (*) hold and let 4Y’ < co. We denote

“”—<— L > , neN, ¢ =0.

! I K51 (g = Ay g)P 1
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Then for any ne N,
‘s,, —f(t,,)‘ §kgllak| (1 — exp (—Aty)) +k=z+1|ak[ exp (—Aty) =

_ Zlklakl 1 — exp (=Xt,) AT exp (—A4t,) _
k=1 " k=n+1 Ak

= 1 — exp (—At, ad exp (—Axt,
=kz,l()~kq;cl) - j-k—1‘1§c1—)1)*‘—h*—‘*‘p( 5 ) + Z 1(}%‘1&1) - lk—lql(cl—-)l —p( * ) =

Ak k=n+ )'k
="i1q§‘1)/1k 1 —exp (_)’ktn) _ 1 — exp (—lkntn) +
k=1 A At
+ qs.l)}“n 1 - eXp(—/l,,t,,) _ CXp(-—ln+1t,,) +
A An+1
+ i g, (exp (= Aita) _ CXP(‘/Ikﬂtn)) <
k=n+1 j’k )'k+1
éniqu‘“lkﬁ 1 — exp (—Xt,) sy 1 — exp (—Aut,) + exp (—Aps1ty) N
k=1 k ln An+1
+ Z qil)lkA (exp ("Mh)) =v,.
k=n+1 Ak
Since the condition () holds, we have M, = lim sup 4,(n) < oo according to Theo-
rem 4, where n=eo
n—1 _ _ _ _ _ _
Az(n) = Z}% A4 M + A, 1 exp( Antn) _ exp( )“n+1tn) n
. k=1 )’k n }’n+1
+ {Z 2| a (P (=t .
k=n+1 Ak

It is easy to deduce from Holder’s inequality that AP’ < A¢” for 1 £ p £ p'. As
AP < oo, we have A4S = lim sup ¢{” < oo as well, and so we can use Lemma 3
on v,. We obtain noe

lim sup s, — f(t,)| £ MA5? £ M,AP .
n—oo

Consequently, there exists a finite Tauberian constant M for the (D, ) summability
under the condition A’ < o, belonging to a sequence {t,};-;. Indeed, we may
take M = M,. (This constant, of course, need not be the best possible.)

Suppose the condition (*) does not hold. Then we find a series of complex numbers
a such that 49’ = 1 and lim sup |s,, - f(t,,)l = 0. Firstly, by Theorem 3

1 n— o

M8
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(15) lim sup Zu‘;l |bu — cu| =

n-o k=1 A’k

where matrices B, C are defined by (1). Define a series ). g, such that
K=1

(16) la] = E:TL keN. and
k

lim%sup lB,,(a) — C,(a)| = lim sup |k§1ak(b"k —cw)| = .

This is possible by (15) (see the proof of Lemma 3). Then 4, = 1 for this series. Let
us consider AY. Evidently by (16)

=G E e lm) =G

and thus AP’ = 1. It means we have found such a series as required. It follows
from the existence of such a series that there exists no finite Tauberian constant
for the (D, 1) summability under the condition 4 < oo, belonging to a sequence
{t } > 1- We have proved necessity of the condition (*) This completes the proof.

34. Let {A,};21, {t.}os be sequences of real positive numbers such that the
condition (x) holds. We define MY = inf {M, lim sup |s, — f(t,)| £ MAY for
o] n— o

every series 3 a, such that AP < oo} for p = 1. It is clear that M is the least
k=1

Tauberian constant for the (D, ,1) summability under the condition 4 < oo,
belonging to a sequence {t,};2;. We have inequalities corresponding to M,, M,
and M{:

Proposition 1. We have, for 1 < p < p/,
M; M’ < MP < M,.
Proof. We have
(17) A, S AP < AP < 4,

for any series of complex numbers . a, and for 1 < p < p’ (cf. [7], p. 749, (9)).
k=1

0
By Theorem 3 there exists a series ). a; such that A; = 1 and lim sup ls,, - f(t,,)l =
k=1 n-ow

= M. Then (17) implies AY” < 1, p’ > 1, for this series. According to Theorem 5,
f(t,)] £ M$?A$" holds. Then clearly M; < M$AY” < M$". For

the proof of the second inequality take an arbitrary & > 0. Since M) =
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= sup {lim sup |s, — f(t,)|, A¥" = 1}, there exists a series Z a; such that A¢" = 1.
n— oo =1

and MY —¢ < hm sup S, = MPAP < MP for 1<p<yp by (17).
=Sp<p by

It follows that M{’ 3 < M(”) 1 £ p < p'. The last inequality is clear by the proof of
Theorem 5. This completes the proof.

Remark 5. Theorems 3 and 4 guarantee existence of a series ) a, with 4; = 1
k=1
or 4, =1 and lim sup |s, — f(t,)| = M, or lim sup |s. —f(t,,)l = M,, respectively.
n—w Land

It is not clear if the constant M{, p = 1, defined before Proposition 1 is the best
possible in this sense. Only some particular results are known, e.g.: if p = 1, the
condition (x) holds and 4, t, = log 2 for each n € N, then

lim sup |s, — f(t,)] £ M AP

@
for every series Y. a, such that AP’ < 0. Moreover, My = M, and there exists
© k=1
aseries Y. a; such that 49’ = 1 and lim sup ]s,, - f(t,,)| = M,.
k=1 n— o
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