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We study possible coreflective values on some very simple metrizable zero-
dimensional topologically discrete uniform spaces. The results are applied to the
study of a nice class of H(w) — a spaces and to some problems concerning the
existence of the largest coreflective subclass contained in a given class. Such classes
are useful in the theory of uniform measures.

1. Introduction. We shall work in the category U of separated uniform spaces
with uniformly continuous mappings. Under the symbol U(X, Y) we shall understand
the set of all uniformly continuous mappings with a domain X and ranging in Y.
If € is a full coreflective subcategory of U with F the corresponding coreflector, we
shall often say shortly that (%, F) is a coreflection. Throughout the paper the symbols
d, d, t;, a will denote the uniformly discrete, proximally discrete, topologically fine
and Alexandrov coreflections, respectively. The first three are well known (cf. e.g.
[8]), the last is described by the property that each bounded coz-function is uniformly
continuous (see [3]).

Assume that X is a uniform space, F any coreflector in U; under the symbol X — F
we shall understand the class of all spaces Y such that each f e U(Y, X) remains uni-
formly continuous into FX. It can be easily proved ([13]) that X — F again forms
a coreflective class in U and if X is an injective uniform space, X — F is even heredi-
tary. (Recall that X is called injective if uniformly continuous mappings ranging
in X extend to uniformly continuous ones from arbitrary subspaces.) Finally, we
note that if  is a coreflective subclass of U, the class sub (%) of all subspaces of spaces
from € is again coreflective ([13]).

2. Coreflections on D,. The main tool in the paper is the examination of the
following spaces:

2.1. Definition. Let {k,} be a sequence of natural numbers. We define the space
D({k,}) as follows: The underlying set is {{n,iy; neN, 1 £i < k,} and the family
{#,; n € N}, where
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U, = {{<k, i} k< n} o {Kkiy; i S k) k> n),

forms a basis of covers for the uniformity of D({k,}). If k, = 2 for all n we shall
denote the space by D, and if k, = n for all n we shall denote the corresponding
space by Dy.

It is easily seen that the spaces D({k,}) are complete, metrizable, zerodimensional,
topologically discrete uniform spaces.

2.2. Proposition. Let (%, F) be a coreflection in U, D({k,})¢ %, then FD({k,})
has a discrete proximity. (All pairs of disjoint subsets are proximally far.)

Proof. One can easily observe that it suffices to prove the statement for the
space Dy. We shall identify every natural number with the set of all natural numbers
that do not exceed it. Therefore {n} x n will mean the n** column in Dy.

Suppose Dy = A U B with A n B = 0. Let us denote by N, the set of all ne N
such that the column {n} x n intersects both A and B. If N, is finite, then 4, B are
far in Dy, hence also in FDy. If N, is infinite, we choose points a,€ A n {n} x n,
b,e B {n} x nforallneN,.

a) First we show that the sets A4, = {a,; neN,}, B, = {b,;neN,} are far
in FDy. As Dy is metrizable, there is no strictly finer uniformity with the same
proximity (metrizable spaces are even proximally fine, see [1]). Therefore FDy
has a strictly finer proximity than Dy, hence we can find N, < N infinite and ¢,,, d,, €
e {m} x m for all m e N, such that the sets C = {c,; me N,}, D = {d,; meN,}
are far in FDy. Now we define for n € N;:

¢(n) =min {meN,; m = n},
h(an) = Co@) » h(bn) = d¢(") >

h(<n, iy) € {p(n)} x ¢(n) is defined arbitrarily for <{n, i) * a,, b,, only we need it
to be one-to-one on each {n} x n, neN;. Finally, for ne€N; we put h(<{n, i) =
= {n, iy. Obviously the mapping h is uniformly continuous from Dy into Dj.
hence h : FDy — FDy is uniformly continuous and maps 4, into C, B, into D,
these being far in FDy, hence 4, B; are far in FDy as well.

b) From the result in a) we easily check that 4, B are far in FDy. We define
g : Dy = Dy as follows:

{n,iy for neN,,
9((n, 1)) = <a, for neN, and {(n,ided,
b, for neN; and <n,i)eB;

g € U(Dy, Dy), hence g € U(FDy, FDy), g(A) and g(B) are far in FDy, hence also
A, B are far in FDy.
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2.3. Corollary. Let {k,,} be any sequence of natural numbers, F a coreflector
in U. Then either FD({k,)} = D({k,}) or FD({k,}) is finer than 8D({k,}). (Observe
that the latter is uniformly discrete if {k,} is bounded.)

2.4. Corollary. The following properties of a uniform space X are equivalent:
(1) X is D({k,}) — & for all sequences {k,},
(2) X is D({k,}) — d for all bounded sequences {k,},
(3) X is Dy — 4,
(4) X is D, — d.

Moreover, the coreflective class described here is the largest coreflective class not
containing D, (or others).

2.5. Proposition. Every metrizable space is in the coreflective hull of the space D,
in U.

The proof is immediate from the following observation (see [1]): If M, S are
metrizable uniform spaces and f : M — S is not uniformly continuous, then there is
g € U(D,, M) such that fg is not uniformly continuous.

2.6. Corollary. If (¢, F) is a coreflection in U, ‘then either € is contained in
D, — d or ¥ contains all metrizable spaces.

3. Spaces H(w) — a. Corollaries 2.4 and 2.6 give a condition of extremality of
the coreflective class D, — d. Now we turn to the study of spaces which are here-
ditarily in D, — d. We will show that this class is again coreflective, has some nice
extremal properties and has an interesting description in terms of summability of
functions, uniform continuity of algebraic products of functions and others.

Recall that the hedgehog H(A) over a set A is the cone over a uniformly discrete
space A, that is, the set of all {a, x>, ae 4, 0 = x < 1, where <{a, 0) = <{b, 0) for
all a,be A, metrized by the metric d(<a, x),<a, y)) = |x — y| and d(<a, x).
{b, yy) = x + y for a % b. H(A) is an inejctive uniform space (see [11]). Uniform
spaces projectively generated by mappings into hedgehogs are the so called distally
coarse spaces, that is, those X for which any distally continuous map (i.e. such
maps that the preimages of uniformly discrete families are gain uniformly discretc)
ranging in X is uniformly continuous. For details and proofs we refer to [4].

The following theorem seems to be of the main importance. The symbols I, R, ®
will stand respectively for a compact interval, the real line and a countable uniformly
discrete space. '

3.1. Theorem. The following properties of a uniform space X are equivalent:

(1) X is hereditarily D({k,}) — d for each bounded sequence {k,},
(2) X is hereditarily Dy — 6,
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(3) X is hereditarily D, — d,
(4) each countable uniformly discrete union of boundedly finite uniformly discrete
families is a uniformly discrete family,
(5) X is hereditarily (I x o) — a,
(6) X is hereditarily R — a,
(7) X is Hw) — a,
(8) if f,e U(X,I) is a countable family such that {coz f,}, is a uniformly discrete
family, then the function y_f, is uniformly continuous,
(9) X is hereditarily R* — a,
(10) for any subspace Y of X and any two functions f, g € U(Y, R), their (algebraic)
product f . g is uniformly continuous whenever f . g is bounded,
(11) for any subspace Y of X, f, g € U(Y, R) with g bounded and f . g bounded, the
function f . g is uniformly continuous.

Proof. The equivalence of (1)—(3) follows immediately from 2.4.

(1) = (4): Take {4,}, a uniformly discrete countable family and let 4, =
=U{B,; i =12, ..., k,} with {k,} bounded and {B, }; uniformly discrete. The
mapping g(x) = <n, iy for x € B,, is uniformly continuous from (J4, (as a sub-
space of X) into D({k,}). (1) implies that g remains uniformly continuous into
dD({k,}), hence the family {B, };, is uniformly discrete.

(4) = (5): I x w is metrizable, so each open subset is a cozero set, hence
a(I x w) =inf(I x o, pt(I x w)), where p stands for the precompact reflector
and the infimum is taken in the usual order “finer than”. Therefore the uniformly
discrete families in a(I x w) are just the I x w-uniformly discrete unions of
boundedly finite uniformly discrete families in I x w. Moreover, a(I x ), being
the infimum of two distally coarse spaces, is distally coarse (in view of the reflectivity
of the class of all distally coarse spaces). Therefore if X fulfils (4) then each fe
e U(X, I x o) is distally continuous into a(I x ), hence fe U(X, a(I x w)). The
rest follows from the evident heredity of the property (4).

(5) = (6): Take a subspace Y of X, fe U(Y, R). The cover {V, W}, where
V. =U{[n - % n+ 1]; nisan odd integer} ,
W=U {[n — 1, n + 1]; nis an even integer} ,
is a uniform cover of R. For any cover % uniform on aR the covers f (%) |f‘ (v),
7N %) | £~ (W) are uniform, {f ~*(V), f~*(W)} is uniform as well, hence the cover
f~'(%) is uniform on Y.
(6) = (3): R — a is a coreflective property, D, ¢ R — a, hence by 2.4 R — a
is contained in D, — d.

(5) = (7): Suppose f: X — H(w) is uniformly continuous. Take any finite open
cover % of H(co) 9 can be refined by a uniform cover ¥~ of the form {(n, x>
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x < &} U ¥y, where ¥ is a finite open cover of the space B = {<(n, x); 3¢ < x < 1}
as a subspace of H(w). If we denote the subspace f ~'[ B] of X by Y, then the mapping
fi=1f | Y is uniformly continuous into B, the latter being uniformly homeomorphic
toI x w, hence f, € U(Y, aB), and hence the cover

SO o {2 x < 6]}
is a uniform cover of X refining f ~*(%).

(7) = (3): D, ¢ H(w) — a and the same argument as in (6) = (3) applies.

(4) = (8): Take a countable family f, € U(X, I) with the family {coz f,}, uniformly
discrete. We shall prove that the function f = Y. f, is proximally continuous. Take
any two far subsets 4, B of I. We may and shall suppose that 0 ¢ A U B. For each n
the sets f, '[A4], £, *[B] are far in X and, moreover, they are both contained in coz f,.
Applying (4) we conclude that the family

{f7'[A]; new} U {f,'[B]; new}

is uniformly discrete in X and hence f[4] = U £, '[4] and f~'[B] = U f, '[B]
are far in X. Therefore f is proximally continuous into I, hence it is uniformly con-
tinuous.

(8) = (9): First we observe that the property (8) is closed under uniform sums,
quotients and subspaces (it is a direct veriﬁcation).' So (8) describes a hereditary
coreflection in U. For a while we shall denote the corresponding coreflector by F.
The only thing we must prove is that FR? is finer than aR?.

a) First we prove that F(I> x o) is finer than a(I*> x w). Take a finite open cover
P = {P}i_, of I’ x . Taking the standard k-element open cover % of I, then for
each n we can easily find functions p,, q, : 1> x {n} — I uniformly continuous and
such that the cover p,™ (%) A q,”'(%) refines 2 |I* x {n} for each n. Now we
define

_ {pi(x) for xelI* x {n},
po(x) = {0 otherwise , }

_ fau(x) for xeI* x {n},
qu(x) - {0 otherwise .

The sequences {p,}, {g,} both fulfil the hypothesis of (8), hence p = Y'p,. ¢ = Y 4,
are elements of U(F(I* x w),I) and of course p~ (%) A q~*(%) refines 2, which
gives that F(I* x w)is finer than a(I* x w).

b) In the second step we prove that F(I x R) is finer than a(I x R). We take
V ={I x [n—1%, n+ 1]; nan odd integer} ,
W={I x [n — %, n+ 1]; n an even integer} .
{V, W} is a uniform cover of I x R and both ¥, W are isomorphic to I> x w. If 2

is any finite open cover of I x R, then in virtue of a) and the heredity of F, both
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P | V,? ‘ W are uniform covers for the uniformity inherited from F (I X R), hence 2
is uniform on F(I x R).

¢) Now we show that F(I x R x w) is finer that a(I X R x w). We again take
a finite open cover 2 = {P,}%_; of I x R x w and go on in a similar way as in the
proof of a) showing that £ is uniform on F(I x R x o).

d) Similar arguments as in b) show again in virtue of ¢) that FR? is finer than aR?
and the proof is complete.

(9) = (10): If f, g € U(Y, R), then the cartesian product f x g defined by
(f x 9)(x) = {fx, gx) is an element of U(Y, R?). Using (9) we have that f x g€
€ U(Y, aR?). Take p:R*> - R defined by p(x,y) = x.y. Then p is continuous,
hence uniformly continuous on ¢,R?. By assumption there is a positive real K such
that |(f.g)(x)| £ K for all xeX, hence for S = p~*([—K,K]), py = p|S the
following assertions hold:

a) aS is a subspace of aR?, because S is closed in R?,

b) f x g ranges in S, hence f x g € U(Y, aS),

c) p, ranges in a compact interval, hence p, € U(aS, R).

6 99

Therefore f.g = py o (f x g) is uniformly continuous. (Here o’ stands for the
composition of mappings and ““.”” for the algebraic product.)

(10) = (11) is evident.

(11) = (3): One can immediately see that D, does not fulfil the condition (11),
so it suffices to prove that (11) is a coreflective property (this is routine by verifying
the closedness under sums and quotients) and to use 2.4.

3.2. Corollary. The class H(w) — a described in Theorem 3.1 is the largest
hereditary coreflective subclass in U not containing D, and the largest coreflective
subclass in U not containing H(w). The proof follows from 2.4, 2.5 and the injec-
tivity of H(w).

Taking into account 2.5 we obtain that if a hereditary coreflective subclass %
of U is not contained in H(w) — a, then ¥ contains sub (co (.#)), where co (.#)
stands for the coreflective hull of metric spaces in U. HUSEK and RICE have proved
recently that assuming the nonexistence of uniformly sequential cardinals (7u) the
class co (.#) is productive (see [7]), hence sub (co (.#)) = U. So under this set
theoretical assumption we have the following surprising result:

3.3. Corollary. ([Au]). There exists a largest nontrivial hereditary coreflective
subclass of U, namely the class H(w) — a.

4. Coreflections on Dy. Given a coreflection ((g, F) in U, then Dy € % if and only
if D, € 4. One can observe this easy fact taking into account that D, is a retract
of Dy and using 2.5 to prove the converse. Moreover, we know that the first non-
identical coreflective value on Dy is 5Dy (see 2.2). We will show that the space 6Dy
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behaves very well again with respect to coreflections, which will be useful for studying
spaces in the class Dy — d.

A uniform space X will be called distally minimal if each strictly finer uniformity
has strictly more uniformly discrete families.

4.1. Lemma. The space 6Dy is distally minimal.

Proof. Take X strictly finer than 6Dy.

a) First we observe that a cover % is uniform on 6Dy whenever the following
holds ({n} x n again stands for the n™® column in Dy): There exists k € N such that
for each n € N and for each star-refinement %" of % there are points Xy, X, ..., X, €
e {n} x nsuchthat {n} x n = | {St(x, #);i = 1,2, ..., k}. To prove this we put

Py(n) = St(x, W ~ {n} x n),
P(n) =St(x, # »{n} xn) N UP; for 1 <is<k,
ji<i

P;=UP{n) for 1<iZk.

neN
Then the cover
(Psi=1,2,...,k} A {{n} x n;neN}

is uniform on 6Dy and refines %.

b) Now suppose % is uniform on X and not uniform on 6Dy. Using a) we can
find for each k € N some n, € N and #~ star-refining % such that we cannot find less
than k points in {m} X n,, the # -stars of which cover {n,} x n,. Therefore we
can find points x,, X,, ..., X, € {m} x n, such that the stars

{St(xo #" A {Vio W)}
form a disjoint system, where
Vi = {xe{m} x m; there exist i % j such that
1<i,j=<kand xeSt(x, #)nSt(x;, #)},
W = {n} x m\ V.
Now it follows immediately that the family
{lmexD}; i=1,2,..,k; keN}

is uniformly discrete in X and, of course, not uniformly discrete in 6 Dy.

4.2. Proposition. Let (%, F) be the coreflection in U, Dy ¢ %, then FSDy is
uniformly discrete.
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Proof. The proof proceeds very similarly as that of 2.2. Using 4.1 we know that
in FODy we add a certain uniformly discrete family. The same procedure as in the
proof of 2.2 gives that each countable partition of FéDy is uniform.

4.3. Corollary. 6Dy — d is the largest coreflective subclass of U not containing
the space 6Dy.

4.4. Corollary. The following properties of a uniform space X are equivalent:

(1) X is D({k,}) — d for all sequences {k,},
(2) X is Dy — d,
(3) X is simultaneously D, — d and 6Dy — d.

Moreover, the class Dy — d is the largest coreflective subclass of U not containing
both D, and 6Dy. The proof is immediate by combining 2.4 and 4.3.

A theorem similar to 3.1 can be proved for hereditarily Dy — d spaces. These
spaces are studied in [5] and [6] and they are called H(w) — t, spaces after the
property (6).

4.5. Theorem. The following properties of a uniform space X are equivalent:

(1) X is hereditarily D({k,}) — d for each sequence {k,},
(2) X is hereditarily Dy — d,
(3) X is hereditarily D, — d and hereditarily 6Dy — d,
(4) each countable uniformly discrete union ofﬁmte uniformly discrete families
is a uniformly discrete family,
(5) X is hereditarily (I x w) — t,,
(6) X is H(w) — t,
(7) each countable family {f,} of bounded uniformly continuous functions such
that {cozf,,},, is uniformly discrete has a uniformly continuous sum,
(8) X is hereditarily R — t,,
(9) X is hereditarily R" — t, for each natural n,
(10) for each subspace Y of X the set U(Y, R) is a ring under pointwise operations,
(11) for any subspace Y of X, f, g € U(Y, R) with g bounded, the function f . g is
uniformly continuous.

Remarks. The proof of this theorem may be found in [5] or [6]. Only the pro-
perty (3) is new and for this property the equivalence with (1) follows from 4.4.

All the properties in 4.5 are formulated in the same manner as in 3.1. Note that the
condition (9) in 3.1 can also be proved for any natural n, which makes the analogy
between 3.1 and 4.5 complete.

We observe again that e.g. the condition (6) proves that hereditarily Dy — d spaces
form a coreflective subclass of U. However, it is not true in general that the class
her (%) of spaces which are hereditarily in ¥ forms a coreflective subelass if € is
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coreflective. For example, her (6Dy — d) is not coreflective. Another example is the
class of hereditarily Alexandrov spaces (see [3]).

The condition (3) of 4.5 together with 4.4 gives the following useful extremal
property for H(w) — t, spaces:

4.6. Corollary. Let (%, F) be a hereditary coreflection in U and let neither D, nor
3Dy be contained in 6. Then € is contained in H(w) — t,.

As an application of 4.6 we present the following theorem:

4.7. Theorem. H(w) — t, is the largest coreflective subclass of U contained in
each of the following classes:

(A) The class Ext of all X such that each uniformly continuous real valued function
defined on a subspace of X extends to X.

(B) The class of all X such that each real valued function on a uniformly discrete
subspace of X extends to a uniformly continuous function on X.

(C) The class of all X such that for each free uniform measure yu on X the support
supp fi of the corresponding Radon measure on a Samuel compactification X
of X lies in the completion X of X.

(D) The class of all X such that each bounded subset of X is precompact.

Remarks. Conditions (A), (B) need no explanation. A linear form p on U(X, R)
is called a free uniform measure on X, if for each H < U(X, R) uniformly equi-
continuous and point-bounded the restriction u ~ H is continuous in the topology
of pointwise convergence. The reader is refered to [9] for results and further refer-
ences. If pX denotes the precompact reflection of X, the Samuel compactification X

of X is the completionp/i’ of pX. Finally, recall that a subset B of X is called bounded
in X, if each f e U(X, R) is bounded on B. We refer to [12] for some properties of
the class (D).

Proof of 4.7. The result concerning classes (A), (B) is proved in [5] or [6]. One
can also very easily see that (C) = (D) (see [2]). Moreover, it is proved in [10]
that the condition (7) from 4.5 implies the property (C). The class (D) is obviously
hereditary, hence with each coreflection (%, F) contained in (D), (D) also contains
sub (%). Therefore, according to the above remarks and to 4.6, it suffices to prove
that for any (hereditary) coreflection (%, F) contained in (D), neither D, nor 6Dy
are contained in %.

If D, is contained in %, then each metrizable space is in € (see 2.5), which is not
possible, as for example H(w) is metrizable, bounded in itself, but not precompact.

Similarly aH(w) = inf (H(w), ptH(w)) is bounded in itself and not precompact,
hence it is not in (D). Hence FaH(w) must contain a 2-discrete uniform cover %
such that the number of members of % in its trace on {(n, x);0<x = 1} increases
to infinity with the increase of n. This means that we can embed 6Dy into aH(w) in
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such a way that the uniformity of FaH(w) restricted to dDy is strictly finer, hence
FoDy # 6Dy, which concludes the proof.

The conditions (8) from 3.1 or (7) from 4.2 make it possible to define natural con-
cepts of c-additivity of uniform measures on the corresponding classes of spaces,
but we do not intend to go into any details here.
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