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DOMATICALLY CRITICAL GRAPHS

BOHDAN ZELINKA, Liberec

(Received November 12, 1978)

In this paper we shall study domatically critical graphs. This study was préposed
by E. J. CockAYNE [1]. We consider finite undirected graphs without loops and
multiple edges. '

A dominating set in a graph G is a subset D of the vertex set ¥(G) of G with the
property that each vertex of V(G) — D is adjacent to at least one vertex of D.
A domatic partition is a partition of ¥(G) into pairwise disjoint dominating sets.
The domatic number d(G) of G is the maximal cardinality of a domatic partition of G.
(The domatic number is to be distinguished from the domination number.)

A graph G is called domatically critical, if after deleting an arbitrary edge from G
a graph with a smaller domatic number than that of G is obtained.

We shall prove a theorem.

Theorem 1. Let G be a domatically critical graph with the domatic number
d(G) = d. Then the vertex set V(G) of G is the union of d pairwise disjoint sets
Vi, Va, ..., V4 with the property that for any two distinct numbers i,j from the
numbers 1,2, ..., d the subgraph G;; of G induced by the set V; L V; is a bipartite
graph on the sets V;, V;, all of whose connected components are stars.

Remark. A graph consisting of one edge with its end vertices is considered a star;
a graph consisting of one isolated vertex is not.

Proof. As G has the domatic number d, there exists a domatic partition
{V1, V. ..., V4}. Suppose that there exist two vertices of the same class of this parti-
tion which are joined by an edge e and let G’ be the graph obtained from G by
deleting e. Then each V;, being a dominating set in G, is a dominating set also in G/,
because all edges joining vertices of ¥; with vertices of ¥(G) — V; in G exist in G’
as well. Therefore {V}, V,, ..., ¥;} is a domatic partition of G’ and d(G’) = d; the
graph G is not critical, which is a contradiction. We have proved that all sets
Vi» V2, ..., V; are independent in G; therefore each G;; is a bipartite graph on the
sets V;, V;. Now let i, j be two distinct numbers from the numbers 1,2, ...,d. As V;
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is a dominating set in G and V; n V; = 0, each vertex of V; must be adjacent to at
least one vertex of V;. Analogously each vertex of V; must be adjacent to at least one
vertex of V. Therefore in G;; each vertex has the degree at least 1. If two vertices
of a degree greater than 1 are adjacent in G,;, then after deleting the edge joining
them again each vertex of G;; has a degree at least 1 in the resulting graph and in the
graph obtained in this way from G the sets V, V; (and obviously also all ¥, for
i + k # j) are domating sets, this graph has the domatic number d and G is not
critical. Therefore each edge of G;; is incident with a vertex of degree 1 in G;; and
each connected component of G;; is a star.

A graph G is called indominable, if its vertex set can be partitioned into independent
dominating sets. We have a corollary.

Corollary. Every domatically critical graph is indominable.
We express a conjecture.

Conjecture. Every graph having the structure described in Theorem 1 is do-
matically critical.

E. J. CockAYNE and S. T. HEDETNIEMI [2] have proved that d(G) < o(G) + 1,
where ¢(G) is the minimal degree of a vertex of G. If the equality d(G) = o(G) + 1
holds, the graph G is called domatically full. We shall prove a theorem concerning
regular domatically full graphs.

Theorem 2. A regular domatically full graph G with n vertices and with a domatic

number d exists if and only if d divides n; such a graph is also domatically critical.
d

Its structure is the following: The vertex set V(G) = V;, VinV; =0, IV,[ = n/d

and the subgraph G;; of G induced by V; UV, is regular of degree 1 (for i =
=1,.,dj=1,....d;i*j)

Proof. Suppose that there exists a regular domatically full graph G with n vertices
and with the domatic number d. As G is regular and domatically full, each vertex
of G has degree d — 1. After deleting an arbitrary edge from G a graph G’ is obtained
in which two vertices have degree d — 2; hence d(G') < d — 1 and G is domatically
critical. This implies that G has the structure described in Theorem 1. Consider an
integer i such that 1 < i < d. Each vertex x € V; must be adjacent to at least one vertex
of V; for each je{l,...,d} — {i}. As these sets are pairwise disjoint, for each
J # i there exists exactly one edge joining x with a vertex of V. Therefore in each G;;
all vertices have degree 1. As G; is a bipartite graph on the sets V;, V; it is a complete
matching of these sets and |V;| = |V;|. As i, j were chosen arbitrarily, all classes of
the partition {V}, V,, ..., ¥3} have equal cardinalities and |V;| = n/d for each i =
= 1,...,d. This is possible only if n/d is an integer, i.e. if d divides n. Therefore
a regular domatically full graph with n vertices and with the domatic number d
exists only if d divides n, and if it exists, it has the described structure. On the other
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hand, if d divides n, then obviously there exists a graph G with the described structure
(e.g. the graph with n/d connected components which are all isomorphic to K,).
Thus let G be a graph with the described structure. Then it is evidently regular of
degree d — 1. Its domatic number is at least d, because there exists a domatic parti-
tion {Vy, V,,..., V;}. The inequality d(G) < ¢(G) + 1 implies that this domatic
number cannot be greater than d, therefore it is equal to d and G is domatically full.

We shall now solve Problem 9 from [1]. An indivisible dominating set in a graph G
is such a dominating set in G which is not a union of two distinct dominating sets.
The least cardinality of a partition of the vertex set of G into indivisible dominating
sets is called the adomatic number of G and denoted by ad(G). (This is an analogue
of the achromatic number of a graph.) Obviously ad(G) < d(G). Problem 9 in [1]
is the following:

Do there exist vertex partitions into indivisible dominating sets of all orders
between ad(G) and d(G)?

The answer is negative.

Theorem 3. To each positive integer n there exists a graph G for which
d(G) — ad(G) =n

holds and which has the property that each partition of its vertex set into indivisible
dominating sets has the cardinality either d(G), or ad(G).

Proof. Let G be the complete bipartite graph on sets A4, B such that [4| = |B| =
= n + 2. The set A4 is evidently a dominating set in G. If A’ is a proper subset of 4,
then no vertex of A — A4’is adjacent to a vertex of A’, therefore A’ is not a dominating
set in G and 4 is an indivisible dominating set in G. Analogously B is an indivisible
dominating set in G. Each two-element set {a, b}, where a € A, b € B, is a dominating
set in G, because each vertex of A — {a} is adjacent to b and each vertex of B — {b}
is adjacent to a. Evidently neither {a} nor {b} is a dominating set in G, therefore
{a, b} is a indivisible dominating set in G. Now let D be an indivisible dominating
setin G. If D n A = 0, then D < B. As shown above, D cannot be a proper subset
of B, therefore D = B. Analogously D "B =0 implies D = A. If Dn A4 £ 0,
D N B # 0, then D is the union of the sets {a, b} for al ae DN A4 and all be
€ D n B. As all these sets are indivisible dominating sets and D is also an indivisible
dominating set, we must have D = {a, b} for some a € A and b € B. We have proved
that each indivisible dominating set in G is equal either to A4, or to B, or to some set
{a, b}, where a € A, b e B. Each partition of the vertex set of G into indivisible
dominating sets either is {4, B}, or consists of two-elements sets {a, b} with the
property that the edges joining these pairs {a, b} form a complete matching of G.
Therefore the cardinality of such a partition is either ad(G) = 2 or d(G) = n + 2
and the assertion is proved.
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