Czechoslovak Mathematical Journal

Svatopluk Poljak; Vojtéch Rodl
Orthogonal partitions and covering of graphs
Czechoslovak Mathematical Journal, Vol. 30 (1980), No. 3, 475,476-477,478-485

Persistent URL: http://dml.cz/dmlcz/101696

Terms of use:

© Institute of Mathematics AS CR, 1980

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/101696
http://dml.cz

Czechoslovak Mathematical Journal, 30 (105) 1980, Praha

ORTHOGONAL PARTITIONS AND COVERING OF GRAPHS

SvatopLUK PoLjak and VosTécH RODL, Praha

(Received December 7, 1978)

INTRODUCTION

We investigate two notions related to the notion of chromatic number. For a given
graph G one may define @(G) as the minimum number of stable sets (i.e. subsets of
the vertex set with no two vertices joined by an edge) such that every pair of non-
adjacent vertices is contained in at least one of them, and dim G as the minimal d
such that G is contained in a product of d complete graphs as an induced subgraph.

Determination of both @ and dim is an NP-complete problem. (See [15], [10].)
In [8] and [12], dim of some special graphs was investigated. The main purpose of
this paper is to prove some analogous statements concerning the notion of @ and
extend some results of [8] and [12].

The first two sections are of technical character. In § 1 we present some remarks
concerning the notion of orthogonal array (which is in our sense more general than
that defined in [5]).

In §2 we introduce the notion of orthogonal g-partitions and investigate the
problem of maximal number of pairwise orthogonal g-partitions on a given set.
For g = 2 we are able to give an exact formula for this number. For g = 3 we give
only some bounds.

In § 4 we show that @ of a product of two graphs with large @ is large, too. To
prove an analogous statement concerning chromatic number is an open (and probably
difficult) problem.

In last paragraphs using the results of the first two sections we give a formula

for @(nK,) and some bounds for @(nK,), dim (nK,) and dim (;) .

We state now three well known theorems which will be used throughout our
paper.

Theorem 0.1. (see [5]) Let g be a power of a prime. Then there exist ¢ — 1 pair-
wise orthogonal latin sguares of order q.

Theorem 0.2. (see [2]) Let Ay, A,,..., A, be a system of subsets of 1,2,...,t
such that:

475



(i) A; ¢ A4
(i) A4;n A; =+ 0;
(iii) |44 < 1.
Then

t—1

=((-

Theorem 0.3. For every integer n there exists a prime p such that

n 2n .

IIA
IIA

p

1. ORTHOGONAL ARRAYS

Let g be a positive integer. We say that two vectors u = (uy, u,, ..., u,,) and
vV = (ul, Vgyeens u,z) are orthogonal if for every k, k' = 1,2, ..., q there exists j =
=1,2,...,tsothat u; = k and v; = k'.

For two vectors u = (uy, u,,...,u,) and v = (v, 05,...,v,) we put (u,v) =
= (g, Ugy ooy Uy, Vg, Dgy eeny D).

Let © be a permutation of the set {1,2,...,q}. We identify n with the vector
(n(1), n(2), ..., n(q)). If u = (u;), u; € {1,2, ..., q} is another vector then we put

n(u) = (n(uy), n(uy), ..., n(u,)) .
Obviously the following holds
n(u, v) = (n(u), n(v)) .
We say that a vector w has the permutation property if
w=(n,,7,..., 1)

where 7, s = 1,2, ..., r, are permutations of {1, 2, ..., g} for some g and r.

The orthogonal array OA(g, n, t) is an n x t matrix (a;;) where a;; € {1,2, ..., 4}
for every i,j, i =1,2,...,n, j =1,2,...,t, such that every two row-vectors are
orthogonal. The orthogonal array (OA) has the permutatiin property if each row of
the corresponding matrix has this property.

Let t = g”. Then the existence of OA(q, n, %) is equivalent with the existence of
n — 2 pairwise orthogonal latin squares of order g. (See e.g. [1, 5].) In [3], the maxi-
mal number of pairwise orthogonal latin squares is estimated. For a given q there
exist at most g — 1 pairwise orthogonal latin squares, and if g is a power of a prime
then such a system exists.
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Theorem 1.1. Let g be a power of a prime. Then
(i) There exists OA(q, q + 1, ¢?).
(ii) There exists OA(q, 4, q*) which has the permutation property.

Proof. By Theorem 0.1 and the relation between OA’s we have (i). It remains to
prove (ii).
Take OA(q, ¢ + 1, g%). In each row there are exactly g entries equal to k for each
k =1,2,...,q. We can suppose that the last row is of the form (1, 1,...,1,2,2,...
BN SN BN B q). (This follows from the obvious fact that if we rearrange
columns of OA we obtain again OA.) The first g rows obviously form an OA with
the permutation property. So for i = 1,2,...,q the i-th row is of the form
(Tigs Tigs ooy Tig)-
The following theorem as well as its proof is a simple generalization of [9] (see [5],
Theorem 13.2.1).

Theorem 1.2. The existence of OA(q, ny, t,) and OA(q, n,, t,) implies the existence
of OA(qqu’ n, f1t2)-

Theorem 1.3. The existence of OA(q, ny, t;) and OA(q, n,, 1,) implies the existence
of OA(q, nyn,, ty + 1) :

Moreover, if the first two OA’s have the permutation property then the last one
has the property as well.

Proof. Denote the row-vectors of OA(g, ny, t;) and OA(q, n,, 1,) by uy, u,, ...
.., u,, and vy, vy, V..., ., respectively. Then w; ; = (u;, vy), i =1,2,..., 1, i’ =
=1,2,...,t, are pairwise orthogonal vectors and hence OA(g, nin,, t; + t,)
exists. Moreover, if u;, v;, have the permutation property, then w;; has the
permutation property, too.

The following theorem gives a better estimate for the case that we start the con-
_struction with g OA’s.

Theorem 1.4. Let g be a power of a prime. Let OA(q, n;, tj), j=12,...,q,
exist. Then there exists OA(q, gnin, ... n, t; + ... + t,). Moreover, if the first
q OA’s have the permutation property then the last one has the property as well.

Proof. Denote by v/, the i;-th row-vector of OA(g, n;, t;). Take OA(q, g, q*)
with the permutation property (the existence follows from Theorem 1.1) and denote
its i-th row by =, = (m;y, 7;, ..., 7). The vectors

Viovityiz,eensia = (”iox(u:.), ”ioz("izz), cees nioq(u?q))
for ige{l,2,...,q} and i;€{1,2,..,n;}, for each je{l,2, ..., q}, form
OA(q, gnyny ... ng, ty + t5 + ... + t,). If the vectors u),, je{1,2, ..., q}, have the
permutation property then the vectors v, ; . have the property as well.
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2. ORTHOGONAL PARTITIONS

Definition. Let o/ = (A, A, ..., 4,), B = (B, B,, ..., B,) be two partitions into q
parts (g-partitions) of a set with ¢ elements. We say that o/ and 4 are orthogonal
if A;n By, # Oforevery i,i'e{1,2,...,q}.

We denote by f(t, q) the maximal size of a system of pairwise orthogonal g-
partitions of the t-eclement set.

Theorem 2.1.
t—1

f(1,2) = [ﬂ 1

Proof. Let &, o,, ..., &, be a system of pairwise orthogonal 2-partitions. For
every i = 1,...,n choose the partition class 4; with cardinality <t/2. The sets
Ay, Ay, ..., A, have the following properties:

(i) they form an antichain in the partial order of subsets of {1, ..., t};
(i) A4; " A; * 0 for every i = j;

(iii) 4] = %for every i.

Hence, by Erdés Ko Rado theorem [2], we get
t—1

f(1,2) < B:l 1

To prove > consider the 2-partitions of {1, ..., 1} defined as follows: To every

subset with cardinality l:i:l containig 1, assign a 2-partition consisting of this set

and its complement.
For g > 2 we are far from being able to find an exact formula for f(t, g). We give
here some estimates.

Theorem 2.2.

f<<‘21> : q) 2 /(1.2).

Proof. Suppose that on the set X = {1, 2,..., t} there exists a system of n pairwise

orthogonal 2-partitions. Consider <g) copies X* (1 < k < j < g) of the set X and

on each set X*/ a system of pairwise orthogonal 2-partitions &%’ = (4}, BY’), i =
= 1,...,n. For every i define a g-partition €, = (C;y, Ci3, ..., C;y) of the set Y =
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— U X" by formula

k<J

k=1 4 ,
Ca=U4d*uv U BY, k=1,..,q.
j=1 j=k+1

It is easy to verify that ;, i = 1, ..., n, is a system of pairwise orthogonal g-parti-
tions.

Theorem 2.3. OA(q, n, 1) exists if and only if f(1, q) = n.

Proof. The proof follows from the fact that each g-partition o of the set {1, 2,...1)
is in a 1—1 correspondence with the vector u = (uy, u,, ..., u,) defined as follows:
u; = kiff j € A, where A4, is the k-th class of «.

Theorems 1.1—1.4 and Theorem 2.3 imply immediately

Theorem 2.4. Let t, t,, t,, n, ny, n,, 4, 44, 4, be positive integers. Then

(i) f(ts, ql) = n,f(tz, ‘.IZ) =n impliesf(tltz, 419,) = n;

(ii) f(t1, @) = ny, f(t2, q) = ny implies f(t, + t,,q) = nyn,.

Theorem 2.5. Let q be a power of a prime. Then

(i) flg>9) =q + 1;

(ii) f(t;q) = njforj =1,...,q implies f(t, + ...+ t,, q) = qnyn, ... n,
An easy computation gives the following

Corollary 2.6. For g a power of a prime and t of the form

t=o;q’ + o7 L+ g + o
it is

j N
f(t’ Q) g ].:[2 [(q + l)ql_z q(q(—l_ 1)/(‘1‘1)]41(
and hence e.g. f(t, q) = (q + 1)[th2]_

Remark 2.7. For q = 3,4 Theorem 2.2 gives a better result than Corollary 2.6.
Nevertheles, we have not been able to generalize the construction given in 2.2 to
improve the estimates given in 2.6 for g > 3.

Theorem 2.8. Let t, p, q be positive integers, p < q. Then
f(t. q9) £ f(t, p)If (4, ).
Particularly, f(t, q) < f(t, q — 1).

Proof. Let © and ¥ be systems of orthogonal g-partitions and p-partitions on the
t-set and g-set, respectively. To every pair &, 4, & = (Ap ey Aq), B = (Bl, e B,,),
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A e, BeT, assign G(, B) = (Cy, ..., C,) defined as follows:
Ci=U{4;jeB}, i=1,...p.

{(6(&{, B)| A €C, ;«%‘el} obviously forms a system of pairwise orthogonal p-
partitions.

Corollary 2.9.
f(t q) = (29)"*
for every integers t, q,t = 8q°.

Proof. Immediately follows from 2.6 and 0.3.

Proposition 2.10. Let t > q be positive integers. Then

t—1

f(t.q) = B_l] :

Proof. Let © be a maximal system of pairwise orthogonal g-partitions of a set

{1,...,t}. From every &;€&, j = 1,..., f(t, q) choose one of its partition classes
A’ e s ; with |47 < t]q. The system A’ has the following properties:

|4)| Stlg, A"¢ A7 and A" A/ %0 forevery i=j.
Thus the Erdés Ko Rado theorem yields

t—1
|©| < [1_ 1]
q
3. E)(an)

We shall now give estimates of the number @, defined in the introduction, for the
graphs nK,. (The graph nK, consists of n disjoint copies of the complete graph K,.)
The notion of @ was in fact studied in a “complementary form” in several papers,
e.g. [4], [15]. The number o(G) is defined in [6] as the minimal size of a set S such
that G is isomorphic to an intersection graph of a system of subsets of the set S.

Proposition 3.1. &(G) = (G) where G denotes the complement of G. Hence @(G)
equals to the minimal size of a set S such that to every vertex of G one can assign
a subset of S so that two vertices are adjacent iff the corresponding subsets are dis-
joint. (This assignment is called a disjoint representation of G.)

The proof immediately follows from Proposition 1, Chapter 17, § 4 in [0].
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Theorem 3.2.
(i) @(nK,) < t iff OA(q, n,t) exists;

ii) @(nK,) = Min {t | there exists at least n orthogonal g-partitions of the set
(L2
1,2,..., 1}

Proof. We shall write nK, = K; + ... + Kj where V(K,‘;) = {x{, ..., x“;}. Let
Ay, ..., A, be a system of stable sets so that every pair of nonadjacent vertices of nK,
is contained in at least one of A;’s. Without loss of generality we may suppose 4;

to be maximal, i.e. |4;| = n for each j. To every je{l,...,t} assign a column
vector (uj;); <i<n SO that

(%) u; =k iff x,eA;.

The above defined system of column vectors forms an OA(q, n, t). On the other
hand, if an OA(q, n, 1) exists then the formula (*) defines a system of 4;’s with the
required. properties.

(ii) follows from (i) and Theorem 2.3.

The proof of the following theorem is easy and therefore it is omitted.

Theorem 3.3. Let A, ..., A,, be a system of stable sets of nK, such that every
pair of nonadjacent vertices is contained in at least one of them. Then the sets
As=1)g+ 1> As=1yg+2> -+ As.q form a partition of V(nK,) for every s=1,...,r
iff the corresponding OA (constructed in the proof of the above theorem) has the
permutation property.

Theorem 3.2 and the results of § 2 imply

Corollary 3.4.
t—1 )
(i) @(nK,) = Min { t/ t -1 =n;,
2
2
(ii) 1 logr; < @(nK,) < g_l..lgg_"(l + o(1)) for q = 3.
—logq+<1-——>log : e
q q q-1
4. PRODUCT

By a categorical product of two graphs G, H we mean the following graph G x H:
V(G x H) = V(G) x V(H);
E(G X H) = {{(xl, V1, X2, y2>}/{x1, xz} € E(G)’ {YD YZ} € E(H)}
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Theorem 4.1.
@(G) + @(H) = @(G x H) > 4[log, ®(G) + log, @(H)] .

Proof. Let C{, C,,...,C, and Dy, D,, ..., D, be systems of stable sets covering
all pairs of nonadjacent vertices of G and H, respectively. Then C; x V(H), V(G) x
x D;,i=1,...,1,j=1,...,k,is a system covering all pairs of nonadjacent vertices
of G x H. This proves the first inequality.

For the proof of the second inequality we shall need the following three proposi-
tions.

Let G be a graph. Define an equivalence ~ on the set of its vertices as follows:
x ~ y iff x and y have the same neighbourhoods. From each equivalence class
choose one point and consider the subgraph induced on this set. Denote this graph
by m(G).

Proposition 4.2. |V(m(G))| = \/(2&(G)) for every graph G.
Proof. It follows from the well known theorem of Erd8s, Goodman and Posa [4]
which states that w(G) < |V(G)|*/4, and from the fact that @(m(G)) = @(G).
Proposition 4.3.
m(G) x m(H) = m(G x H).

Proof. It suffices to realize that a neighbourhood of a vertex {x, y) of the product
is the product of neighbourhoods of vertices x and y.

Proposition 4.4. &(F) 2 log, |V(F)| for F = m(F).

Proof. Consider the disjoint representation & of the graph F. From F = m(F)
it follows that & is a system of distinct sets and hence |V(F)| £ 2°®.
Now we can prove the second inequality of 4.1:

(G x H) = @(m(G x H)) = log, (|[V(m(G x H))|) =
— log, (V(m(G) . V{m(H)) = log, [Vm(G)| + logs |V(am(iD)] >
> 1[log, @(G) + log, @(H))] .
Remark 4.5. We have just proved:
If we denote f(r) = min {@&(G x H)/@(G) = @(H) = r} then f(r) > o with
r— .
An analogous statement for the chromatic number is not known (see [14]).

5. DIMENSION
The notion of dimension of graphs, defined in the introduction, was introduced
in [11] and [8]. For a survey of recent results concerning this notion see [10].

The following proposition is shown in [11].
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Proposition 5.1. The dimension of G equals the minimal number of equivalences
E,, ..., E, such that

1) EG) = U Eq

In [8], dimension of the graphs nK, was studied and it was shown that dim nK, =
= log; n + 1. We give here some estimates of dim nkK, for g = 3.

Proposition 5.2. If there exists OA(q, n, qr) with the permutation property then
dim nK, < r.

Proof follows immediately from Theorem 3.3 and Proposition 5.1.

Theorem 5.3.

(i) dim (¢K,) = q for q a power of a prime;
(ii) dim (nyn,K,) < dim (n,K,) + dim (n,K,);
(iii) dim (nK,,,,) < dim nK,, . dim nk,,.

9192

Proof. According to (ii) of 1.1, there exists OA(g, g, ¢*) with the permutation
property and hence according to 5.2, dim gK, < ¢q. The second inequality follows
from the easy fact that dim (K, + x) = ¢. (K, + x is the disjoint union of K, and
a single vertex x.)

(ii) As nyn,K, is an induced subgraph of n,;K, x n,K, we have dim (n,n,K,) <
< dim (n,K, x n,K,) < dim n,K, + dim n,K,.

(iii) Itis easily seen that dim G = r if one can assign to each vertex x of G a vector
v(x) with r coordinates so that x = y implies v(x) = v(y) and (x, y) € E(G) iff
vy(x) * vy(y)forevery i = 1, ..., r.(v(x) denotes the i-th coordinate of v(x).) We shall
call such an assignment an encoding.

Denote by x;'- and x; the j-th and the k-th vertex of the i-th copy of K,, in the graph

nK,, and nK,,, respectively. Put nK,,, = Ky + ... + K, where V(Ki )=
= {X{,1s - Xj 4> ---» Xg, 4,}. Let u and v be an encoding of nK,, and nK,,, respec-

tively. Define a mapping w as follows: w, 4(x} ) = <u,(x}), v4(xi)>. It can be verified
easily that w is an encoding.

Theorem 5.4.

dim nK, £ g_lf)-g_f(l + o(1)) for qz3.
log g
Proof follows from 1.4, 5.2 and 0.3.
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Let n > g be positive integers. Define the graph (Z) whose vertices are g-point

subsets of the set {1, ..., n} with two vertices adjacent if and only if they are disjoint
subsets.

The graphs (;) have interesting properties. It is not difficult to see that they are
universal, i.e. every finite graph is an induced subgraph of some n) . Kneser con-
. . 2 kY. .
jectured that the chromatic number of " : is k + 2. Lovasz proved this in [7]

using methods of algebraic topology. In [13] we studied @ of (:) and proved that
6(”) =n for g < in.
q
In [12] the dimension of Kneser graphs was studied. It was proved that
(%) log; log; n — o(1) £ dim (;) <(q — 1) g*log; log; n.
Using 2.9 and [12, Remark 3.7] we obtain a slight improvement of (x):
_ 2
dim (n) < Mo —1)d* log; log; n.

q 1+ log, q

(log; n denotes the smallest integer not less then log, n).

6. PROBLEMS

There are many open problems left. We shall mention only three of them.

1) Is nK, an induced subgraph of a product of dim nK, copies of K,?
(Le., is the condition in Prop. 5.2 also necessary?)

2) Find a better estimates for f(n, gq)!

3) Let G be an arbitrary graph. Is it true that

@(nG) = @(nkK ,g,) ?
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