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By a tolerance T on an algebra 9 = (A, F) we mean a reflexive and symmetric
binary relation on 4 satisfying the Substitution Property with respect to all operations
from F, i.e. for each n-ary fe F the validity of <a; b;)e T (i = 1, ..., n) implies
{f(ay, ..., a,), f(by, ..., b,)> € T. Denote by LT(A) the set of all tolerances on 2.
Evidently, LT(2) is an algebraic lattice with respect to the set inclusion (see [2]).

The concept of a polynomially determined congruence was introduced in [5]
and [6]. The aim of this paper is to generalize this concept for tolerances and to give
examples of such algebras.

Definition 1. Let 2 = (A4, F) be an algebra and p(x, y) a binary polynomial over F.
A tolerance Te LT() is called (p, e)-determined if there exists an element e € 4
such that

{a, b€ T ifand onlyif <(p(a,b),edeT.

Remark. Since every congruence 0 on 2 is a tolerance on U, every (p, e)-determined
congruence is a (p, e)-determined tolerance by the definition in [5], p. 65 (for e =
= p(f,f)). Thus, every tolerance on a group G is (p, e)-determined for p(x, y) =
=x.y ', e=x.x"", because every tolerance on ® is a congruence (see [4], [7],
[8]) and every congruence on a group is (p, e)-determined (see [5]). The next
example introduces an algebra with a (p, e)-determined tolerance which is not
a congruence.

Example 1. Let G = {a, b, ¢} and let ® = (G, {o}) be a groupoid prescribed by
the table:

o | a b c
a a b ¢
b b b b
c ¢c b a

Let T = {<a,ad, <b,bD, <c,cy, <a,b), <b,ad, <b,cy, <c,b)}. Evidently, Te
€ LT(®) and T is not a congruence because <a, b) € T, (b,c)e T but {a,c) ¢ T.
Let p(x,y) = x o y. Choose e = a. Evidently, {X,y> e T implies p(x, y) = a or
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p(x,y) = b, thus {p(x, ), ed e T If {x, y> ¢ T, then {x, y} = {a, ¢} and p(x, y) =
= p(a, ¢) = c. Hence {p(x, y), e> = {c, a) ¢ T. Accordingly, T'is a (p. e)-determined
tolerance on ®.

Let A = (A, F) be an algebra and Te LT(A). We call B < A, B + 0, a block
of Tif

(i) x, ye B implies {x, yye T,i.e. Bx B< T,

(ii) B is a maximal subset of 4 with respect to (i).

For the properties of relational blocks the reader is referred to [1].

Proposition. Let A = (A, F) be an algebra, p(x, y) a binary polynomial over F
and e e A. The following conditions are equivalent:

(1) Te LT(N) is (p, e)-determined,

(2) {a, by € T if and only if there exists a block B of T containing e such that

p(x, y) e B.

Proof. The implication (2) = (1) is evident. Prove (1) = (2). If T'is (p, e)-deter-
mined and <a, b) € T, then {p(a, b), ey € T. Since T is symmetric and reflexive,
we have also <e, p(a, b)> € T, {e,e) e T and {p(a, b), p(a, b)) € T, thus the two-
element set {e, p(a, b)} satisfies (i). By Zorn’s lemma, there exists a block B of T

such that {e, p(a, b)} = B. Conversely, if p(a, b) € B, where B is a block of T con-
taining e and T'is (p, e)-determined, then {p(a, b), ) € T'implies <a, by € T.

Definition 2. Let A = (4, F) be an algebra, p(x, y) a binary polynomial over F
and 0 = M < A. The set M is said to be (p, e)-admissible on U if there exists
a (p, e)-determined Te L T(2) such that

{a, b e T ifand onlyif p(a,b)eM.

Example 2. Let G, p, T, e be the same as in Example 1. Then M = {a, b} is
(p, e)-admissible.
The following theorem gives a characterization of (p, e)-admissible sets.

Theorem 1. Let A = (A, F) be an algebra, p(x, y) a polynomial over F, e € A and
0+ M < A. Asubset M is (p, e)-admissible on U if and only if:

(1) For each ae A, p(a, a)e M;

(2) p(a, b)e M implies p(b, a) e M;

(3) for every n-ary feF, pla,b)eM (i =1,...,n) implies p(f(ay, ..., a,),
f(by, ..., b)) e M;

(4) p(p(a, b), €) e M if and only if p(a, b) e M.
Proof. Let M < A satisfy (1), (2), (3) and (4). Define a binary relation T on 4
such that {a, b) € T'if and only if p(a, b) e M. Then T is reflexive by (1) and sym-
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metric by (2). The condition (3) implies the Substitution Property and thus Te
€ LT(A). Further, {x, y)> e T if and only if p(x, y)e M which is equivalent to
p(p(x, y),e)e M by (4), i.e. {p(x,y),e>€eT. Hence T is (p, e)-determined which
implies that M is (p, e)-admissible.

Conversely, let M be (p, e)-admissible and let Te LT() be the corresponding
(p, e)-determined tolerance with p(a, b)e M and only if {a, b) e T. Thus M =
= {p(a, b); <a, by € T}. Clearly (1), (2), (3) are valid because T's reflexive, symmetric
and has the Substitution Property. Further, p(p(a, b),e)e M is equivalent to
{p(a, b), ey € T, i.e. {a, by € T (since Tis (p, e)-determined), which means p(a, b) €
€ M. Thus (4) holds, too.

Theorem 2. Let A = (A, F), B = (B, F’') be algebras of the same type, ¢ a homo-
morphism of A onto B, M a (p, e)-admissible set on A and {M,; ye T} a system
of (p, e)-admissible subsets on U for some binary polynomial p(x, y) over F and
e€ A. Denote by p* the polynomial over F' corresponding to p in ¢. Then:

(a) N{M,;y eI} is a (p, e)-admissible set on A.
(b) ®(M) is a (p*, p(e))-admissible set on B.

Proof. The first statement is clear. Prove (b). Put e* = ¢(e), then e* € p(M)
If b e B, there exists b’ € A such that b = ¢(b’). Since p(b’, b’) € M, also p*(b, b) =
= p*(p(b'), o(b")) = o(p(b’, b')) € (M) and thus (1) of Theorem 1 is valid for
¢(M) and e*. The condition (2) of Theorem 1 is evident and (3) can be proved in
the same way as (1). Prove (4). Let a, b € B and p*(p*(a, b), e*) € o(M). Then there
exist a’, b’ € A with ¢(a’) = a, ¢(b’) = b. Suppose p*(a, b) ¢ ¢(M). Then p(a’, b’) ¢
¢ M, ie.p(p(a’, b'), e) ¢ M. Since ¢ is a homomorphism, this implies p*(p*(a, b), e*)¢
¢ ¢(M), which is a contradiction. Thus p*(a, b) € ¢(M). By Theorem 1, (M) is
a p-admissible set on B.

Definition 3. Let 2 = (A, F) be an algebra, p(x, y) a binary polynomial over F
and ee A. We say that U has (p, e)-determined tolerances if each Te LT() is
(p, e)-determined.

Let A =(A4,F) be an algebra, x,yeA. Denote T(x,y)= (\{TeLT(Y);
{x, y> e T}. Clearly, T(x, y) e LT() and it is called the principal tolerance on A
generated by {x, y) (see [3]). It is a generalization of the principal congruence
on U (see [5]).

We give a characterization of 2 having (p, e)-determined tolerances:

Theorem 3. An algebra A = (A, F) has (p, e)-determined tolerances (for a binary
polynomial p(x, y) over F and e € A) if and only if:

(1) p(a, a) = e for each ae A,
(2) <a, b)> € T(p(a, b), €) for each a, be A.
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Proof. Denote by A the identity relation on A. Clearly A is the least element in
the lattice L T(). If 2 has (p, e)-determined tolerances, then also A is (p, e)-deter-
mined, i.e. {a,a) €A if and only if {p(a,a), e) € A. Since <{a,a) e A for each
a e A, we have <{p(a, a), e) € A which means p(a, a) = e. Thus (1) is proved. Since
{p(a, b), &) € T(p(a, b), e) for each a,be A, and for each Te LT() we have
<a, by € Tif and only if {p(a, b), &) € T, we conclude {a, b) € T(p(a, b), ¢) and also
(2) is proved.

Conversely, let (1), (2) be true and Te LT(). Suppose <a, b) € T. By the Sub-
stitution Property, also <{p(a, b), p(a, a)) € T and, by (1), <p(a, b), e> € T. If, con-
versely, <p(a, b), e € T, then T(p(a, b), ¢) = T and, by (2), also <a, b) € T. Thus T
is (p, e)-determined.

Remark. Clearly every congruence on a group ® is a (p, e)-determined tolerance
for p(x,y) = x.y™', e=x.x"'. Since ® has no tolerance different from a con-
gruence [8], G is an example of an algebra with (p, e)-determined tolerances. The
next example introduces an algebra with (p, e)-determined tolerances some of
which are not congruences.

Example 2. Let ® = {a, b,c,d, e}, F = {c} and let 6 = (G, F) be a groupoid
with the table .

o eEabc'}d
e | e | ¢ baid
a | ¢l e dd | ¢
bbded%b
caddega
d | d|cbalje

1°. Prove T(a,e) = G x G. Clearly <a, e}, {e, ay € T(a, e). Further
(c,e) =(aoe,ece) €T(a,e), ie.also (e, c)eT(a,e),
(a,c)y ={coe, eca)y eT(a,e),
{c,d) =<(eoa,coayeT(ace),
(b,dy =<eob,cob)eT(a,e),
{a,dy = {eoc, aocy eT(a,e),
¢b,a) =<eob,codyeT(a,e), hence <a,byeT(a,e),
{e,by =<aoce, boeyeT(a,e),
<b,e) =<(boe,acayeT(a,e),
{e,dy =<aoa,boa)eT(a,e).
Since T(a, e) is symmetric and reflexive, we conclude T(a, ¢) = G x G.
2°. Since
{a,e) ={coe,eoe) and (a,e) ={doe,ece),

it is also <a, e) € T(c, ), <a, e) € T(d, ¢) and, by 1°, T(c, ) = T(d, e) = G x G.
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3°. Clearly <b, e) and (e, b) e T(b, e). Hence
{c,dy =<eoa,boa)eT(b,e), <{d, by =<boc,bodyeT(b,e).

4°. Put p(x,y) = x o y and let e be an element of G. To prove that ® has (P, e)-
determined tolerances, it suffices, by Theorem 4, only to prove

(%) {x,y>eT(xoy,e) foreach x,yeG,

because x o x = e is evident.
If p(x, y) = x o y = b, then either {x, y} = {b, e} or {x, y} = {d, b}. By 3°,

(b,e) eT(b,e), (e, byeT(b,e),
d, byeT(be), <b,d>eT(b,e);

thus () is true for these x, y.

If {x,y} * {b,e} and {x, y} + {b,d}, then p(x,y) = b. In this case 1° or 2°
implies () trivially. Thus ® has (p, e)-determined tolerances.
5° Let T=Au{e, dy, {d,e), <a,b), <b,a), <b,c), {c,b)}. Then, clearly,
T = T(a, b) = T(b, c) e LT(®). However, T is not a congruence, because <a, b},
{b,c>eThbutla,c)¢T
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