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Czechoslovak Mathematical Journal, 30 (105) 1980, Praha 

ON INTEGRATION IN BANACH SPACES, IV 

IVAN DOBRAKOV, Bratislava 

(Received June 13, 1978) 

INTRODUCTION 

In this part of our theory of integration of vector valued functions with respect 
to operator valued measures we prove a general convergence theorem (Theorem 1), 
which we call the diagonal convergence theorem, and we give some applications of it. 
These applications are concerned with integrals of unconditionally convergent series 
of functions and measures (§ 3), and with products and double integrals of sequences 
and series of measures (§4). In § 2 we collect miscellaneous results related to the 
material of the other sections. 

We shall use the notations and concepts of the previous parts I, II and III, see [5], 
[6] and [7]. Particularly, 0^ and J are <5-rings of subsets of non empty sets Tand S, 
respectively. 6(^) denotes the smallest a-ring which contains ^ . X, Y, and Z are 
Banach spaces over the same scalars. By B{T, X) we denote the Banach space of all 
bounded functions/ : T -> X with the supremum norm. If it is not specified otherwise, 
I and J stand for non empty sets of indices. By Ф^ we denote the collection of all 
finite subsets of со = (1, 2, . . .}, and by Ф2 the collection of all finite subsets of ш x o). 

1. DIAGONAL CONVERGENCE THEOREM 

In this section we shall use the following three assumptions: 

( a j : Let fj^ : T-^ X, к = 1, 2,. . . , be a sequence of ^-measurable functions, and 
let /kit) -^ f{t) e X for each t G Г. 

Since a pointwise limit of a sequence of ^-measurable functions is ^-measurable, 
see Section 1.2 in Part I and Lemma 1.2 in [14], the function f:T-^Xm ( a j is 
^-measurable. 

(^2): Let m„ : 0 -^ L[X, У), w = 1, 2,. . . , be operator valued measures countably 
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additive in the strong operator topology, let mjß) x -^ m{É)xe Y for each 
BE ^ and each xe X, and let sup m^„{É) < + oo for each £ e ^ . 

n 

By the VitaH-Hahn-Saks theorem, see Theorem III.7.2 in [U], [3], and Theorem 2 
in §2 in [1], and the Uniform Boundedness Principle, see [11, II.l.ll and II.3.21] 
w : ̂  -> L(Z, F) in (a2) is an operator valued measure countably additive in the 
strong operator topology. Clearly m^{E) ^ sup/w""„(£) < +oo for each Ee^, 

n 

see Lemma 3 in [8]. Note that if the semi variations w^„, n = 1, 2,. . . , are uniformly 
continuous on ^ and if m„(E) x -> m{É) jce Ffor each Ее ^ and each xe X, then 
sup m'^JJE) < + 00 for each £ e ^ , see Corollary of Theorem 5 below. 

n 

(a2u): (аз) and for each xeX, m„(É) x -> m(E) x uniformly with respect to E e ^, 
i.e., iw„(.) X -^ mÇ) x in B{^, Y) for each xeX. 

Theorem 1. (Diagonal convergence theorem.) Suppose (a^) and (аз), and let f^ be 
integrable with respect to m^for each n = 1, 2 , . . . . Then the following conditions 
are equivalent: 
a): the vector measures E -^ ^Е/П^^П^ EE S{^), n = l, 2, ..., are uniformly 

countably additive on 6(^) , and 
b): for each Ее (S(^) the sequence ^Е/П àm„, n = 1, 2,. . . , is convergent in Y. 

If they hold, then/is integrable with respect to m, and 

lim I / , àm^ = Г fàm for each E e 6 ( ^ ) . Um / , àm^ = 
^-*^JE J j 

//(a2u) holds, then this limit is uniform with respect to E e 6(^) . 

Proof, a) => b). Since/ : T -> Xis ^-measurable, there is, by definition, a sequence 
of ^-simple functions g^ : T-^ X, i = 1,2,..., such that g^t) -> f(t) for each t e T. 
For и = 1, 2, . . . let /i„ : S(^) -> <0, +oo) and Я„ : S(^) -> <0, +oo) be control 
measures for the countably additive vector measures E-^JEÂ ^^m E e 6(^) , and 
E-^ hffn dm, E E 6(^) , respectively, see [11, IV. 10.5], [12, Theorems 3.2 and 3.10], 
and also Remark 3 after Corollary of Theorem 6 below. For E E ®(^) put 

u(E) = Y 1 /!„(£) + UE) 

Then 1Л : (S(^) -»• <0, 1) is a countably additive measure, and N e <5{^), fi{N) = 0 
implies |J^/„ dm„\ + ||jv ff„ dm\ = 0 for each n = 1, 2 , . . . . 

00 

Put F = и {t; teT, \f„{t)\ + \g„{t)\ > 0}. Then f e S(^), and by the EgorofiF-
/1 = 1 

Lusin theorem, see Section 1.4 in Part I, there are F^ e ^ , fc = 1, 2,. . . , and N E ®(^) 
such that Fk ^ F -- N, fi{N) = 0, and on each set F^, к = 1, 2,. . . , the sequence 
{fu9u*- -^fn^ 9m ' • •} converges uniformly to / . 
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Let ß > 0. Then by a) there is a JCQ such that || J/„ dw„|| ((F - N) - F^J < ie 
for each n = 1,2,.... Hence 

I /n dm„ ~ I / ; dm J < ^ + I f (/„ ~ g;) dm„ 
I JE JE I 3 iJEnFk^ 

+ ffidm^- \ g, dm J + 1 {g^^ f^) dnij 

for each £ e S(^) and each i, j , n = 1, 2, ... . 
Since on Fj,^ the sequence (/i, ^i, .. . ,/„, ^„, ...} converges uniformly to / 

and since sup m'"„(Fj,^) < +oo by (аг), there is an ÎQ such that ||/„ - gtoWp,,^ • 
n 

. sup m^„{Fj,^) < is for each n ^ I'o- Hence, by Theorem 14 in Part I, 

J. {Â - 9io) d»»„ 
' f c o 

^l|/"-^.-ol|F,„.supm\(J^J<-
Я О 

for each E e 6 (^) and each n g ÎQ-
Let E e 6(^) . Since gi^. XjsnF;̂ ^ is a ^-simple function, according to (аз) there is 

an По ^ ï'o such that 

< - for each n, / > По 

If we assume (a2u), then such UQ can be taken independently of £ e 6(^) . Thus b) 
follows from a). 

b) => a) by the Vitah-Hahn-Saks theorem, see [11, III.7.2], [3] and [1. Theorem 2 
in §2]. 

Suppose now a) and b), and let us keep the notations from above. For £ e 6(^) 
put v(£) = Hm ^EÂ ^^n- Then v : S(^) -> У is a countably additive vector measure 

П-+00 

by a), and M e S(^), /i(M) = 0 implies v(M) = 0. Hence v(£) = v(£ n F) = 
= lim v(£ n Ffc) for each £ e 6(^) (Fj, /^ F - N, and ||v|| (iV) = 0). 

k-*oo 

For each fc = 1, 2, . . . take n̂  g к v п^_1 (п^ = 0) so that ||/„ -̂  ^„J| F^ .̂ 
. sup m''„{Fk) < 1/fc for n ^ Щ, and put h^ = g„j,. XFU^N^ /C = 1, 2, ... . Then 

л 

hi^\T-^ X, к = 1, 2,. . . , is a sequence of ^-simple functions, hj^i) -^ f{t) for each 
t e T, and 

I Г /„dm« - Г h, dm\ й II [fnàml ((F - N) - F,) + 

+ I f (/» - A*)di»iJ + I f A*d/fi„ - Г A, dm 
I J f n F f c I I J EnFfc J EnFk 

for each £ e 6(^) and each n, fc = 1, 2 , . . . . 
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Let e > 0. By a) take fe^ so that Ijk^ < is and || J/„ d w j {{F - iV) - F )̂ < ^e 
for each k'^k^ and each n = 1, 2 , . . . . Then we obtain for k^ k^ and for n ^ Wĵ, 
in virtue of Theorem 14 from Part I, the inequahties |J£oFk(A ~ л̂) dm„| ^ 
^ ||/M - hbu ' sup »«"̂ „(Ffc) < l//ci < i£, hence W^fn dm„ - Ĵ  Л̂  dm\ ^ s + 

n 

+ IbnF;, Äfc diii„ - Ĵ ^̂ ,̂  Ä;̂  dm| for each h e S^^). 

Let E e 6 (^) and k'^k^ be fixed. Since Ä;̂  • ZEHF^ is a ^-simple function, 
I JEOF^ К dm^. - JFOF^ Äfc d/w| -> 0 as П -^ 00 by (аг). Since lim \Е/П àm„ = v(£) e F 

П-+С30 

exists according to b), the last inequaUty impUes for w -^ oo that |v(£) — Ĵ  hj^ dm\ g 
^ e. Thus Jjs Äfc d/w -> V(JE) for each £ G 6(^) , hence / is integrable with respect 
to m, and J^/d/w = hm j ^ hj, dm = v(£) = hm f^X dm« for each E e ^ (^ ) by 

fc-*oo n -*oo 

Theorem 7 in Part I. If (a2u) holds, then, as was shown above in a) => b), the last 
limit is uniform with respect to £ G <©(̂ ). The theorem is proved. 

Obviously, in the special case when for all л = 1,2,..., Theorem 1 reduces 
to Theorems 15 and 16 in Part I. Another important special case occurs when/, = / 
for all n = 1, 2, . . . . The author has not succeeded in finding the classical scalar 
analog of Theorem 1 in Uterature. He found only a partial result in this direction in 
[15, Corollary 2 of Theorem 1]. 

The next corollary is immediate. 

Corollary 1, Suppose (a^) and (0,2), and let fj^ be integrable with respect to m„ 
for all k,n = 1,2,... . Then: 
1) / / the iterated limit lim lim J ^ / dm„ exists in Y for each E e 6(^) , then f is 

И-+00 k-*co 

integrable with respect to m and each m„, n = 1, 2,..., and 

lim lim Л dm„ = lim fdm„ = /d/w 
for each E e 6(^) . 
2) / / the iterated limit lim lim ^Efkdm^ exists in Y for each ЕЕ 6(^) , then f 

k-*oo И-+00 

and eachfj,, к = 1,2, are integrable with respect to m, and 

hm hm Л dm^ = lim I / ; dw = / d m 

for each E e S(^). 
Hence, if both the iterated limits above exist in Y for each Ее S(^), then they 

are equal. 
The name diagonal convergence theorem was suggested by the following 

Corollary 2. Suppose (a|) and (^2), and let fj^ be integrable with respect to m„ 
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for each к, n = 1, 2 , . . . . Then the following conditions are equivalent: 

a) the vector measures £ - ^ jf/^ dw„, E e ^{^), /c, n = 1, 2 , . . . are uniformly 

countably additive, and 

b) for each E e 6 ( ^ ) , lim J^A dm„ exists in Y for each и = 1, 2 , . . . , lim f̂ /̂  àm„ 

exists in Y for each /c = 1, 2, ..., and lim JÊ/^ . d/w„̂  exists in Y for all subsequences 
1 i-*oo 
ki, n,- -> 00. 

/ / they hold, then f is integrable with respect to m and each m„, n = 1,2,..., 
eachfk, к = 1, 2, ..., is integrable with respect to m, and 

lim 
к,п-*со 

f^ dm„ = hm lim 
Ц^ П-* CO fc-*00 

/^ d/M„ = lim / d w „ = / d m = 

= Hm /^ dm = lim lim /^ dw„ 
k->co J £ k--*oo n-*co Jß 

for each Ее 6 ( ^ ) . / / (a2u) holds, then lim ^в/к^^п = J ^ / d w uniformly with 
respect to E e Q{^). ^•"''̂ ^ 

Proof, a) => b) by Theorem 1, while b) => a) by the Vitali-Hahn-Saks theorem, 
see [11, III.7.2], [3] and [1, Theorem 2 in § 2]. The other assertions of the corollary 
follow immediately from Theorem 1, since a) impHes the uniform countable additivity 
of the vector measures £ - » J^/dm^, E -^ ^Е/^^О-ГП, Ee Щ^), n,/С = 1, 2 , . . . . 

Some special cases. 1. Let ^ == S ( ^ ) , let/^ : T-> ЛГ, /c = 1, 2 , . . . . be a bounded 
sequence in B(T, X) of ^-measurable functions, and let fjf) -^f{t)eX for each 
teT. Let further m^ : ̂ -^ L[X, Y), n = 1,2,..., be operator valued measures 
countably additive in the strong operator topology, let mJ^E) x -> m[E) jc e F for 
each Ee^ and each xeX, and let the semivariations m''„, n = 1,2,..., be 
uniformly continuous on ^, see also Theorem 2 below. Then m^(T) ^ sup m^jT) < 

n 

< + 00 by Lemma 3 in [8] and Corollary of Theorem 5 below, /^ are integrable 
with respect to m„ for each k,n = 1, 2 , . . . by Theorem 5 in Part I, and |J^A d/w„| ^ 
й m\{f„E) й \\fk\W ^\{Щ ^ sup l | / , | | r . s u p m \ ( T ) < +oo for each E e ^ 

к n 

by Theorems 2 and 1 in Part IL Hence the assumptions and condition a) of Corollary 
2 of Theorem 1 are fulfilled. Note that in Corollary of Theorem 6 below we obtain 
in a certain sense a stronger result than the assertions of Corollary 2 of Theorem 1, 
namely that lim sup /п^„(У^ - / , T) = 0. 

k-*(x> n 

2. Let X ®£ F denote the completion of the tensor praduct Z ® F in the inductive, 
or weak, crossnorm, see [16, § 20.5], and let ji : ^ ^ Fbe a countably additive vector 
measure. (Note that if X is the space of scalars of F, then X®^Y =Y and x ® j? = 
== X. y) Then clearly fi may be viewed as an operator valued measure ц : ̂  -• 
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~> L{X, X ®e F), \i{E) X = X ® [*(£), Ее ^,XE X, countably additive in the uniform 
operator topology. It easily follows from the properties of the weak crossnorm that 
Д(£) = IÎ 11 (£) for each Ее ^. Hence ji is finite and continuous on ^ by countable 
additivity of Ц : ̂  ~> F. If / : T -> Z is integrable with respect to ц : ̂  -^ L{X, X (x), 
®, Y), then we put J ^ / ® , dfi = J^/dfi, E e S(^). 

Let now ^ = Щ^)у let/fc : T -> AT, fc = 1, 2,. . . , be a bounded sequence in B{T, X) 
of ^-measurable functions, and let fk{t) -• f{t) e ATfor each t e T. Let further ц„ : ̂  -> 
~> F, /Î = 1, 2,. . . , be countably additive vector measures, and let ц„(£) -> \i{É) e Y 
for each Ee^. Then the semivariations Д„ = Ijî jj, n = 1,2,..., are uniformly 
continuous on ^ by the Vitali-Hahn-Saks theorem, see [11, IIL7.2], [3] and [1, 
Theorem 2 in § 2]. Hence we have the situation of case 1 described above. 

3. Let ^ = S(^), let /^ e З Л = ^^e closure of the space 3^ of all ^-simple func­
tions / : T~> Z in Б(Т, X)), fc = 1, 2,.. . , and let fk{t) ->/(t) e X uniformly with 
respect to teT, i.e., Ц/̂  - / | | т -^ 0 (hence fe% as well). Suppose further (аз). 
Then, according to Theorem 9 in Part I, Л are integrable with respect to m„ for each 
fc, n = 0, 1, ..., where/o = / a n d nto = m. Let e > 0 and take fco ̂ ^^ ^ ^-simple 
function g:T-^Xso that (||Л - ^||r + ||/-~ ^jjr). sup т \ ( Г ) < ^e for fc ^ fco-

It 

Then \UÂàm„ - У^/аш] ^ | f£(^ - g)àm„\ + iJ^i/dm« - j£</d»i| + 

+ lb (i/ - / ) dm| g IIA - 9\\T- sup in\(T) + | ^ g dm„ - j ^ </ d»i| + 
П 

+ 11̂  - /Цг. sup m''„{T) й is + Ih 9 ^^n - \E9 à^\ for each fc ^ fco and each 
n 

Ee^, Hence lim JE/U^^H = hf^^ ^^^ ^^^^ £ G ^ by (аз), and this limit is 
k,n-*oo 

uniform with respect to £ G ^ , provided (аз^) holds. The equaUties 

lim hm fj, dm„ = Hm fdm„ = fdm = Um /^ dm = 
n-*oo k-*oo j £ n--*coj£ JE ^~*<=^JE 

= hm hm Л ^'^n. £ e ^ , 

may be proved similarly. 
Let us note that neither Theorem 1 nor its corollaries have been used. Finally, 

recall that CQ{T, X) < 3s if ^ is a locally compact HausdorfF topological space and 
if ^ = ^o{= the ^-ring of all relatively compact Baire subsets of T), see Theorem 8 
Part I and [8]. 

2. MISCELLANEOUS RESULTS 

The next theorem is a generaUzation of the *-Theorem from Section 1.1 in Part I, 
and may be proved in the same way. 

Theorem 2. (Extended *-Theorem.) Let Y contain no subspace isomorphic to the 
space Co, for example, let Y be a weakly complete Banach space, (see pp. 160 and 161 
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^^ M ) ' '̂ ^ тп^: ^ -^ L[X, F), / 6 J, be operator valued measures countably additive 
r 

in the strong operator topology, and let y{É) = sup {| £ »«;,(£,•) д:;|, Ji e J, £,• 6 0>, 

£ ; п £ , = 0for 1 ф к , £ = U£i, x^e:^, |х,| ^ 1, i , f c= l , . . . , r , r = 1,2,...} < 
i = 1 

< +00 for each Ee^. Then the semivariations m^p j ^ J, are uniformly con-
tinuous on 0^. 

Since we shall deal with unconditionally convergent series in Banach spaces, let us 
recall the basic facts. We say that a sequence л ^ ^ » '̂  = 1» 2? •••> is summable 
to у eY, if for every 8 > 0 there is a finite set J cz со = {1, 2, ...} such that 
I J] j^j -- j ; | < e for each finite J с со, J з / . It is well-known, see Section IV. 1 in 
[4], that a sequence j„ e F, n = 1, 2 , . . . , is summable to j e Fif and only if the series 

00 

^ y^ is unconditionally convergent to j . By OrHcz-Pettis theorems this is equivalent 
n = 1 00 

to the weak unconditional convergence of the series ^ j„ to j , and if F contains no 
n = 1 00 

subspace isomorphic to CQ, then this is equivalent to the condition ^ jJ*J„| < + oo 
n = l 

for each j * e F*, see [2]. If j ( . ) , >̂ „(.) : T -• F, n = 1, 2 , . . . , then in addition to the 
pointwise summability of j;„(f), n = 1, 2 , . . , , to y(i) we have also the natural concept 
of uniform summabihty of л ( 0 ' " = 1, 2 , . . . , to y{t) with respect to t e Г, i.e., the 
summability of J7„(.), n == 1, 2 , . . . , to j( . ) in Б(Т, X). 

Lemma 1. Let v„ : ^ -> F, n = 1, 2 , . . . , be a sequence of countably additive 
vector measures, and for I e Ф^ and Ее ^ put Vj(£) = ^ ^{{E). Then the following 
conditions are equivalent: *̂ ^ 

a) the set function y, y{E) = sup ||vj|| (£), Ее 0, is continuous on 0, 

b) r/ï^ уесГог measures Vj, / e Ф ,̂ are uniformly countably additive on ^ , and 

c) / o r аи}^ sequence of pairwise disjoint sets I„e Ф ,̂ n = 1, 2, . . . , the vector 
measures Vj^, n = 1, 2 , . . . , are uniformly countably additive on 0^. 

Proof. Clearly a) => b) => c). 
c) => a). Suppose c) and non a). Then there is an 8 > 0, a sequence £^ ^ ^ , 

fc = 1, 2 , . . . , E;̂  \ 0, and a sequence J^e Ф ,̂ /c = 1, 2 , . . . , such that ||vj^| (E^) > e 
for all к = 1, 2, Put 11 = J i and k^ = 1. Since /^ is a finite set, and since each v„, 
n = 1, 2 , . . . , is countably additive on 0, there is a /c2 > k^ such that ||vj^ || ( Ê ^ J < | е . 
Put /2 = Jfc2 "" -'̂ i- Then /1 n / 2 = 0 and | |vjj (E^^) > ie. Similarly, since /^ u / 2 
is a finite set, there is a кз > k2 such that Hv/j^/^i (̂ fca) ^ 2^- ^^^ h ^ ^кз "̂  
- (/1 u /2). Then /3 n (/1 u /2) = 0 and ||vj3|| (Ej,^) > ^s. Continuing in this way 
we obtain a contradiction with c). The lemma is proved. 

Using this lemma we have the following simple consequence of the VitaU-Hahn-
Saks theorem, for the latter see [11, III. 7.2], [3] and [1, Theorem 2 in § 2]. 
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Theorem 3. Let v„ : ̂  -> F, п = 1, 2, ..., be countably additive vector measures, 
00 

and let for each Ee^ the series XI ̂ л(^) ^^ unconditionally convergent in Y. 

Then the vector measures Vj, I e Ф^, are uniformly countably additive on 0^. 

Proof. Let/„ G Ф ,̂ n — 1, 2, ..., be a sequence of pairwise disjoint sets. According 
to Lemma 1 it is enough to show that the vector measures Vĵ , n = 1, 2, ..., are 
uniformly countably additive on ^ . But this follows immediately from the Vitali-
Hahn-Saks theorem, since Vĵ (E) -> 0 for each £ e ^ by the unconditional conver-

00 

gence of the series ^ v„(£) in F, £ e ^ . 
n= 1 

A partial converse to this theorem is the following 

Theorem 4. Let T be a locally compact Hausdorff topological space and let 
v„ : 6 ( ^ ) -> F, n = 1, 2, ..., be countably additive regular Borel vector measures. 
Further, 

(i) let the vector measures Vj = X^»> ^^^u ^^ uniformly countably additive 

on 6 ( ^ ) , '^^ 

(ii) let Y contain no subspace isomorphic to CQ, (see pp. 160 and 161 in [2]), and 

(iii) let sup |vj({f})| < + со for each t e Г. 
Ie0i 

Then the series ^^^п{Щ ^^ unconditionally convergent in Y for each Ее 6(J^). 
n = l 

Proof. For E e S ( ^ ) put fi{E) = sup ||vj|| (£). Then clearly /z : 6(J^) -> <0, + oo> 
1еФ1 

is monotone, subadditive, and continuous by (i). Hence /x is a submeasure in the sense 
of Definition 1 in [9]. Since we suppose (ii), according to Theorem 5 in [2] it is enough 
to show that /i(£) < + oo for each E e S{ß). By Theorem 4 in [9] there is a set 
Ö 6 (5(J') such that /i(E) = /x(£ n Q) and д(£ - Q) = 0 for each E e 6(J ' ) . Owing 
to the Saks decomposition of Q with Jespect to /x, see Theorem 8 in [9], there is a finite 

г 
number r of pairwise disjoint elements AQ, A^^,..., A^ of S(J^) such that Q = \J Ai, 

i = 0 
and each A^, i = 0, 1, ..., r, is either an atom of /x (see Definition 2 in [9]) with 
fi{A^) > 1, or ii{Ai) ^ 1. According to Theorem 12 in [9] each atom of /л is con­
centrated at a point t e T. Thus using (iii) and the subadditivity of fx we have /x(E) = 
= fi{E n Q) ^ /i(Q) < 4- 00 for each E e S(J^), which was to be shown. The 
theorem is proved. 

Remark 1. From this proof it is clear that Theorem 4 remains valid for general 
countably additive vector measures v„ : S ( ^ ) -> F, n = 1, 2 , . . . , if the condition (iii) 
is replaced by 

(iii)' let sup ||v/|| (E) < +oo for each Ее S ( ^ ) which is an atom of each V/, 
1еФ,, '"^^ 
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The properties of submeasures used in the proof of Theorem 4 yield the following 
resuh. (For the definition of the L^-pseudonorm /w^(.,.) and its properties see 
Part II and the paragraph before Theorem 3 in Part III.) 

Theorem 5. Let fi : T -> X or fi : T -^ <0, + со), / e / , be ^-measurable functions, 
and let ntj : ^ -> L(X, Y), j e J, be operator valued measures countably additive 
in the strong operator topology. Let further the L^^-pseudonorms m^j(fi, .), j e J, 
iel, be uniformly continuous on S ( ^ ) , and let sup | j ^ |/^| d(/w^(.) x)| < + oo 

for each x e X and each Ae ^ which is an atom of each nij, j e J. Then 
mpm''j{fi,T)< +00. 

Remark. We do not suppose that the semivariations m^j, j e J, are finite on ^ . 

Since ml) X (/,, E) = \\mj{.) x\\ (/„ E) й \\mj\\ (/„ E) S m"^j{f,, E) for each x e X, 
E e 6 ( ^ ) , i e I and j e J, the continuity of m^j(fi,.), j e J, i e I, by Lemma 1 in 
Part II imphes that | / i | is integrable with respect to nijÇ) x, j e J, xe X, and nij, 
je J. 

Proof. By the Uniform Boundedness Principle, see [U , I I . l . l l and II.3.21], the 
last condition in the theorem implies that sup sup |J^ |/^| d(w^(.) x)j < + oo for 

each AE ^ which is an atom of each ntj, j e J. 

For E e 8 ( ^ ) put fi{E) = sup w'^X/f, E). Then clearly fi : 6 ( ^ ) -> <0, + oo> is 

a submeasure in the sense of Definition 1 in [9]. If we show that }i[A) < +oo for 
each atom A of JLL (see Definition 2 in [9]), then similarly as in the proof of Theorem 
4, the subadditivity of fi will imply the desired result by Saks decomposition. Let 
A e S ( ^ ) be an atom of fi. Since /z is continuous on S ( ^ ) , we may suppose that 
Ae ^. Let us have a fixed couple (ij) el x J. Then obviously either m^j[fi, A) = 
= 0, or Л is an atom of m^j^f^, .). Suppose A is an atom of m""j[f^, .). Since 
m''j{fi,A) = lim m^j{fi, {t : t e A, Ijn ^ |Дг) | ^ n}), there is an По such that 

n-*oo 

m^j{fi, A - [t iteA, 1/по й \fi{t)\ й щ}) = 0. Partitioning the interval <1/по. "o> 
into smaller and smaller parts, by monotone continuity of m^j(^fi,.) on S ( ^ ) , see 
Theorem 1 in [9], we obtain a number a, 1/по ^ a ^ HQ such that т""j^f^, A — 
-{tue A, \fit)\ = a}) = 0. Hence ш ^ / Д A) = a . m^j{{t : t e A, \f,{t)\ = a}) = 
= sup IJ^ 1/,| d{mj{') x)\. But then ii{A) = sup m%{/„ A) = sup sup |J^ |/ , | . 

Ix l^ l iJ iJ | x | g l 

. d{mj(.) x\ < +00, which proves the theorem. 

From this theorem we immediately obtain the following 

Corollary. Let ntj : 6 ( ^ ) -^ L(X, Y),j e J, be operator valued measures countably 
additive in the strong operator topology, let the semivariations m''j,je J, be uni-
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formly continuous on б ( ^ ) , and let sup |^ j (^) x| < + oo for each xe X and each 

Ae ^ which is an atom of each ntj, j e J. Then sup m^ j(T) < oo. 

Remark 2. If T is a locally compact Hausdorff topological space, and if ntj : ̂  -^ 
-> L{X, Y), j e J, are Borel measures regular and countably additive in the strong 
operator topology, then the last condition in Theorem 5 may be replaced by the 
following: sup \fi{t)\ . |т/{г})л:| < +oo for each f e Г and each x e X Similarly, 

in this case the last condition in the corollary above may be replaced by the following 
sup \mj{{t}) jcl < + 00 for each Г e Tand each x e X, 
JeJ 

The next theorem is a generahzation of the Lebesgue dominated convergence 
theorem in ^ i ( w ) , see Theorem 17 in Part II. 

Theorem 6. (Extended Lebesgue dominated convergence theorem.) Let fj, : T-^ X 
or y^ : T-> <0, +oo), /c = 1, 2, ..., be ^-measurable functions and let fj^{t) -> 0 
for each t e T. Let further m„ : ̂  -^ L{X,Y), n = 1,2,..., be operator valued 
measures countably additive in the strong operator topology, let the L^-pseudo-
norms fn^n{fk->')y n,k=l,2,..., be uniformly continuous on 6 ( ^ ) , and let 
sup m''„{É) < -{-oo for each Ee^. Then lim sup т''„{/^, T) = 0. 

n k-*ao n 

Proof. For EE^{^) put 

n(E\ == у 1 у 1 ^"^njfk^E) , 
^^ ^ .t^i 2" À 2 M + / / ! % ( / „ T)*' 

(Since m^„{fk,.) is continuous on ®(^) by assumption, m''„(ff^,T) < +oo by 
Corollary of Theorem 5 in Part IL) Then ft : @(^) -> <0, 1) is monotone, subadditive 
and continuous, and Ne 6 ( ^ ) , fi{N) = 0 implies m''„{fk,N) = 0 for all k, n = 

00 

^l,2,....FutF = \J{t\tET, fk{t) Ф 0} G S ( ^ ) . Since fj^t) -> 0 for each t e T, 
k=l 

the Egoroff-Lusin theorem, see Section L4 in Part I (which remains vahd for such ju), 
impHes that there are F^ e ^ , i = 1, 2, ..., and N e 6 ( ^ ) such that NaT, fi{N) = 0, 
Fl /" F — N, and on each F,-, i = 1, 2 , . . . , the sequence/^, fc = 1, 2 , . . . , converges 
uniformly to 0. Since m\{f^, T) = m\{f^, F) S m\{f„ F,) + m\{f„ (F - N) ^ 
- F,)u\\f,\\,^. sup m\{F,) + m\{f„{F-N)-Fl) for all f,/c, n = 1, 2 , . . . , 

n 
the assertion of the theorem is now evident. 

From here and from Corollary of Theorem 5 we immediately have the following 

Corollary. (Extended Lebesgue bounded convergence theorem.) Let f^: T-^ X or 
y^ : T -> <0, + oo) be a bounded sequence in B(T, X) or B{T, R), and let f^{t) -> 
-^f{t) eX or R for each t e T Let further m„ : S ( ^ ) -> L{X, F), n = 1, 2 , . . . , 
be operator valued measures countably additive in the strong operator topology^ 
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let their semivariations /n^„, n = 1,2,..., be uniformly continuous on 3 ( ^ ) , and 
let sup |ш„(Л) jc| < + CO for each x e X and each Ae ^ which is an atom of each iii„, 

n 
n = 1, 2, ... . Then Hm sup 1и^„(/^ ^ f^t) = 0. 

fc-*oo и 

Remark 3. The basic tool in our theory of integration is the Egoroff-Lusin theorem, 
see Section 1.4 in Part I. It has been used, until the proof of Theorem 6 above, via 
the existence of a control measure for a countably additive vector measure or for 
a continuous L^-pseudonorm, see the previous parts. Obviously, it remains vaHd 
when jx : 8 ( ^ ) => (O, + oo) is monotone, subadditive, and continuous (in fact, it 
clearly remains valid for general submeasures pi : 6 ( ^ ) -^ <0, + oo) in the sense of 
Definition 1 in [9]). Therefore instead of control measures we can use either directly 
the continuous Lj-pseudonorms as in the proof of Theorem 6, or, in the case of 
a countably additive vector measure ц : (З(^) ~> F, the set function Д(£) = sup 
{|fi(F)|, F G 6 ( ^ ) , F C: É] (which by elementary straightforward arguments, see 
Theorems 2.6 and 3.5 in [12], is bounded, monotone, subadditive, and continuous). 
On the other hand, the existence of a control measure for a countably additive vector 
measure was essential for the proofs of Theorems 14 and 15 (The Fubini theorem) 
in Part III. 

We are now ready to prove (for notations and terminology see Part III) 

Theorem 7. Let ш^ : ^ -> L{X, Y), i el, be operator valued measures countably 
additive in the strong operator topology, let the semivariations m^ i, iel, be 
uniformly continuous on 0^, and let sup |iWi(^) л:| < 4-oo for each xeX and each 

Ш 

Ae ^ which is an atom of each m^, i e / . Let us subject Ij : ̂  -^ L(Y, Z), j e J 
to analogous assumptions. Then the product measures Ij ® m^: ^ ® â -^ L{X, Z) , 

i el, je J, exist, sup (/̂  ® m^) (E) < + oo for each Ее 0^ ® £1, and the semi-

variations Ij ® /и^, iel, j e J, are uniformly continuous on 0^ ® â. 

Proof. The product measures Ij ® т^: 0 ® £1 -^ L{X, Z), iel, j e J, exist by 
Theorem 3 in Part III. 

Let £ G ^ ® J and take Ae0 and В e J so that £ с Л x Б. Since sup w^ (̂Л) < 

< + 00 and sup / ^ J ( B ) < + 00 by Corollary of Theorem 5, we have sup (/y ® m^ 
jeJ (ij)elxj 

(E) S sup m^'lA) . sup rj{B) < + oo by Theorem 2 in Part III. 
iel jeJ 

Concerning the last assertion of the theorem, we immediately see by indirect 
proof that it is enough to prove it when I = J = {1 2 , . . . } , i.e., when we have a se­
quence nij^, к = 1,2,..., and a sequence /„, n = 1, 2, . . . . Let E^e 0 ® â, г = 
= 1, 2, ..., and let E, \ 0. For r = 1, 2 , . . . and se S put /,(s) = sup m''^{E^, 

к 
Since each semivariation m^j^, /c = 1, 2 , . . . , is continuous on 0, each function s -> 
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-> w'̂ ;̂ (£J), s e 5, /с, г =' 1, 2,. . . , is -â-measurable by Lemma 2 с) in Part III. Hence 
each /^, r = 1, 2,. . . , is ^-measurable by Theorem A in § 20 in [13]. Take A^^ ^ 
and B^Gâ so that E^ с A^ x B^. Then /,+ i(s) й fr{s) й 

sup m'^;^(^i) < + 00 
к 

for each r = 1, 2, ... and each SE S, Hence the functions /^, r = 1, 2, ..., are Uni­
formly bounded on B^. Since we assume that the semivariations т̂ ;̂ > ^ = 1̂  2, ...^ 
are uniformly continuous on ^,fr{s) -^ 0 for each s e B^. Thus hm sup /^„(Л, B^) = 
= 0 by Theorem 6. Since (/, ®/n,) (£,) ^ /\(m,(£,), Б ^ ^ Г„"(/,, Б^) for all 
n, /c, r = 1, 2 , . , . by Theorem 2 in Part III, we conclude that Hm sup (/„ ® mj,) [Er) = 

r-^oo n,fc 

= 0. The theorem is proved. 

3. APPLICATIONS TO INTEGRALS OF UNCONDITIONALLY 
CONVERGENT SERIES OF FUNCTIONS AND MEASURES 

The Orlicz-Pettis theorems, see [4, IV. Theorem 1], [11, IV.lO.l] and [2], is a pow­
erful tool for establishing unconditional convergence of a given series in a Banach 
space. Hence it is reasonable to apply our diagonal convergence theorem to integrals 
of unconditionally convergent series of functions and measures. 

We shall use the following three assumptions corresponding to assumptions (a^), 

(аз) and (a2u) in § 1. 
00 

(bj): Let fk : Г-> X, к = 1, 2, ..., be ^-measurable functions, and let ХЛ(0 = 
= f(t) e X unconditionally for each t e T. ^"^ 

(Ьз): Let m„ : ̂  -^ L(X, F), n = 1,2,,.., be operator valued measures countably 
00 

additive in the strong operator topology, let ^ ш^{Е) x = m(E)xEY un-

conditionally for each E e 0^ and each xe X, and let sup ( ^ m^) (E) < + oo 

for each Ee^. 
00 

(b2u) : (Ьз) and Ya ^n(-) x = /w(.) x unconditionally in B{^, Y) for each xeX. 
и = 1 

Note that if (Ьз) holds, then m''{É) ^ sup ( ^ ni) (£) < + oo for each Ee^. 
Ie0i iel 

For the next result, Theorem 15 in Part I (a special case of the diagonal convergence 
theorem) is sufficient. 

Theorem 8. Suppose (b^). Let further m : ̂  -> L{X, Y) be an operator valued 
measure countably additive in the strong operator topology, let m^{E) < +oo 
for each Ее ^, and let each fj^, /c = 1, 2,. . . , be integrable with respect to m. Then 
the following conditions are equivalent: 
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a) the series ^ J Ê A dm is unconditionally convergent in Y for each E e S ( ^ ) , and 
fc=i 

b) the vector measures E ~^Y, h ft ^^^ ^ ^ ^{^), ^ ^ ^u ^'^^ uniformly countably 
additive. '^^ 

00 

/ / they hold, then f is integrable with respect to m, and ^ Jy^ dm = J/d/w uncon-
ditionally in Б ( 6 ( ^ ) , У). ^=^ * 

Proof, a) => b) by Theorem 3. We show that b) implies the second assertion of the 
theorem, hence also a). Suppose b) and let p{i), i = 1, 2 , . . . , be any permutation of 

к 

0) = {1, 2 , . . . } . Then Sk{t) = Y,fp(i){t) - ^ / ( 0 foi" each ^e Tby (bj), and the vector 

measures E -> ^^^kdm, Ее S ( ^ ) , к = 1, 2 , . . . , are uniformly countably additive 
к 

by b). Hence/is integrable with respect to m and ^ ifpn) dm -> J/d/w in Б ( 6 ( ^ ) , F) 

by Theorem 15 in Part I. This yields, since p{.) is any permutation of (1, 2, , . . } , 
00 

that X 1Л àm = J / d w unconditionally in J5(8(^), F), see [4, IV. § 1, (B) о (С)]. 
k = l-

The theorem is proved. 
Similarly, using another special case of Theorem 1, we immediately obtain 
Theorem 9. Suppose (b2). Let further f:T-^ X be a ^-measurable function 

integrable with respect to each m„, n = 1, 2, ... . Then the following conditions are 
equivalent: 

00 

a) the series ^ J^/dm^ is unconditionally convergent in Y for each E e в ( ^ ) , and 
n=l 

b) the vector measures -Б -> ^ J^/dw^, E e 6 ( ^ ) , / e Ф^, are uniformly countably 
additive. ^^^^ 

00 

/ / they hold, then f is integrable with respect to m, and ^ J^/diw^ = J^/dw 
И = 1 00 

unconditionally for each £ е<3 (^ ) . / / , moreover, (b2u) holds, then J^^fdm„ — 
= J/dwi in B ( 6 ( ^ ) , F ) . ''=^* 

Theorems 8 and 9 immediately imply 

Theorem 10. Suppose (b^) and (^2). Let further f^^ be integrable with respect 
to m„ for all k, n = 1,2,... . Then: 

00 00 

^) ^f S YJ ̂ в/к^Щ ï̂  iteratively unconditionally convergent in Y for each 
и=--1 k = l 

ЕЕ 8 ( ^ ) , then f is integrable with respect to m and each m„, n = 1, 2 , . . . , 
and 00 00 /• 00 /• /• 

i: I Adm„ = X /d/n„= /d 

/ o r еасй £ e S ( ^ ) . 
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со 00 

2)-V s Yihfk^^n ï5 iteratively unconditionally convergent in Y for each 
k=l n = l 

Ее S{0^), then f and ail fk, fc = 1, 2,.. . , are integrable with respect to m and 
00 00 / • 00 / • 

I I fkdm^^T Âdm 
k=ln=ljE k=ijE 

for each E e S(^). 

From Theorems 8, 9 and 10 we easily deduce 

/ d m 
E 

Theorem 11. Suppose (bj) and (Ьз). Let further /^ be integrable with respect 
to m„ for all /c, n = 1, 2, ..., and let the vector measures £ -> ^ J^/dwi^., E G 

e 6(^) , J 6 Ф2, be uniformly countably additive. Then/is integrable with respect 
00 CO 00 00 

to m and both Y, Y, Ißfk dw« ^"^ S Z Ь Л diii„ are iteratively unconditionally 

convergent to ^Ef^^for each Ее S(^). 

Using Theorem 1 we obtain (see also Theorem 4) 

Theorem 12. Suppose (Ь^) and (Ьз). Let further /^ be integrable with respect 
00 

to m„ for all fc, n = 1, 2,. . . , and let the series ^ J /̂̂ din^ be unconditionally 
k,n=l 

convergent in Y for each Ее S(^). Then the vector measures E -^ Y h/k^^n^ 
ik,n)el 

£ e 8 ( ^ ) , 1еФ2, are uniformly countably additive, f is integrable with respect 
00 

to m and ^ hfk^^ = jE/dm unconditionally for each Ее (5(^). / / (Ьзи) 
00 

ÄoWs, йеп Y 1Л dw„ = J /dw unconditionally in B(S(^), F). 
k,n= 1 • 

Proof. The first assertion follows immediately from Theorem 3. Since 
00 i f 

I |£/ tdm„ = lim|E(XA)d(;^iii„) for each £ e S ( ^ ) , / i s integrable with 
* , и = 1 i-*oo fc=l n = l 

00 

respect to /и, and ^ J^/kdw^ = J^/dm for each £ e (5(^) by Theorem 1. By 
k , n = l 

assumption the last convergence is unconditional for each E e S(^). 
00 

Let us assume (Ьзп) and suppose that the series Y, jAdm„ is not summable 
00 k,n=l' 

to | / d m in Б(®(^), F). Then, since Y Ufk^^n^" JE/^^ unconditionally for 
00 k,n=l 

each E e S(^), the series Y Ifk ^^n is not summable in 5(S(^), F). Hence there 
к , и = 1 * 

is an e > 0, a sequence of pairwise disjoint non empty sets If e Ф2, i = 1, 2,. . . , 
and a sequence £,£ ®(^), г = 1, 2,.»., such that | Y hifk^^nl > e for each 

(fc,«)6/t 

i = 1, 2 , . . . . Since Y ÏEifkd^n -^ О as i -> 00, the unconditional convergence 
ik,n)elt 
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of the series ^ Uifk^^n ^^ ^ implies that there is an ij > /̂  = 1 such that 
k,n = i 

I ^ JE- -E- fk ^^n\ > s- Similarly there is an Ï3 > 1*2 such that 

I Z IE- -{E- KJE' )fk^^i\ > ^' Continuing in this manner we obtain a sequence 

of pairwise disjoint sets F^ = Ei^ — {E^^ u . . . u E^^^^e S ( ^ ) , r = 1, 2, ..., such 

that I Yu lFrfk^^n[ > e for all r = 1, 2, Hence we have obtained a con-

tradiction with the uniform countable additivity of the vector measures E -^ 
-• YJ IE/U àm„,E e 6 ( ^ ) , I e Ф2. The theorem is proved. 

(k,n)eJ 

4. APPLICATIONS TO PRODUCTS AND DOUBLE INTEGRALS 
OF SEQUENCES AND SERIES OF OPERATOR VALUED MEASURES 

The results obtained above combined with the main theorems of Part III yield 
interesting results about products and double integrals of sequences and series of 
operator valued measures. We state and prove only few of them for illustration. 

Let us note that the next theorem, by suitable localization, remains valid if в ( ^ ) , 
S(^) and 6 ( ^ ® J ) are replaced by ^, й and ^ ® J respectively, but then we have 
a somewhat weaker result. 

Theorem 13. Let w, : S ( ^ ) -^ L(X, F) and /„ : 6 (^ ) -> L{Y, Z), n = 1, 2 , . . . 
be operator valued measures countably additive in strong operator topologies, let 
m^{A) X -» m(Ä) X e Y for each A e S ( ^ ) and each xe X, and let /„(Б) у -> l(^B) у e 
e Z for each В E â and each y еУ. Let further sup /'^„(^) < + 00 for each Bel, 

n 

and let the product measures In ® Щ ' ^{^ ® J ) -> L{X, Z), n = 1,2,..., exist. 
Then the following conditions are equivalent: 

a) the vector measures E -> (/„ ® /и„) (£) x. Ее S ( ^ О J ) , n = 1, 2 , . . . , are 
uniformly countably additive for each x e X, 

b) the vector measures Б -^ (4 (x) m j [E r\[T x B)) x, В e 6 (^ ) , n = 1,2,..., are 
uniformly countably additive for each E e S ( ^ ® 1) and each x e X, and 

c) lim (l„ ® m^) (£) д: G Z exists for each E e 6 ( ^ ® J ) and each x e X. 
и->сю 

/ / they hold, then the product measure I ® m: S ( ^ ® ^) -^ L{X, Z) exists, and 
lim (/„ ® m„) (£) jc = (/ ® w) (£) д: /o r each E e S ( ^ ® 1) and each x e X, 

Finally, if ln(B) у -> /(Б) у uniformly with respect to Bel, then lim (/„ ® m„) 
n-*oo 

(En (Г X Б)) X = (/ ® w) (E n (Г X Б)) x uniformly with respect to В e S ( J ) 
for each Ee 8 ( ^ ® 1) and each xe X, 

Proof, a) =^ b) trivially, while c) => a) by the Vitali-Hahn-Saks theorem, see 
[11, III.7.2], [3] and [1, Theorem 2 in § 2]. 
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Suppose b). According to Theorem 1 in Part III we have 

(1) (/„ (X) m„) {E)x = \ m„(F) x dl„ for each E e 8 ( ^ ® .â), xeX 

and n = 1, 2, ... . 

Let E E S{^ ® J ) and x G X Ы fixed. Since m„(E^) x -> w(£^) x for each se S, the 
function s -> m(£^) x, s e S, is integrable with respect to /, and 

(2) I m,{E') X d/„ -> j m{E') x d/ for each В e 6 ( J ) 
J в J в 

by Theorem 1. Hence the product measure I ® m : S ( ^ ® J ) -> L{X, Z) exists by 
Theorem 1 in Part III. Taking В e 6(.â) so that T x Б з £, we obtain from (1), (2) 
and Theorem 1 in Part III that {l„ ® m„) (£) x -^ js fn{E') x dl = (l ® m) (E) x. 
The last assertion of the theorem also follows from (1), (2) and Theorem 1. 

From this theorem and its proof it is evident how to apply Corollaries 1 and 2 
of Theorem 1, and Theorems 8—12 to products of sequences and series of operator 
valued measures. 

Theorem 14. Let mj,:^ -> L{X, Y) and /„ : .â -> L{Y, Z), k.n = 1,2,..., be 
operator valued measures countably additive in strong operator topologies, let 
mj^{Ä) X-^ m(Ä) X E Y for each Ae^ and each x E X, let l„(B) y -> 1(B) y E Z 

for each В E 1 and each у EY, and let the semivariations l^^, n = 1,2, .,., be uni­
formly continuous on J . Then l"" is continuous on J , sup /^„(Б) < + oo for each 

n 

BE 1, all product measures /„ ® W/̂  : ^ ® J -> L{X, Z), k,n = 0, 1,2,,.,, where 
IQ = I and triQ = m, exist, and 

lim (/„ ® nij^ (£) X = lim lim (/„ ® щ) (E) x = lim [l„ ® m) (E) x = 
n,k-*(X> П-+00 fe-*oo n-*co 

= (I® m) (£) X = lim ( / ® т^) (£) x = Mm Hm (/„ ® т^) (E) x 

k-^oo fc->oo n->oo 

for each ЕЕ ^ ® â and each xe X. 

Proof. Since /^(Б) ^ sup/' '„(Б) for each В E 1, Г is continuous on ± 
n 

sup 1^„{B) < +00 by Corollary of Theorem 5. According to Theorem 3 in Part III 
n 

the product measures l„ ® m^, k,n = 0,l,2,..., exist in virtue of continuity of the 
semivariations /""„,« = 0, 1, 2, ..., on J . By Theorem 1 in Part III 
(1) ( 4 ® m , ) ( £ ) x = ^m,{E^)xdl„ 

for each n Д = 0, 1,..., each £ e ̂  ® J, and each xeX, 
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Let Ee^ ® 1 ша xeX Ы fixed. Take Ae^ and BE â so that E cz A x B, 
and put y^(s) = ntf^^E^) JC, se S, /C = 0, 1 , . . . . Then the functions fj^ : S -^ Y, к = 
= 0, 1, ..., are ^-measurable by Lemma 2.1 in Part III. Since т^(С) x -> m{C) x EY 
for each С e ^ , we havey^(s) -^ /o(s) for each se S, and the semivariations || т^^(.) x\\, 
к = 1, 2 , . . . , are uniformly continuous on ^ by the Vitali-Hahn-Saks theorem, see 
[11, III.7.2], [3] and [1, Theorem 2 in §2] . Thus К = sup ||т^(.) д:|| (Л) < +oo 

к 
by Corollary of Theorem 5. (The Nikodym theorem on uniform boundedness of mea­
sures, see [11, IV.9.8] and [1, Theorem 1 in §2] , may be used alternatively.) Since 
clearly ||Ai|s = ^ for all /c = 1, 2 , . . . , and since we assume that the semivaria­
tions /""„, n = 1, 2, ..., are uniformly continuous on â, we have the situation of case 1 
after Corollary 2 of Theorem 1 ( 8 ( ß n Щ = В n â). Hence (1) and Corollary 2 of 
Theorem 1 imply the last assertion of the theorem. The theorem is proved. 

Theorem 15. Let the following assumptions be satisfied: 

(i) ^ = 6 ( ^ ) , J = 6 (^ ) , fj:T X S -^ X, j = 1,2, ..., is a bounded sequence 
in B(T X S,X) of ^ ® ^-measurable functions, and fj(t, s) -^ f{t, s) e X for 
each {t, S)ET X S, 

(ii) ntj^: 0^ -^ L(X, Y), к = 1,2,..., are operator valued measures countably 
additive in the strong operator topology, mJ^Ä) x -> m{Ä) XEY for each 
AE ^ and each xeX, and the semivariations m^j^, к = 1, 2, ..., are uniformly 
continuous on ^, and 

(iii) l„ : ̂  -^ L{Y, Z), n = 1, 2, ..., are operator valued measures countably additive 
in the strong operator topology, IJjB) у -> 1(B) у E Z for each BE â and each 
y EY, and the semivariations Г„, n = 1, 2, ..., are uniformly continuous on â. 

Then: 

1) m^ is continuous on ^, /^ is continuous on 1, sup in''^(T) < + oo and 
supr„(S') < +00, ^ 

n 

2) the product measures l„® m^: ^ ® й -^ L{X, Z), /c, n = 0, 1, ..., where mQ = 
= m and IQ = /, exist and fulfil 

lim (/„ ® nifc) {E) X = lim lim (/„ ® iw )̂ (E) x = 

= Urn (/„ ® m) (E) X = (/ ® w) (£) jc == Mm (/ ® т^) (£) x = 
и-»оо k-*oo 

= lim lim (/„ ® iw )̂ (£) x for each EE0^ ®.^ and each XEX, 
k-*co n~*co 

and 

(/ ® iw) (T X S) й sup (/„ ® HI,,) (T X S) S sup r^{S). sup 1и''^(Г) < + oo , 
n,k n к 
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3) the semivariations In® Щ, n, fc = 0, 1, ..., are uniformly continuous on 
^ ® й = s ( ^ ® ä), 

4) theL^'pseudonorms[In ® щ){/], О'Л fc, n = О, 1, ..., are uniformly continuous 
on ^ ® X 

5) hm sup (4 ® Wfc) (/y — / T X S) = 0, and 

6) a// integrals below exist and the following identities hold: 

fj à{l„ ® ntj,) = \ fj{., s) dmj, dl„ for each ; , /c, n = 0, 1, . . . , 
J E J S J E" 

and each E e ^ ® â, and 

hm fj d(4 ® nij,) = lim hm fj d{l„ ® nij) = 

fd{l®m) 
E 

= hm lim fj d{l„ ® m^ = lim hm lim /} d(/„ ® nij^ = 
a-*oo /î,y-*QO J £ a-*oo ß-^oo y-*oo J £ 

for each E e ^ ® â and each permutation (a, ß, y) of ( j , /c, n). 

^/ /} e 3s (^ ® ^) ( = r/z^ closure of all ^ ® ^-simple functions f:Tx S -^ X in 
B{Tx S, X)), j = 1, 2, ..., iffj{t, s) - > / ( ^ s) uniformly with respect to (t, s)eTxS, 
and if sup m^iç{T) < oo, then assertions 2) and 6) remain valid even if we do not 

к 

assume the uniform continuity of the semivariations т^^, к = 1,2,..., on 0^. 

Proof. 1). Since 1и^(Л) ^ sup 1и^^(Л) for each Ae0^, m^ is continuous on 0^ 
к 

by uniform continuity of /ŵ ĵ » " = 1,2,.. . , on 0. Further, sup ni'̂ jtC^) < +co 
fe 

by Corollary of Theorem 5. Similarly l^ is continuous on â and sup /^„(S) < + oo. 
n 

2) follows from Theorem 14. 
3) follows from Theorem 7. 
4) foHows from 3) and the inequahties (/„ ® m^^ (fj, E) ^ sup ||/}||r xs • sup (4 ® щ). 

j n,k 
. (£), 7, /c, n = 0, 1 , . . . and £ G ^ (X) J , see Theorem 1 in Part II. 

5) follows from 4) by Corollary of Theorem 6. 

6) fj is integrable with respect to 4 ® Щ^Ь fc, и = 0, 1 , . . . , by 3) and Theorem 
5 in Part I. Similarly, by Theorem 5 in Part I the function /}(., 5) is integrable 
with respect to /Wĵ  for j , fe = 0, 1, . . . , and each seS. By Theorem 9 in Part 
III the function 5-> j£5/}(., 5) dm .̂, s e S, is .â-measurable, and by Theorem 
5 in Part I it is integrable with respect to 4 for;, k, n = 0, 1 , . . . and each Ее 0 ® â. 
Finally, j£ /yd(4 (g) nifc) = Js j£./}(., s)difi;,d4 for j , k, n = 0, 1 , . . . and each 
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£ e ^ ® J by Theorem 16 in Part III. Now the identities concerning Umits follow 
from Corollary 2 of Theorem 1, see case 1 after the same Corollary. 

The last assertion of the theorem follows from Theorem 14 and Corollary 2 of 
Theorem 1 by virtue of the considerations of case 3 at the end of § 1. 

Let us recall the notations of case 2 at the end of § 1 and, for countably additive 
vector measures ц : ̂  -> У and v : J -> Z, let ц ®, v : ̂  ® J -> F ®, Z be the 
inductive tensor product measure, which exists by Theorem 3 in Part III, i.e., it is 
a countably additive vector measure. 

Corollary. Letfj : Г x S -^ X,j = 1,2,.,,, be a bounded sequence in B(T x S, X) 
of ^ ® â-measur able functions and let fj(t, s) -* f{t, s) G Xfor each (t, s)e T x S. 
Let further \ik : 6(^) -> Y andv„ : 6(^) -^ Z, /c, n = 1, 2,. . . , be countably additive 
vector measures, and let Ц/с(̂ 4) -^ ]i[A) e Y and v„(B) ~> v(B) e Z for each A e 6 (^) 
and each Б е ®(^). Then: 

1) hm (̂ i, ®,v„) (£) = hm Um (ц, ®,v„) (E) = lim (ц ®,v„) (£) = {\i ®,v) (£) = 

= Km (\ik ®e v) (E) = hm hm (ц;̂  ®, v„) (£) for each E e 6 ( ^ ® ^) , 

2) hm sup 
y-*oo k,n 

( / ;- /)®.d(v„®.n,) (Гх S) = 0, 

3) analogs of the assertions 6) of the theorem hold. 
If, moreover, ]ik{Ä) -^ ц{А) uniformly with respect to Ae ^ and if v„{B) -* v{B) 

uniformly with respect to В e X then these limits are uniform with respect to 
A E 6 (^) and В e 6(J) respectively, hm (̂ î  ®e v„) (£) = (p, ®e v) (E) uniformly 

k,n-^<x> 

with respect to Ее 6 ( ^ ® ^), and lim Jf/} ®ed{iij, ®л„) = j£/®ed(n ®.v) 
j,k,n-* oo 

uniformly with respect to EG ®(^ ® ^). 

Proof. Only the assertion concerning uniform Kmits is perhaps not immediate. 
Suppose Pfe(̂ ) ^ ii{A) and v„(B) -> v(B) uniformly with respect to Ae ^ and J5 e ^ 
respectively. Since, by the Vitali-Hahn-Saks theorem, see [11, III.7.2], [3] and [l, 
Theorem 2 in § 2], the vector measures \1^ : ®(^) -^Y, /c = 0, 1,..., ÎQ = Ц, and 
v„ : S(É) -* Z, и = 0, 1,..., Vo = V, are uniformly countably additive, and since 
to each A e S(^) and Вe S(J) there are A^e^, B^e â, i = 1, 2,. . . , such that 
Ai /' A, and Bi /^ B, it is clear that \ik{^) ~> ]i{Ä) and v„[B) -> v(ß) uniformly with 
respect to Л e ^ (^ ) and В e ®(J) respectively. But then, 

I f |i,(£0 ®. dv, - f ji(F) ®, d v U I f ц,(£0 ®г civ„ ~ f ц„(£0 ®e dv, 
Us Js I Us Js 

г li^E') ®, dv„ -. f ii{E^) ®, dvJ + I f ^(F) ®, dv„ - f ц(£0 ®e dv| 
Js Js I Us Js I 
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й sup \fi,{A) - ц„(Л)| . sup ||v„|| (S) + 

+ sup |ц„(Л) - ц{А)\ . sup ||v„|| (S) + lull (Г) . ||v„ - v|| (S) , 

and ||v„-v|| (S) S 4 sup |v„(B)-v(B)| -* 0, see [ И , IV.10.4], yields lim (»i*®eV„) 

(E) = (̂ i ®, v) (£) uniformly with respect to £ e ® ( ^ ® ^ ) . Hence 

lim f fj ®, d{]ij, (g), v„) = f / ® , d{]i ®, v) 
j,k,n-*co JE JE 

uniformly with respect to £ e S ( ^ ® i2) by Corollary 2 of Theorem 1. 
From Theorem 2 in Part III, using inequalities similar to those in the proof of 

Corollary of Theorem 15 above, we immediately obtain 

Theorem 16. Let m^:0> -> L{X, Y) and 4 : ^ -^ L{Y, Z), /c, n = 0, 1, ..., be 
operator valued measures countably additive in strong operator topologies, let 
the product measures /„ ® m^ : ^ ® ^ -^ L(X, Z), k, n = 0, 1, ..., exist, let 

/^„(S) < +00 / o r all n = 1, 2 , . . . , and let (/„ - lo){S) -> 0. Put w = /HQ and 
/ = /Q. r/ien: 

1) г/ mj^(A) X-^ m{A) X uniformly with respect to Ae^ for each x e X, then 
(4 ® щ)(É) X -^ [I 0 m) (E) X as к, n -^ oo uniformly with respect to Ее ^ ® 
® âfor each x e X, 

2) if m},{A) -> m(A) uniformly with respect to A e ^, then (/„ ® щ) (E) -^ 
-> (/ ® HI) (£) as k, n -> CO uniformly with respect to E e ^ ® â, and 

3) if m''{T) < + 00 and {m^ - m){T) -^ 0, then {1„®т^-1®т){Т x S) -> 0 
öS к, n -^ 00. 
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