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INTRODUCTION

In this part of our theory of integration of vector valued functions with respect
to operator valued measures we prove a general convergence theorem (Theorem 1),
which we call the diagonal convergence theorem, and we give some applications of it.
These applications are concerned with integrals of unconditionally convergent series
of functions and measures (§ 3), and with products and double integrals of sequences
and series of measures (§ 4). In §2 we collect miscellaneous results related to the
material of the other sections.

We shall use the notations and concepts of the previous parts I, II and III, see [5],
[6] and [7]. Particularly, 2 and 2 are é-rings of subsets of non empty sets T and S,
respectively. 6(9’) denotes the smallest o-ring which contains £. X, Y, and Z are
Banach spaces over the same scalars. By B(T, X) we denote the Banach space of all
bounded functions f': T — X with the supremum norm. If it is not specified otherwise,
I and J stand for non empty sets of indices. By @; we denote the collection of all
finite subsets of @ = {1, 2, ...}, and by @, the collection of all finite subsets of ® x .

1. DTAGONAL CONVERGENCE THEOREM

In this section we shall use the following three assumptions:

(a,): Let f, : T—> X, k= 1,2, ..., be a sequence of P-measurable functions, and
let f£i(t) - f(t) e X for each te T.

Since a pointwise limit of a sequence of P-measurable functions is P-measurable,
see Section 1.2 in Part I and Lemma 1.2 in [14], the function f: T — X in (a,) is
P-measurable.

(ay): Let m,: 2 - L(X,Y), n = 1,2,..., be operator valued measures countably
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additive in the strong operator topology, let m,(E) x - m(E) x €Y for each
Ee 2 and each x € X, and let sup m*,(E) < + oo for each E€ 2.

By the Vitali-Hahn-Saks theorem, see Theorem II1.7.2 in [11], [3], and Theorem 2
in §2 in [1], and the Uniform Boundedness Principle, see [11, IL.1.11 and I1.3.21]
m:? — L(X,Y) in (a,) is an operator valued measure countably additive in the
strong operator topology. Clearly m*(E) < sup m",(E) < + o for each Ee 2,

see Lemma 3 in [8]. Note that if the semivariations m*,, n = 1, 2, ..., are uniformly
continuous on 2 and if m,(E) x - m(E) x € Y for each E € 2 and each x € X, then
sup m",(E) < + oo for each E € 2, see Corollary of Theorem 5 below.

(azu): (ay) and for each x € X, m,(E) x - m(E) x uniformly with respect to E € 2,
i.e., m(.)x - m()xinB(2,Y) for each x € X.

Theorem 1. (Diagonal convergence theorem.) Suppose (a,) and (a,), and let f, be

integrable with respect to m, for each n = 1,2, .... Then the following conditions
are equivalent:
a): the vector measures E — [ f,dm, Eec&(?), n=12,..., are uniformly

countably additive on S(2), and
b): for each E € S(P) the sequence g f, dm,, n = 1,2, ..., is convergent in Y.

If they hold, then fis integrable with respect to m, and

limfﬂdm,, =f fdm for each Ee &(2).
E E

If (a,u) holds, then this limit is uniform with respect to E € &(2).

Proof. a) = b). Since f: T — Xis #-measurable, there is, by definition, a sequence
of #-simple functions ¢;: T— X, i = 1,2, ..., such that g{(f) - f(t) for each te T.
For n=1,2,... let p,: S(2) - (0; +0) and 4,: S(2) - 0, +0o0) be control
measures for the countably additive vector measures E — [z f, dm,, E € (%), and
E - (; g,dm, E € S(2), respectively, see [11, IV.10.5], [ 12, Theorems 3.2 and 3.10],
and also Remark 3 after Corollary of Theorem 6 below. For E € &(2) put

1 u(E) + A(E
H( )_ Z —. /‘( ) ( )
=120 1+ p(T) + 4(T)
Then p: &(2) — <0, 1) is a countably additive measure, and N € S(#), u(N) = 0
implies |j‘~f,, dm,| + |fx g, dm| = 0 for each n = 1,2,.
Put F = U {t;teT, Ij;,(t)l + |9.(t)| > 0}. Then Fe 6(.@), and by the Egoroff-
n=1

Lusin theorem, see Section 1.4 in Part I, there are F,e #,k = 1,2,...,and N e S(2)
such that F, # F — N, u(N) = 0, and on each set F,, k = 1,2,..., the sequence

{fu Gis - os S G } converges uniformly to f.
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Let ¢ > 0. Then by a) there is a k, such that 54 dm,| (F - N) - Fi,) < 3¢
foreachn = 1,2,.... Hence

fﬁdmn—Jﬁdmj'<f+
E E 3

J‘ g;dm, — J g;dm;
EnFy, EnFy,

for each Ee S(2) and each i,j,n = 1,2,....

Since on F,, the sequence {fl, Gis --os [rs G } converges uniformly to f,
and since sup m",(Fy,) < +o0 by (a,), there is an i, such that |f, — g, Fry -

+

J. (j;x - -ql) dmn
EnFy,

+ -

j (9. - £ dm,
Eano

n
.sup m" (F,) < %¢ for each n = i,. Hence, by Theorem 14 in Part I,

J‘ (f;l - gio) dmll
EnFy,

for each E € S(2) and each n 2 i,.
Let Ee 6(.@) Since g;, . XEnFy, is a P-simple function, according to (az) there is
an ny = i, such that

J‘ gi, dm, — J' 9io d’"j
Eano Er\I",‘°

If we assume (a,u), then such n, can be taken independently of E € (). Thus b)
follows from a).

b) = a) by the Vitali-Hahn-Saks theorem, see [11, I11.7.2], [3] and [1. Theorem 2
in § 2].

Suppose now a) and b), and let us keep the notations from above. For E € &(2)
put v(E) = lim [ f, dm,. Then v : §(2) — Y is a countably additive vector measure

by a), and Me S(2), y(M) =0 implies v(M) = 0. Hence V(E) = V(E N F) =
= lim v(E n F,) for each Ee &(®)(F, » F — N, and |v| (N) = 0).

k=
For each k=1,2,... take n, = kv me; (n, = 0) so that ||f, — g, | F.
.supm”(F,) < 1/k for n 2 m, and put k=g, .xron k=12,.... Then

= 15 = gul - sup m(Fu) < 2

< foreach n,j = n,.

W™

h:T—> X, k=1,2,..,is a sequence of Z-simple functions, k() - f(t) for each

teT, and
[ pon- ]
E E

J (f, — b)dm, J‘ b dm, — j by d""
EnFi EnFi EnFi

for each Ee &(#) and each n, k <= 1,2, ....

((F, —N)-F,) +

+ -
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Let ¢ > 0. By a) take k, so that 1/k; <} and |[f, dm,| ((F — N) — F,) < 1¢
for each k = k, and each n = 1,2, ... . Then we obtain for k = k; and for n = n,,
in virtue of Theorem 14 from Part I, the inequalities UEan s — &) dm! <
< i = Br, - sup m"(F) < 1]k, < 3¢, hence |z f,dm, — [z b dm| <& +

+ |Jenr, b dm, — [p.r, b dm| for each he S P).
Let Ec ©(2) and k = k, be fixed. Since A . xp.r, is a P-simple function,
|fenr, B dm, — [pp, B dm| > 0 as n — oo by (a,). Since lim [ f, dm, = v(E)e Y

exists according to b), the last inequality implies for n — oo that ]v(E) = e by dm| <
< & Thus [; b dm — v(E) for each E e &(%), hence f is integrable with respect
to m, and [pfdm = hm e i dm = v(E) = lim [g f, dm, for each Ee &(2) by

Theorem 7 in Part L. If (azu) holds, then, as was shown above in a) = b), the last
limit is uniform with respect to E € &(#). The theorem is proved.

Obviously, in the special case when m, = mforalln = 1,2, ..., Theorem 1 reduces
to Theorems 15 and 16 in Part I. Another important special case occurs when f, = f
for all n = 1,2,.... The author has not succeeded in finding the classical scalar
analog of Theorem 1 in literature. He found only a partial result in this direction in
[15, Corollary 2 of Theorem 1].

The next corollary is immediate.

Corollary 1. Suppose (a,) and (a,), and let f, be integrable with respect to m,
forallk,n=1,2,.... Then:

1) If the iterated limit lim lim £ fi dm, exists in Y for each E € &(%), then f is

n—+w k—+o

_integrable with respect to m and each m,, n = 1,2,.

lim limJ f.dm, = limjfdm _J' fdm
E

n—-w k= o n— o

for each E e &(#).
2) If the iterated limit lim lim e fi dm, exists in Y for each Ee &(P), then f

k= n—>o

and each f, k = 1, 2, are integrable with respect to m, and

lim lim | f, dm, = lim J' £, dm _—_.[fdm
E E

k=w nso Jp k=

for each E e &(2).

Hence, if both the iterated limits above exist in Y for each E € G(2), then they
are equal.
The name diagonal convergence theorem was suggested by the following

Corollary 2. Suppose (a,) and (a,), and let f, be integrable with respect to m,
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foreach k,n = 1,2, .... Then the following conditions are equivalent:

a) the vector measures E - [gf,dm,, Ee€ &(?), k,n =1,2,... are uniformly
countably additive, and

b) for each E € &(2), lim [; fi dm, exists in Y for each n = 1,2, ..., lim e f dm,
k=

existsinY foreachk = 1,2, ...,and lim j'Ef,“ dm, existsinY for all subsequences
ki, n; = oo. ime

If they hold, then f is integrable with respect to m and each m,, n = 1,2, ...,
each f,, k = 1,2, ..., is integrable with respect to m, and

lim jﬂdm,,:lim limjﬁdm,,:limj'fdm,,:J‘fdm
E E E E

k,n— o n—-wo k= n— o

=lim | fodm = lim lim | f,dm,

k= Jp k=0 n=wo JE

for each Ee &(2). If (ayu) holds, then lim [gf, dm, = [pfdm uniformly with
respect to E € S(2). k,n=c0

Proof. a) = b) by Theorem 1, while b) = a) by the Vitali-Hahn-Saks theorem,
see [11, I11.7.2], [3] and [1, Theorem 2 in § 2]. The other assertions of the corollary
follow immediately from Theorem 1, since a) implies the uniform countable additivity
of the vector measures E — [y fdm, E — [pf,dm, Ec &(?), nk=12,....

Some special cases. 1. Let # = &(2), let f, : T— X, k = 1,2,.... be a bounded
sequence in B(T, X) of #-measurable functions, and let fi(t) = f(f)e X for each
teT. Let further m,:? —» L(X,Y), n=1,2,..., be operator valued measures
countably additive in the strong operator topology, let m,(E) x - m(E) xeY for
each Ee€? and each xe X, and let the semivariations m",, n =1,2,..., be
uniformly continuous on 2, see also Theorem 2 below. Then m*(T) < sup m” (T) <

< +o0 by Lemma 3 in [8] and Corollary of Theorem 5 below, f; are integrable

with respect to m, for each k, n = 1, 2, ... by Theorem 5 in Part I, and ”Efk dm,,’ =

s m" (. E) £ | fillz: m*(E) < sup | fi|r.sup m",(T) < +o0 for each Ee 2
k n

by Theorems 2 and 1 in Part II. Hence the assumptions and condition a) of Corollary
2 of Theorem 1 are fulfilled. Note that in Corollary of Theorem 6 below we obtain
in a certain sense a stronger result than the assertions of Corollary 2 of Theorem 1,
namely that lim sup m*,(f, — £, T) = 0.

k= n
2. Let X ®, Y denote the completion of the tensor product X ® Y in the inductive,
or weak, crossnorm, see [16, § 20.5], and let p :  — Y be a countably additive vector
measure. (Note that if X is the space of scalars of ¥, then X @, ¥ = Yand x @ y =
= x.J.) Then clearly p may be viewed as an operator valued measure p: % —
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- L(X, X ®.Y),ME) x = x ® p(E), E € 2, x € X, countably additive in the uniform
operator topology. It easily follows from the properties of the weak crossnorm that
n(E) = "p.” (E) for each E € 2. Hence 1 is finite and continuous on £ by countable
additivity of p: 2 = Y. If f: T — X is integrable with respect top : 2 —» L(X, X ®,
®,Y), then we put [ f®,dp = [ fdp, E e S(2).

Letnow #? = &(2),let f, : T— X, k = 1,2, ..., be a bounded sequence in B(T, X)
of #-measurable functions, and let £;(f) — f(f) € X for each t € T. Let furtherp, : 2 —
- Y, n=1,2,..., be countably additive vector measures, and let p,(E) » p(E)e ¥
for each Ee 2. Then the semivariations p, = [#a], » =1,2,..., are uniformly
continuous on £ by the Vitali-Hahn-Saks theorem, see [11, 1I11.7.2], [3] and [1,
Theorem 2 in § 2]. Hence we have the situation of case 1 described above.

3. Let 2 = &(2), let f; € 3, (= the closure of the space J; of all #-simple func-
tions f: T— X in B(T, X)), k = 1,2,..., and let £i(t) = f(?) € X uniformly with
respect to te T, ie., |[fp — f|r — O (hence feJ; as well). Suppose further (a,).
Then, according to Theorem 9 in Part I, f, are integrable with respect to m, for each
k,n=0,1,..., where f, = fand m, = m. Let ¢ > 0 and take k, and a Z-simple
function g : T— X so that (|, — g|r + |f— 9]1) . sup m",(T) < 4e for k = k.

Then |fzf, dm, — [z fdm| < |[z (£, — 9) dm,| + |[r g dm, — [; g dm| +
+ |fz(g — f)dm| < | £ — 9| . sup m*,(T) + |fe g dm, — [z g dm| +
+ g = fllr . sup m*(T) < e + |[z g dm, — f& g dm| for each k = ko and each

Ee 2. Hence lim [ f,dm, = [; fdm for each E€ 2 by (a,), and this limit is
k,n—x

uniform with respect to E € 2, provided (a,u) holds. The equalities

lim 1imfﬂdm,,=limj fdm,,=J'fdm=limJ.ﬁ‘dm=
E E E E

n—o© k= n=* o k=00

= lim lim | f,dm,, Ee2,
ko n—wo JE .
may be proved similarly.

Let us note that neither Theorem 1 nor its corollaries have been used. Finally,
recall that Cy(T, X) < T, if Tis a locally compact Hausdorff topological space and
if # = %, (= the d-ring of all relatively compact Baire subsets of T), see Theorem 8
Part I and [8].

2. MISCELLANEOUS RESULTS

The next theorem is a generalization of the *-Theorem from Section 1.1 in Part I,
and may be proved in the same way.

Theorem 2. (Extended x-Theorem.) Let Y contain no subspace isomorphic to the
space co, for example, let Y be a weakly complete Banach space, (see pp. 160 and 161
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in [2]), let mj : 2 > L(X, Y), j € J, be operator valued measures countably additive

in the strong operator topology, and let y(E) = sup {l Y m;(E) xi|, jieJ, E;e 2,
r i=1

EinE =0fori+k E=UE, x;eX, |x|< 1L, ik=1..,rr=12.}<
i=1

< +oo for each E€ P. Then the semivariations m” ;, j e J, are uniformly con-

tinuous on 2.

Since we shall deal with unconditionally convergent series in Banach spaces, let us
recall the basic facts. We say that a sequence y,eY, n=1,2,..., is summable
to yeY, if for every & > 0 there is a finite set ] « w = {1, 2,...} such that
IZ y;— y| < ¢ for each finite J < w, J o I. It is well-known, see Section IV.1 in
jeJ

[4], that a sequence y,e ¥, n = 1, 2, ..., is summable to y € Y if and only if the series

Y. y, is unconditionally convergent to y. By Orlicz—Pettis theorems this is equivalent
n=1

to the weak unconditional convergence of the series Z y, to y, and 1f Y contains no

subspace isomorphic to c,, then this is equivalent to the condition Z | y y,,| <+
for each y* e Y*, see [2]. If y(.), y(.): T—> Y, n =1,2,..., then in addltlon to the
pointwise summability of y,(t), n = 1, 2, ..., to y(t) we have also the natural concept
of uniform summability of y,(f), n = 1,2, ..., to y(t) with respect to t€ T, i.., the
summability of y,(.), n = 1,2,..., to y(.) in B(T, X).

Lemma 1. Let v,: ? - Y, n=1,2,..., be a sequence of countably additive
vector measures, and for I € &, and E € 2 put vi(E) = ) v(E). Then the following
conditions are equivalent: el

a) the set function y, y(E) = sup |v|| (E), E € 2, is continuous on 2,
Te®d;
b) the vector measures vy, I € ®,, are uniformly countably additive on 2, and

c) for any sequence of pairwise disjoint sets I, e ®,, n = 1,2, ..., the vector
measures vy, n = 1,2, ..., are uniformly countably additive on 2.

Proof. Clearly a) = b) = ¢).

c) = a). Suppose c) and non a). Then there is an ¢ > 0, a sequence E, € 2,
k=1,2,..., E ™0, and a sequence Jy€ ®;, k = 1,2, ..., such that |[v, || (E) > e
forallk = 1,2,....Putl, = J, and k, = 1. SinceI, is a finite set, and since eachv,,
n = 1,2, ..., is countably additive on 2, there is a k, > k, such that |[v | (E,) < 3e.
Put I, = J,‘2 I,. Then I, N1, = 0 and |v,| (Ey,) > e Similarly, since I, U I,
is a finite set, there is a k; > k, such that ||vy,,p,| (E,‘a) < e Put Iy = J, —

— (I, uL). Then I; n (I, ul,) = 9 and |v,| (Es,) > e. Continuing in this way
we obtain a contradiction with c). The lemma is proved.

Using this lemma we have the following simple consequence of the Vitali-Hahn-
Saks theorem, for the latter see [11, IIL 7.2], [3] and [1, Theorem 2 in § 2].
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Theorem 3. Let v, : # - Y, n = 1,2, ..., be countably additive vector measures,
0
and let for each Ee P the series ), v,(E) be unconditionally convergent in Y.
n=1
Then the vector measures v, I € @, are uniformly countably additive on 2.

Proof. Letl,e &;,,n = 1, 2, ..., be a sequence of pairwise disjoint sets. According
to Lemma 1 it is enough to show that the vector measures v;, n = 1,2, ..., are
uniformly countably additive on £. But this follows immediately from the Vitali-
Hahn-Saks theorem, since v,n(E) — 0 for each E € # by the unconditional conver-

gence of the series ) v,(E)inY, E€ 2.
n=1
A partial converse to this theorem is the following

Theorem 4. Let T be a locally compact Hausdorff topological space and let
v, : 6(33) —-Y, n=1,2,..., be countably additive regular Borel vector measures.
Further,

(i) let the vector measures vy =y v;, I € ®,, be uniformly countably additive
on S(A), el
(ii) let Y contain no subspace isomorphic to c,, (see pp. 160 and 161 in [2]), and
(iii) let sup |[v/({t})| < + oo for each te T.
1o,

Then the series ). v,(E) is unconditionally convergent in Y for each E e S().
n=1

Proof. For E € €(#) put u(E) = sup ||v;|| (E). Then clearly y : (%) — <0, +0)
Ie®d;

is monotone, subadditive, and continuous by (1) Hence p is a submeasure in the sense
of Definition 1 in [9]. Since we suppose (ii), according to Theorem 5 in [2] it is enough
to show that u(E) < + oo for each E e &(%). By Theorem 4 in [9] there is a set
Q € S(4) such that u(E) = u(E n Q) and p(E — Q) = 0 for each E € &(%). Owing
to the Saks decomposition of Q with zespect to u, see Theorem 8 in [9], there is a finite

number r of pairwise disjoint elements A,, 4, ..., 4, of S(%) such that Q = U 4,,
i=0

and each 4;, i =0, 1,...,r, is either an atom of u (see Definition 2 in [9]) with
u(A4;) > 1, or p(A4;) £ 1. According to Theorem 12 in [9] each atom of y is con-
centrated at a point ¢ e T. Thus using (iii) and the subadditivity of u we have u(E) =
= p(En Q) = n(Q) < + o for each Ee S(%), which was to be shown. The
theorem is proved.

Remark 1. From this proof it is clear that Theorem 4 remains valid for general
countably additive vector measures v, : §(2) - ¥, n = 1, 2, ..., if the condition (iii)
is replaced by

(iii)’ let sup |v;| (E) < + oo for each Ee &(2) which is an atom of each v,
Iep, ™= :
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The properties of submeasures used in the proof of Theorem 4 yield the following
result. (For the definition of the L,-pseudonorm m"(.,.) and its properties see
Part IT and the paragraph before Theorem 3 in Part IIL.)

Theorem 5. Let f,: T — X or f; : T — {0, + ), i €I, be P-measurable functions,
and let m; : P — L(X, Y), jeJ, be operator valued measures countably additive
in the strong operator topology. Let further the L-pseudonorms m"(f;, .), je J,
iel, be uniformly continuous on &(2), and let sup |[,|f]d(m()x)| < + o

J

for each x e X and each A € 2 which is an atom of each m;, je J. Then
supm” (f;, T) < + 0.

,J

Remark. We do not suppose that the semivariations m" ;, j € J, are finite on 2.

T~
Since m(.) x (f;, E) = |m,(.) x| (f;, E) £ |mj|| (f, E) £ m" (f;, E) for each xe€ X,
Ee&(2), iel and je J, the continuity of m” (f;,.), je J, iel, by Lemma 1 in
Part II implies that lf,l is integrable with respect to my(.)x, je J, xe X, and m;,
jeldJ.

Proof. By the Uniform Boundedness Principle, see [11, 1L.1.11 and I1.3.21], the
last condition in the theorem implies that sup sup |f, |£| d(m,() x)| < +oo for
iJj |xl=1

each A € 2 which is an atom of each m;, j e J.
For Ee &(2) put u(E) = sup m * (fi» E). Then clearly p: &(#) - <0, + ) is

a submeasure in the sense of Deﬁmtlon 1Lin [9]. If we show that pu(4) < +co for
each atom A of p (see Definition 2 in [9]), then similarly as in the proof of Theorem
4, the subadditivity of u will imply the desired result by Saks decomposition. Let
A e &(2) be an atom of p. Since p is continuous on &(2), we may suppose that
A€ 2. Let us have a fixed couple (i, j) e x J. Then obviously either m" (f;, A) =
=0, or A is an atom of m" (f, .). Suppose A is an atom of m" (f;,.). Since

m” (f;, A) = hm m"(f,{t:teA, 1n If(t)l < n}), there is an n, such that

m* (f, A — {t : te A, 1ng £ lf,-(t)| < no}) = 0. Partitioning the interval {1/n,, ny>
into smaller and smaller parts, by monotone continuity of m” }(f;,.) on &(2), see
Theorem 1 in [9], we obtain a number a, 1/n, < a £ n, such that m" (f,, 4 —

—{t:te A, |f(1) = a}) = 0. Hence m" (f,, A) = a.m" ({t: te 4, |f(t)| =a}) =
= sup |4 || d(m,(+) x)|. But then p(4) = sup m" (f;, A4) = s‘up Is;;pllh |£] -

d(m ( ) x| < + o0, which proves the theorem.

From this theorem we immediately obtain the following

Corollary. Let m; : 3(?) - L(X,Y), j € J, be operator valued measures countably
additive in the strong operator topology, let the semivariations m" ;, j € J, be uni-
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formly continuous on S(%), and let sup |mJ(A xl < + o0 for each x € X and each

A€ P which is an atom of each m; ] € J Then sup m* (T) < .
JjeJ
Remark 2. If T'is a locally compact Hausdorff topological space, and if m; : # —
— L(X,Y), je J, are Borel measures regular and countably additive in the strong
operator topology, then the last condition in Theorem 5 may be replaced by the
following: sup ]ﬁ(t)] . Iml({t}) x| < + o for each te T and each x e X. Similarly,
ij

in this case the last condition in the corollary above may be replaced by the following
sup |m,({t}) x| < + oo for each t € Tand each x ¢ X.
JjeJ

The next theorem is a generalization of the Lebesgue dominated convergence
theorem in % ,(m), see Theorem 17 in Part II.

Theorem 6. (Extended Lebesgue dominated convergence theorem.) Let f,:T—> X
or fp :T—><0, +0), k=1,2,..., be P-measurable functions and let f(t) >0
for each teT. Let further m,:? — L(X,Y), n=1,2,..., be operator valued
measures countably additive in the strong operator topology, let the L,-pseudo-

norms m*,(f,,.), n,k=1,2,..., be uniformly continuous on (%), and let
sup m" (E) < 400 for each E e P. Then lim sup m",(f;, T) = 0.
ko n

Proof. For E e &(2) put
@ A s E
LORDY mlfe )|

1
1+ m (£, T)"

1 o
72 7
(Since m*,(f;,.) is continuous on &(#) by assumption, m"(f;, T) < +oo by
Corollary of Theorem 5 in Part II.) Then p : &(2) — <0, 1) is monotone, subadditive
and continuous, and N € &(#), u(N) = 0 implies m",(fi, N) = 0 for all k,n =

=1,2,....Put F=U{t:teT, fi(t) + 0} € §(2). Since fi(t) > O for each te T,
k=1

the Egoroff-Lusin theorem, see Section 1.4 in Part I (which remains valid for such p),
implies that there are F;e 2, i = 1,2,...,and N e &(2) such that N < F, p(N) =

F; 7 F — N, and on each F;, i = 1,2, ..., the sequence f, k = 1, 2, ..., converges
uniformly to 0. Since m"(f;, T) = m"(fi. F) £ m" (£, F}) + m",(f,, (F — N) —
— F) £ | Alle. - sup m"(F)) + m*(fi,(F — N) — F;) for all i,k,n=1,2,...,

the assertion of the theorem is now evident.
From here and from Corollary of Theorem 5 we immediately have the following

Corollary. (Extended Lebesgue bounded convergence theorem.) Let f, : T— X or
fi : T—> <0, +©) be a bounded sequence in B(T, X) or B(T, R), and let fi(t) —
- f(tye X or R for each teT. Let further m,:G(?) > L(X,Y), n=1,2,...,
be operator valued measures countably additive in the strong operator topology,
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let their semivariations m*,, n = 1,2, ..., be uniformly continuous on &(2), and
let sup |m,(A) x| < + oo for each x € X and each A € P which is an atom of each m,,
n=12,....Thenlimsup m"(f, — £, T) = 0.
k2o n

Remark 3. The basic tool in our theory of integration is the Egoroff-Lusin theorem,
see Section 1.4 in Part I. It has been used, until the proof of Theorem 6 above, via
the existence of a control measure for a countably additive vector measure or for
a continuous L -pseudonorm, see the previous parts. Obviously, it remains valid
when p : §(#) = <0, + ) is monotone, subadditive, and continuous (in fact, it
clearly remains valid for general submeasures p : (%) - <0, + oo) in the sense of
Definition 1 in [9]). Therefore instead of control measures we can use either directly
the continuous L;-pseudonorms as in the proof of Theorem 6, or, in the case of
a countably additive vector measure p: S(£) — ¥, the set function p(E) = sup
{ lu(F)|, Fe &(#?), F < E} (which by elementary straightforward arguments, see
Theorems 2.6 and 3.5 in [12], is bounded, monotone, subadditive, and continuous).
On the other hand, the existence of a control measure for a countably additive vector
measure was essential for the proofs of Theotems 14 and 15 (The Fubini theorem)
in Part III.

We are now ready to prove (for notations and terminology see Part III)

Theorem 7. Let m; : ? — L(X, Y), iel, be operator valued measures countably
additive in the strong operator topology, let the semivariations m",, iel, be
uniformly continuous on 2, and let sup lmi(A) xl < 4 oo for each x e X and each

iel

A€ P which is an atom of each m;, i€l. Let us subject I;:2 —»L(Y, Z), jed
to analogous assumptions. Then the product measures I; @ m;: ? ® 2 — L(X, Z),

S
iel, jelJ, exist, sup(l; @ m;)(E) < +0 for each Ec ? ® 2, and the semi-
o~ B
variations I; ® my, iel, je J, are uniformly continuous on 2 @ 2.

Proof. The product measures ; @ m;: ? @ 2 » L(X, Z), i€l, je J, exist by
Theorem 3 in Part III.
Let Ec ? ® 2and take A€ 2 and Be 2s0 that E =« A x B. Since sup mA,.(A) <

iel

T
< 4o and sup I" (B) < + oo by Corollary of Theorem 5, we have sup (/; ® m,)
(i,j)eIxJ

(E) = sup m" (A) sup 1" (B) < +o by Theorem 2 in Part III

Concermng the last assertion of the theorem, we immediately see by indirect
proof that it is enough to prove it when I = J = {1 2, ...}, i.e., when we have a se-
quence my, k =1,2,..., and a sequence /,, n=1,2,.... Let E,Ee?2® 2, r =
=1,2,..., and let E, 0. For r =1,2,... and seS put f,(s) = sup m"(E,).

k

Since each semivariation m*,, k = 1,2, ..., is continuous on £, each function s —
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- m"(E),seS, k,r ="1,2, ..., is 2-measurable by Lemma 2 ¢) in Part III. Hence

each f,, r = 1,2, ..., is 2-measurable by Theorem A in § 20 in [13]. Take A, e »

and By e 2 so that E; = A; x B,. Then f,,(s) £ f,(s) S supm"(4,) < + o
k

for each r = 1,2, ... and each s e S. Hence the functions f,, r = 1, 2, ..., are unj-
formly bounded on B,. Since we assume that the semivariations m”,, k = 1,2, ..,
are uniformly continuous on £, f,(s) — 0 for each s € B;. Thus lim sup IA,,(f,, B,) =

r+wo n

N
=0 by Theorem 6. Since (I, ® my)(E,) < I",(m(E,), B,) < I",(/,, B;) for all
S
n,k,r =1,2,...by Theorem 2 in Part III, we conclude that lim sup (I,, ® my) (E,) =

r+o n,k

= 0. The theorem is proved.

3. APPLICATIONS TO INTEGRALS OF UNCONDITIONALLY
CONVERGENT SERIES OF FUNCTIONS AND MEASURES

The Orlicz-Pettis theorems, see [4, IV. Theorem 1], [11, IV.10.1] and [2], is a pow-
erful tool for establishing unconditional convergence of a given series in a Banach
space. Hence it is reasonable to apply our diagonal convergence theorem to integrals
of unconditionally convergent series of functions and measures.

We shall use the following three assumptions corresponding to assumptions (al),
(a,) and (aju) in § 1.

(by): Let f,: T—> X, k = 1,2, ..., be P-measurable functions, and let ) fi(t) =
= f(t) € X unconditionally for each teT. k=t
(by): Let m,: 2 —» L(X,Y), n = 1,2,..., be operator valued measures countably

additive in the strong operator topology, let ) m/(E)x = m(E)xeY un-
n=1 PN
conditionally for each E € # and each x € X, and let sup (), m))(E) < + o

Ie®, iel
for each E€ 2.

<]
(byu) : (b,) and Y m,(.) x = m(.) x unconditionally in B(2, Y) for each x € X.
n=1

PN
Note that if (b,) holds, then m*(E) < sup (). m;) (E) < + oo for each E e 2.

Ie®; iel
For the next result, Theorem 15 in Part I (a special case of the diagonal convergence

theorem) is sufficient.

Theorem 8. Suppose (b,). Let further m:? — L(X,Y) be an operator valued
measure countably additive in the strong operator topology, let m"(E) < 4+
for each E € 2, and let each fi, k = 1,2, ..., be integrable with respect to m. Then
the following conditions are equivalent:
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©
a) the series Z J&fi dm is unconditionally convergent in Y for each E e S(2), and

b) the vector measures E — Z |cfidm, Ee &(2), 1€ ®,, are uniformly countably
additive.

If they hold, then fis integrable with respect to m, and Z j'fk dm = jfdm uncon-
ditionally in B(&(2), Y).

Proof. a) = b) by Theorem 3. We show that b) implies the second assertion of the
theorem, hence also a). Suppose b) and let p(i), i = 1,2, ..., be any permutation of
k

o = {1,2,...}. Then 5(f) = .pr(i)(t) — f(t) for each te T by (b,), and the vector
measures E — ,[z-: s, dm, Eegzﬂ), k = 1,2,..., are uniformly countably additive
by b). Hence f'is integrable with respect to m and i {foiiydm — [fdmin B(&(2),Y)
by Theorem 15 in Part I. This yields, since p(.l)=ils' any permutation of {1,2,...},
that kiﬁf f,dm = :[f dm unconditionally in B(€(2), Y), see [4, IV. § 1, (B) < (C)].

The theorem is proved.
Similarly, using another special case of Theorem 1, we immediately obtain

Theorem 9. Suppose (b,). Let further f:T— X be a P-measurable function
integrable with respect to each m,, n = 1,2, .... Then the following conditions are
equivalent:

a) the series Z f£ fdm, is unconditionally convergent in Y for each E € (%), and

b) the vector measures E — Z [efdm,, E e &(#), 1€ ®,, are uniformly countably
additive.

If they hold, then f is integrable with respect to m, and ZjEfdm = (g fdm

unconditionally for each E e &(2). If, moreover, (b,u) holds then Z jfdm,, =
= _[fdm in B(&(2),Y).

Theorems 8 and 9 immediately imply

Theorem 10. Suppose (bl) and (b,). Let further f, be integrable with respect
to m, for all k,n =1,2,.... Then:

1) If Z ijfi dm, is iteratively unconditionally convergent in Y for each

n=1 k=1

Ee C(@), then f is integrable with respect to m and each m,, n = 1,2, ...,
and o o ©

5 ZJﬁ,dm,,:fodm,,:J‘fdm

n=1k=1 | n=1 ) E
for each E € &(P).
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2) If E ngﬁ dm, is iteratively unconditionally convergent in Y for each

Ee 6(9’), then fand all fi, k = 1,2, ..., are integrable with respect to m and

5y fidm, —ZlLfkdm=Lfdm

k=1n=1

for each E € &(2).

From Theorems 8, 9 and 10 we easily deduce

Theorem 11. Suppose (b,) and (b,). Let further f, be integrable with respect

to m, for all k,n = 1,2, ..., and let the vector measures E— Y [ f,dm;, Ee
(i,j)el

€ 6(97‘) Ie®,, be umformly countably addltwe Then f is integrable with respect
to m and both Z Z (& f dm, and Z Z (£ fi dm, are iteratively unconditionally
convergent to fEfdm for each E e 6(9’).

Using Theorem 1 we obtain (see also Theorem 4)

Theorem 12. Suppose (b,) and (b,). Let further f; be integrable with respect
@
to m, for all k,n = 1,2,..., and let the series Y. [gf, dm, be unconditionally
k,n=1
convergent in Y for each E e S(P). Then the vector measures E - Y, [ f,dm,,
(k,n)el

Ee &(2), 1€ ®,, are uniformly countably additive, f is integrable with respect
to mand Y, [pfidm, = [z fdm unconditionally for each Ee &(). If (byu)
k,n=1

holds, then Z [ £ dm, = [fdm unconditionally in B(S(%?), Y).

Proof The first assertlon follows immediately from Theorem 3. Since

Z (efidm, = 11m jE( Zf) d( Z m,) for each Ee &(#), f is integrable with

respect to m, and Z {efidm, = [; fdm for each E e S(#) by Theorem 1. By
k,n=1
assumption the last convergence is unconditional for each Ee 3(2).

Let us assume (b,u) and suppose that the series Z [ fi dm, is not summable
k,n=1"

to _[ fdm in B(&(2),Y). Then since z _[E fiodm, = [ fdm unconditionally for
each E e &(2), the serles Z ) dm is not summable in B(S(2), Y). Hence there

is an ¢ > 0, a sequence of pa1rw1se disjoint non empty sets ;€ @,, i = 1,2,.
and a sequence E;e &(#), i = 1,2,..., such that | Y [z £ dm,,| > ¢ for each
(k,n)el;
i=1,2,...Since Y [gfidm, >0 asi— oo, the unconditional convergence
(k,m)ely
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Lo}

of the series ) ‘fElf;,dm in Y implies that there is an i, > i, = 1 such that

IS for, fidm,

(kmyel )

> i, such that

| Z IE L~ (E; UE; )ﬁ, dm,,] > ¢. Continuing in this manner we obtain a sequence
(k,n)el

of palrWlse disjoint sets F, = E; — (E;,; u...UE; _)e&(#), r=1,2,..., such

that I Y (e S dm,,l > ¢ for all r =1,2,.... Hence we have obtained a con-
(k,n)eli'_

tradiction with the uniform countable additivity of the vector measures E —

- Y [efidm, Ee S(#),Ie ®,. The theorem is proved.
(k,m)el

4. APPLICATIONS TO PRODUCTS AND DOUBLE INTEGRALS
OF SEQUENCES AND SERIES OF OPERATOR VALUED MEASURES

The results obtained above combined with the main theorems of Part III yield
interesting results about products and double integrals of sequences and series of
operator valued measures. We state and prove only few of them for illustration.

Let us note that the next theorem, by suitable localization, remains valid if 6’(.@)
S(2) and (2 ® 2) are replaced by 2, 2and 2 ® 2 respectlvely, but then we have
a somewhat weaker result.

Theorem 13. Let m,: S(?) » L(X,Y) and 1,:S(2) > L(Y,Z), n=1,2,...
be operator valued measures countably additive in strong operator topologies, let
m,(A) x > m(A) xe Y for each A e &(?) and each x € X, and let I(B)y - I(B) y e
€ Z for each Be 2 and each y €Y. Let further sup l",,(B) < 4 oo for each Be 2,

and let the product measures I, @ m,: S(? ® 2) > L(X, Z), n = 1,2, ..., exist.
Then the following conditions are equivalent:

a) the vector measures E - (I, ® m,)(E)x, E€eS(?® 2), n=1,2,..., are
uniformly countably additive for each x € X,

b) the vector measures B — (I, ® m,)(E n (T x B))x, Be §(2),n = 1,2, ..., are
uniformly countably additive for each E € 6(.”/’ ® .@) and each xe€ X, and

¢) lim (I, ® m,) (E) x € Z exists for each Ee S(? @ 2) and each x € X.

If they hold, then the product measure I @ m: S(? @ 2) - L(X, Z) exists, and
lim (4, ® m,) (E) x = (I ® m)(E) x for each E€ &(? @ 2) and each x e X.

n—> o

Finally, if 1,(B) y - I(B) y uniformly with respect to Be 2, then lim (I, ® m,)

(En(T x B))x = (I® m)(E n (T x B))x uniformly with respect to Be &(2)
for each Ee &(2? ® 2) and each x € X.

Proof. a)=b) trivially, while c) = a) by the Vitali-Hahn-Saks theorem, see
[11, 111.7.2], [3] and [1, Theorem 2 in § 2].
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Suppose b). According to Theorem 1 in Part III we have

(1) (L, ® m,) (E) x = j m,(E*) xdl, foreach EeG(?® 2), xeX
s

and n=12,....

Let Ee S(2 ® 2) and x € X be fixed. Since m,(E°) x — m(E®) x for each se S, the
function s » m(E°) x, s € S, is integrable with respect to /, and

(2 ‘Lm,,(Es) xdl, > ij(E‘) xdl foreach Be &(2)

by Theorem 1. Hence the product measure I @ m : S(2 ® 2) —» L(X, Z) exists by
Theorem 1 in Part III. Taking B e &(2) so that T x B > E, we obtain from (1), (2)
and Theorem 1 in Part III that (4, ® m,)(E)x > [s m(E’)xdl = (I ® m)(E) x.
The last assertion of the theorem also follows from (1), (2) and Theorem 1.

From this theorem and its proof it is evident how to apply Corollaries 1 and 2
of Theorem 1, and Theorems 8 —12 to products of sequences and series of operator
valued measures.

Theorem 14. Let my: P — L(X,Y) and 1,:2 - L(Y,Z), k,n=1,2,..., be
operator valued measures countably additive in strong operator topologies, let
m(A) x > m(A)xeY for each Ae P and each xe X, let I(B)y > I(B)yeZ
for each Be 2 and each y €Y, and let the semivariations I",, n = 1,2, ..., be uni-
formly continuous on 2. Then 1" is continuous on 2, sup I*,(B) < + oo for each

n
Be 2, all product measures I, @ m : ? @ 2 » L(X, Z), k,n=0,1,2,..., where
ly = Il and my, = m, exist, and

lim (I, ® m) (E) x = lim lim (4, ® m,)(E) x = lim (4, ® m) (E) x =
n—+o k—ow Land Y

n,k—

=(I®m)(E)x = klim (l® m)(E)x =klim lim (I, ® m,) (E) x

=00 n— o

for each E€e ? ® 2 and each xe X.
Proof. Since [*(B) < sup [",(B) for each Be 2, I" is continuous on 2.

sup I*,(B) < + oo by Corollary of Theorem 5. According to Theorem 3 in Part III

the product measures [, ® my, k,n = 0, 1, 2, ..., exist in virtue of continuity of the
semivariations /*,, n = 0, 1,2, ..., on 2. By Theorem 1 in Part III
(1) (1, ® my) (E) x = J' my(E%) x dI,

S

foreachn,k =0,1,...,each E€c 2 ® 2, and each xe X.
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Let EE? ® 2 and x€ X be fixed. Take A€ 2 and Be 2 so that E c 4 x B,
and put ﬂ(s) = m(E’)x, seS, k=0,1,.... Then the functions f,: S - Y, k =
=0, 1, ..., are 2-measurable by Lemma 2.1 in Part IIL. Since m,(C)x > m(C)xeY
for each C e 2, we have fi(s) — fo(s) for each s € S, and the semivariations | m,(.) x|,
k = 1,2, ..., are uniformly continuous on £ by the Vitali-Hahn-Saks theorem, see
[11, 11.7.2], [3] and [1, Theorem 2 in §2]. Thus K = sup |m(.) x| (4) < +

k

by Corollary of Theorem 5. (The Nikodym theorem on uniform boundedness of mea-
sures, see [11, 1V.9.8] and [1, Theorem 1 in § 2], may be used alternatively.) Since
clearly |fi|s £ K for all k =1,2,..., and since we assume that the semivaria-
tions I*,, n = 1, 2, ..., are uniformly continuous on 2, we have the situation of case 1
after Corollary 2 of Theorem 1 (&(B n 2) = B n 2). Hence (1) and Corollary 2 of
Theorem 1 imply the last assertion of the theorem. The theorem is proved.

Theorem 15. Let the following assumptions be satisfied:

()2=¢2), 2=6(2), f;j:TxS—>X, j=1,2,..., is a bounded sequence
in B(T x S, X) of ? ® 2-measurable functions, and f(t, s) - f(t,s)e X for
each (t,s)e T x S,

(ii)y m,: 2 > L(X,Y), k=1,2,..., are operator valued measures countably
additive in the strong operator topology, my(A)x — m(A)xeY for each
A e P and each x € X, and the semivariations m", k = 1,2, ..., are uniformly
continuous on #, and

(iii) I,: 2 > L(Y,Z),n = 1,2, ..., are operator valued measures countably additive
in the strong operator topology, 1(B) y - I(B) y € Z for each Be 2 and each
y €Y, and the semivariations I, n = 1,2, ..., are uniformly continuous on 2.

Then:

1) m" is continuous on 2, 1" is continuous on 2, sup m*(T) < +co and
sup I*(S) < + o, k
n

2) the product measures [, @ my: ? @ 2 > L(X,Z), k,n =0, 1, ..., where m, =
= mand I, = I, exist and fulfil

lim (1, ® my) (E) x = lim lim (/, ® m,)(E) x =
n—+o k—=ow

= tim (1, © m)(B)x = (1© m)(B)x = lim (1@ m) (E) x -

= lim lim (I, ® m,)(E)x for each E€c? ® 2 and each xeX,
k= n—owo
and

PN T
(!® m)(T x S) < sup(}, ® m) (T x S) < sup I",(S).sup m*,(T) < + 0,
n,k n k
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T
3) the semivariations I, ® m,, n,k =0,1,..., are uniformly continuous on

2Q2=6(2Q®2),

S
4) the L,-pseudonorms (I, ® m)(f;, .),j, k,n = 0, 1,..., are uniformly continuous
on?Q 2,

5) lim sup(l @ m)(f;— f, Tx S)=0, and

j—2w® n,

6) all integrals below exist and the following identities hold:
J. fd(l, ® my) =f f fi(,s)dmdl, for each j, k,n=0,1,...,
E s JES
and each Ee ? ® 2, and

lim | £d(l,® m) = lim lim | f;d(l,® m,) =

jk,n—~ E @, y*o JE
=lim lim | f;d({,® m) = lim lim lim | f;d({,® m,) =J fA(l® m)
a—o B,y Jp a=+® o y=2wo JE E
for each E€ 2 ® 2 and each permutation («, B, y) of (j, k, n).
If £;€ 3?2 @ 2) (= the closure of all 2 @ 2-simple functions f: Tx S - X in

B(Tx S, X)), j=1,2, ..., if f(t, s) > f(t, s) uniformly with respect to (t,s) e T x S,
and if sup m*,(T) < oo, then assertions 2) and 6) remain valid even if we do not
k

assume the uniform continuity of the semivariations m*, k = 1,2,..., on 2.
Proof. 1). Since m"(A4) < sup m",(A4) for each A€ 2, m" is continuous on #

by uniform continuity of m“:, n=1,2,..., on 2. Further, sup m"(T) < +

by Corollary of Theorem 5. Similarly /" is continuous on 2 and :up 1*(S) < +0.

2) follows from Theorem 14. ’

3) follows from Theorem 7.

4) follows from 3) and the inequalities (@k) (f,E) < sup [ £illzxs - sup (l/®\mk)
.(E),j,k,n=0,1,...and E€c Z ® 2, see Theorem 1 in Part IL

5) follows from 4) by Corollary of Theorem 6.

6) f; is integrable with respect to I, ® my, j, k,n =0,1,..., by 3) and Theorem
5 in Part I Similarly, by Theorem 5 in Part I the function fj(.,s) is integrable
with respect to m, for j,k=0,1,..., and each seS. By Theorem 9 in Part
I the function s — [ fj(.,s)dm, se S, is 2-measurable, and by Theorem
51in Part I it is integrable with respect to /, forj, k,n = 0,1, ...andeach Ec Z ® 2.
Finally, [zf;d(l, ® m) = s [e fi(, s)dm,dl, for j,k,n=0,1,... and each
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Ee? ® 2 by Theorem 16 in Part III. Now the identities concerning limits follow
from Corollary 2 of Theorem 1, see case 1 after the same Corollary.

The last assertion of the theorem follows from Theorem 14 and Corollary 2 of
Theorem 1 by virtue of the considerations of case 3 at the end of § 1.

Let us recall the notations of case 2 at the end of § 1 and, for countably additive
vector measures p:? —>Y and v: 25 Z let p®,v:2® 2->Y ®,Z be the
inductive tensor product measure, which exists by Theorem 3 in Part III, i.e., it is
a countably additive vector measure.

Corollary. Let f; : T x S = X,j = 1,2, ..., be a bounded sequence in B(T x S, X)
of ? ® 2-measurable functions and let f(t, s) - f(t, s) € X for each (t,s)e T x S.
Let further p, : S(?) » Y andv,:&(2) > Z, k,n = 1,2, ..., be countably additive
vector measures, and let y(A) - p(4) € Y and v,(B) - v(B) € Z for each A e S(2)
and each Be S(2). Then:

1) lim (@, v,) (E) = lim im (1, ®.v,) (E) = lim (e ®,v,) (E) = (4 ®.v) (E) =

= lim (b @, V) (E) = lim lim (y, ®,v,)(E) foreach EecS(? Q 2),
k= k=0 n—ow

2) lim sup

Jj—® k,n

(TxS8) =0,

j () = £) ®. d(v, ®. 1)

and

3) analogs of the assertions 6) of the theorem hold.

If, moreover, w(A) — p(A) uniformly with respect to A€ 2 and if v,(B) - v(B)
uniformly with respect to Be 2, then these limits are uniform with respect to
A€ &(P) and Be &(2) respectively, lim (b, ®,v,) (E) = (1 ®,v) (E) uniformly

k,n—>c0

with respect to Ee &(? @ 2), and lim [ef; ®@.d(m @ v,) = [ f®.d(p ®, V)

Jrk,n—> 0

uniformly with respect to Ec (2 ® 2).

Proof. Only the assertion concerning uniform limits is perhaps not immediate.
Suppose p,(4) — p(A4) and v,(B) — v(B) uniformly with respect to A€ 2 and Be 2
respectively. Since, by the Vitali-Hahn-Saks theorem, see [11, I11.7.2], [3] and [1,
Theorem 2 in § 2], the vector measures p, : S(?) > Y, k =0,1,..,, p, =, and
v, 6(.@) —-Z,n=0,1,..., vy = v, are uniformly countably additive, and since
to each Ae S(2) and Be &(2) there are 4, ?, B;e 2, i = 1,2, ..., such that
A; 7 A, and B; 7 B, it is clear that w(A) —> p(A4) and v,(B) — v(B) uniformly with
respect to A € &(2) and B e &(2) respectively. But then,

f m(E°) ®, dv, — J R(E%) ®,dv| < f m(E?) ®, dv, — J 1(E°) @, dv,
S S S S

+

+ + <

J‘ un(Es) ®. dvn - J‘ "(Es) ®. dv,
S N

Lu(E’) ®, dv, — -[ su(E’) ®.dv
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< sup |m(4) — m,(4)| . sup v, (S) +
AeS(2) n

+ sup [(4) = n(a)| . sup [ (5) + [ (T)- 2 = VI (S):

and |lv,—v| (S) < 4 sup Iv,,(B)—v(B)I - 0, see [11, 1V.10.4], yields lim (1 ®.V»)
Be©(2)

k,n—+

(E) = (n ®, v) (E) uniformly with respect to E e S(? ® 2). Hence

im [ £ @, dm ®,v.) =j 8.4 ®,v)
jk,n—oo JE E
uniformly with respect to E € &(2 ® £) by Corollary 2 of Theorem 1.
From Theorem 2 in Part III, using inequalities similar to those in the proof of
Corollary of Theorem 15 above, we immediately obtain

Theorem 16. Let m,:% — L(X,Y) and I,:2 - L(Y,Z), k,n=0,1,..., be
operator valued measures countably additive in strong operator topologies, let
the product measures [, @ m, : ? ® 2 — L(X, Z), k,n=0,1,..., exist, let

N
1"(S) < 4+ for all n=1,2,..., and let (I, — I,)(S) - 0. Put m = m, and
I =1, Then:

1) if m(A)x — m(A) x uniformly with respect to Ae P for each xe€ X, then
(4, ® m)(E) x > (I @ m)(E) x as k, n > oo uniformly with respect to Ee ? ®
® 2 for each xe€ X,

2) if my(A) —» m(A) uniformly with respect to Ae 2, then (I, ® m)(E)—
— (I ® m)(E) as k, n > oo uniformly with respect to Ee # ® 2, and

7 — T
3)if m"(T)< + o and (m — m)(T) -0, then (I,@m,—IQm)(T x S) >0
as k,n - .
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